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Abstract

This paper is concerned with giving explicitly the invariant density for a class of
rational transformations from the real line R into itself. We proved that the invariant
density can be written in terms of the fixed point z0 in C \ R or in terms of the
periodic point z0 in C \ R with period 2. The explicit form of the density allows us
to obtain the ergodic properties of the transformation R.

1 Introduction and main results

A various kind of 1-dimensional transformations have been found to have absolutely con-
tinuous invariant measures ([3]). However, there are not many transformations whose
densities are explicitly known. The aim of this article is to prove that a rational transfor-
mation R(x) on the real line R, under some assumptions, has an invariant probability
density (1/π)Im (1/(x − z0)) , if there exists z0 = x0 + iy0 ∈ C \ R with R(z0) = z0 or
with R(z0) = z0. Precisely, we have the following theorems, which we shall prove in the
second section by using the factor theorem.
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Theorem 1. Assume that R(x) = h(x)/g(x) is a rational transformation from R into
itself with the following properties:

(1) g(x) =
∏n

k=1(x − ak) for some a1 < a2 < · · · < an.

(2) h(x) is a polynomial with real coefficients, deg (h(x)) ≤ n + 1 and h(ak) 6= 0 for
all k.

(3) The restriction Rj of R to the subinterval (aj, aj+1) is monotonic for each j =
0, 1, . . . , n, where a0 = −∞ and an+1 = ∞.

(4) There exists z0 = x0 + iy0 ∈ C \ R with R(z0) = z0, or with R(z0) = z0.

Then ∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =

∫ ∞

−∞
Im

1

x − z0

f(x)dx (1.1)

holds for any essentially bounded real-valued function f(x). Hence the probability measure
dµ = (1/π)Im (1/(x − z0)) dx is invariant under R.

Theorem 1 can be rewritten as the following Theorems 2 and 3.

Theorem 2. Suppose that for some α ≥ 0, β ∈ R, bk > 0 (k = 1, . . . , n)

R(x) = αx + β −
n∑

k=1

bk

x − ak

.

Suppose also that there exists z0 = x0 + iy0 ∈ C \ R with R(z0) = z0. Then∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =

∫ ∞

−∞
Im

1

x − z0

f(x)dx

holds for any essentially bounded function f(x).

Theorem 3. Suppose that for some α ≤ 0, β ∈ R, bk < 0 (k = 1, . . . , n)

R(x) = αx + β −
n∑

k=1

bk

x − ak

.

Suppose also that there exists z0 = x0 + iy0 ∈ C \ R with R(z0) = z0. Then∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =

∫ ∞

−∞
Im

1

x − z0

f(x)dx

holds for any essentially bounded function f(x).
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We will also use this result to study the ergodic properties of (R, µ) on R , where
µ is an absolutely continuous probability measure with a density (1/π)Im (1/(x − z0)).
Note that we clearly have

Im
1

x − z0

=
y0

(x − x0)2 + y0
2

=
d

dx
arctan

(
x − x0

y0

)
for z0 = x0 + iy0 ∈ C \ R. Denote

ϕ(x) = arctan

(
x − x0

y0

)
.

Then we can prove that the transformation T (t) := ϕ(R(ϕ−1(t))) on (−π/2, π/2)
preserves the normalized Lebesgue measure λ and that (T, λ) is isomorphic to (R, µ) (see
Lemma 2.1 in §2). Hence, the above results enable us to get the ergodic properties of the
transformation R on R from those of T on (−π/2, π/2) .

As in Lemma 2.1 in §2, it is also clear that T is piecewise monotonic. The piecewise
monotonic transformations on the finite interval have been widely investigated by many
authors. In particular, if the piecewise monotonic transformations on the finite interval
are uniformly expansive, then it has been shown that they have good ergodic properties
([4],[5],[6]). In Lemma 2.1 we give the relation (2.15)

T
′
(t) =

|x − z0|2

|R(x) − z0|2
R

′
(x).

Consequently, combining the relation (2.15) with the known results, we can easily
prove the following Theorem 4, where N(0, σ2)(y) (σ2 > 0) stands for the distribution
function of Gaussian measure with mean 0 and variance σ2 and N(0, 0)(y) stands for
that of Dirac measure. Examples that satisfy the assumptions of Theorem 4 will be found
in Section 3.

Theorem 4. (1) Suppose that R(x) satisfies the assumptions in Theorem 1. Suppose
also that the inequality

inf
x/∈{a1,a2,...,an}

∣∣∣∣ |x − z0|2

|R(x) − z0|2
R

′
(x)

∣∣∣∣ > 1 (1.2)

holds. Then for all µ-integrable functions f the limit

lim
n→∞

1

n

n−1∑
k=0

f(Rkx) =: f∗(x) (1.3)

exists µ-a.e. and the set {f ∗(x) : x ∈ R} consists of M points for some M ∈ N.
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(2) Moreover, if we assume further that f(x) is a function of bounded variation on
R and that ν is a probability measure on R with a density dν/dµ with respect to µ, then
there exist ci ≥ 0 (i=1,2,. . . ,M) with

∑M
i=0 ci = 1 and σi

2 ≥ 0 (i=1,2,. . . ,M) for which

lim
n→∞

ν

{
1√
n

n−1∑
k=0

(f(Rkx) − f∗(x)) ≤ y

}
=

M∑
i=1

ciN(0, σi
2)(y) (1.4)

holds for all continuity points of the right hand side. If we assume further that σi
2 > 0

(i = 1, 2, . . . ,M) and that (1 + x2)(dν/dx) is of bounded variation, then we have

sup
y∈R

∣∣∣∣∣ν
{

1√
n

n−1∑
k=0

(f(Rkx) − f ∗(x)) ≤ y

}
−

M∑
i=1

ciN(0, σi
2)(y)

∣∣∣∣∣ ≤ C√
n

(1.5)

for some C > 0.

(3) If R(x) satisfies the above assumptions and if deg (h(x)) = n + 1, then we
have that (R, µ) is exact and M = 1. Hence, the central limit theorem holds for the
transformation R: if f(x) and ν satisfy the assumptions in (2), then the limit

lim
n→∞

1

n

∫ {
n−1∑
k=0

(f(Rkx) − µ(f))

}2

dµ =: σ2 (1.6)

exists and

lim
n→∞

ν

{
1√
n

n−1∑
k=0

(f(Rkx) − µ(f)) ≤ y

}
= N(0, σ2)(y) (1.7)

holds for all continuity points of N(0, σ2)(y). If we assume further that σ2 > 0 and that
(1 + x2)(dν/dx) is of bounded variation, then there exists a constant C > 0 such that

sup
y∈R

∣∣∣∣∣ν
{

1√
n

n−1∑
k=0

(f(Rkx) − µ(f)) ≤ y

}
− N(0, σ2)(y)

∣∣∣∣∣ ≤ C√
n

. (1.8)

holds for all n ∈ N.

2 Proofs

In this section we prove Theorems 1, 2, 3 and 4. First we show that Theorem 1 is derived
from Theorems 2 and 3.
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2.1 Proof of Theorem 1

Because g(x) =
∏n

k=1(x − ak) for some a1 < a2 < · · · < an, deg (h(x)) ≤ n + 1 and
h(ak) 6= 0 for all k, the rational function R(x) = h(x)/g(x) can be rewritten as

R(x) = αx + β −
n∑

k=1

bk

x − ak

. (2.1)

This shows that
lim

x→ak

|R(x)| = ∞

and
lim
x↑ak

R(x) = − lim
x↓ak

R(x)

for all k = 1, 2, . . . , n. These properties and the assumption (3) in Theorem 1 imply that
the restriction Rj := R|(aj ,aj+1) is increasing for all j = 0, 1, . . . , n, or decreasing for all
j = 0, 1, . . . , n. Hence we have

α ≥ 0, bk > 0 (k = 1, . . . , n), (2.2)

or
α ≤ 0, bk < 0 (k = 1, . . . , n). (2.3)

Denote C+ = { z ∈ C | Im(z) > 0 } and C− = { z ∈ C | Im(z) < 0 }. If the inequali-
ties (2.2) are satisfied, then it is easy to see that R (C+) ⊂ C+ and R (C−) ⊂ C−. And
hence R(z0) = z0 implies z0 ∈ R. Similarly, the inequalities (2.3) show that R (C+) ⊂ C−
and R (C−) ⊂ C+ and that R(z0) = z0 implies z0 ∈ R. The above arguments ensure us
to get Theorem 1 from combining Theorems 2 and 3.

2.2 Proof of Theorem 2

First we prove Theorem 2 in the case of α > 0, bk > 0 (k = 1, . . . , n) . In this case
it is also easy to see that Rj is increasing and Rj((aj, aj+1)) = (−∞,∞) for all j =
0, 1, . . . , n. Hence there exist inverse functions R−1

j such that R(R−1
j (y)) = y holds for

all j = 0, 1, . . . , n and for all y ∈ R. The equations R(R−1
j (y)) = y are rewritten as

yg(R−1
j (y)) − h(R−1

j (y)) = 0 (2.4)

for all j = 0, 1, . . . , n and for all y ∈ R. Note that in this case yg(x) − h(x) is a
polynomial in x of degree n + 1. The factor theorem shows that

yg(x) − h(x) = −α
n∏

j=0

(x − R−1
j (y)) (2.5)
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holds for all y ∈ R. Differentiating the equation (2.5) with respect to y, we get

g(x) = α

n∑
i=0

(R−1
i )

′
(y)

∏
j 6=i

(x − R−1
j (y)) .

Dividing this by (2.5), we have

g(x)

yg(x) − h(x)
= −

n∑
i=0

(R−1
i )

′
(y)

x − R−1
i (y)

.

Put x = z0, and we get

g(z0)

yg(z0) − h(z0)
=

n∑
i=0

(R−1
i )

′
(y)

R−1
i (y) − z0

. (2.6)

Because h(z0) = z0g(z0), the left hand side of (2.6) is equal to 1/(y−z0). Thus we obtain
the key equation

Im
1

y − z0

=
n∑

i=0

Im
(R−1

i )
′
(y)

R−1
i (y) − z0

. (2.7)

Note that the function Im(1/(x − z0)) is essentially bounded and integrable on R, since
z0 is not a real number.

Now we have∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =
n∑

i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx

for any essentially bounded function f(x). Since Ri(ai +0) = −∞ and Ri(ai+1−0) = ∞,
we get

n∑
i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx =

∫ ∞

−∞

n∑
i=0

Im
(R−1

i )
′
(y)

R−1
i (y) − z0

f(y)dy . (2.8)

The key equation (2.7) enables us to obtain∫ ∞

−∞

n∑
i=0

Im
(R−1

i )
′
(y)

R−1
i (y) − z0

f(y)dy =

∫ ∞

−∞
Im

1

y − z0

f(y)dy, (2.9)

which completes the proof of Theorem 2 in the case α > 0, bk > 0 (k = 1, . . . , n) .

If α = 0, bk > 0 (k = 1, . . . , n), the same result can be proved by modifying the above
argument. In this case R0((a0, a1)) = (β,∞) and Rn((an, an+1)) = (−∞, β), however
we have Rj((aj, aj+1)) = (−∞,∞) for all j = 1, 2, . . . , n− 1 as before. If y ∈ (β,∞),the
equation (2.4)

yg(R−1
j (y)) − h(R−1

j (y)) = 0
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holds for any j = 0, 1, . . . , n − 1. On the other hand, if y ∈ (−∞, β), the equation (2.4)
holds for any j = 1, 2, . . . , n. Note that yg(x) − h(x) is a polynomial in x of degree n,
since α = 0. Instead of (2.5) we have

yg(x) − h(x) =

{
(y − β)

∏n−1
j=0 (x − R−1

j (y)), y > β

(y − β)
∏n

j=1(x − R−1
j (y)), y < β .

(2.10)

Differentiate the equation (2.10) with respect to y. Then we get the equation

g(x) =

{∏n−1
j=0 (x − R−1

j (y)) + (β − y)
∑n−1

i=0 (R−1
i )

′
(y)

∏
j 6=i(x − R−1

j (y)), y > β∏n
j=1(x − R−1

j (y)) + (β − y)
∑n

i=1(R
−1
i )

′
(y)

∏
j 6=i(x − R−1

j (y)), y < β .

As before, divide this by (2.10). Then we have

g(x)

yg(x) − h(x)
=

{
1/(y − β) +

∑n−1
i=0 (R−1

i )
′
(y)/

(
R−1

i (y) − x
)
, y > β

1/(y − β) +
∑n

i=1(R
−1
i )

′
(y)/

(
R−1

i (y) − x
)
, y < β.

Putting x = z0, we obtain, as before,

1

y − z0

=

{
1/(y − β) +

∑n−1
i=0 (R−1

i )
′
(y)/(R−1

i (y) − z0), y > β
1/(y − β) +

∑n
i=1(R

−1
i )

′
(y)/(R−1

i (y) − z0), y < β.

Therefore, the equation, corresponding to (2.7),

Im
1

y − z0

=

{ ∑n−1
i=0 Im

(
(R−1

i )
′
(y)/

(
R−1

i (y) − z0

))
, y > β∑n

i=1 Im
(
(R−1

i )
′
(y)/

(
R−1

i (y) − z0

))
, y < β

(2.11)

has been proved.

We have ∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =
n∑

i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx

for any essentially bounded function f(x). Remark that in this case R0(−∞) = β,
R0(a1 − 0) = ∞, Rn(an + 0) = −∞, and Rn(∞) = β, however Ri(ai + 0) = −∞ and
Ri(ai+1 − 0) = ∞ for i = 1, 2, . . . , n − 1. Then we have

n∑
i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx

=
n−1∑
i=0

∫ ∞

β

Im
(R−1

i )
′
(y)

R−1
i (y) − z0

f(y)dy +
n∑

i=1

∫ β

−∞
Im

(R−1
i )

′
(y)

R−1
i (y) − z0

f(y)dy.

The equation (2.11) shows that the right hand side is rewritten as∫ ∞

β

Im
1

y − z0

f(y)dy +

∫ β

−∞
Im

1

y − z0

f(y)dy =

∫ ∞

−∞
Im

1

y − z0

f(y)dy.
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This enables us to have the result in question∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =

∫ ∞

−∞
Im

1

x − z0

f(x)dx.

2.3 Proof of Theorem 3

The proof of Theorem 3 is similar to that of Theorem 2. Hence, we sketch only the
difference.

First we consider the case α < 0, bk < 0 (k = 1, . . . , n). As in the first case of
the proof of Theorem 2, however Rj is decreasing, Rj((aj, aj+1)) = (−∞,∞) for all
j = 0, 1, . . . , n and R(R−1

j (y)) = y holds for all j = 0, 1, . . . , n and all y ∈ R. Therefore,
we also have (2.4)

yg(R−1
j (y)) − h(R−1

j (y)) = 0

for all j = 0, 1, . . . , n and all y ∈ R. The same argument as the first half of the proof of
Theorem 2 allows us to have the equation (2.6)

g(z0)

yg(z0) − h(z0)
=

n∑
i=0

(R−1
i )

′
(y)

R−1
i (y) − z0

.

holds for all y ∈ R. However, we have h(z0) = z0g(z0) in this case. Therefore, the left
hand side of (2.6) is now equal to 1/(y − z0). Remarking that

Im
1

y − z0

= −Im
1

y − z0

,

we obtain the analogous equation to (2.7) ,

Im
1

y − z0

=
n∑

i=0

Im
−(R−1

i )
′
(y)

R−1
i (y) − z0

. (2.12)

Now we have∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =
n∑

i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx

for any essentially bounded function f(x). Since Ri(ai +0) = ∞ and Ri(ai+1−0) = −∞,
we get the equation, corresponding to (2.8),

n∑
i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx =

∫ −∞

∞

n∑
i=0

Im
(R−1

i )
′
(y)

R−1
i (y) − z0

f(y)dy .
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The key equation (2.12) enables us to obtain∫ ∞

−∞

n∑
i=0

Im
−(R−1

i )
′
(y)

R−1
i (y) − z0

f(y)dy =

∫ ∞

−∞
Im

1

y − z0

f(y)dy,

which completes the proof of Theorem 3 in the case α < 0, bk < 0 (k = 1, . . . , n).

Second, we consider the case of α = 0, bk < 0 (k = 1, . . . , n). As in the second case
in the proof of Theorem 2, R0((a0, a1)) = (−∞, β) and Rn((an, an+1)) = (β,∞), however
we have Rj((aj, aj+1)) = (−∞,∞) for all j = 1, 2, . . . , n − 1. When y ∈ (β,∞), the
equation (2.4)

yg(R−1
j (y)) − h(R−1

j (y)) = 0

holds for any j = 1, 2, . . . , n. On the other hand, if y ∈ (−∞, β), the equation (2.4) holds
for any j = 0, 1, . . . , n − 1. Note that the polynomial yg(x) − h(x) in x is of degree n,
since α = 0. Instead of (2.10) we have

yg(x) − h(x) =

{
(y − β)

∏n
j=1(x − R−1

j (y)), y > β

(y − β)
∏n−1

j=0 (x − R−1
j (y)), y < β .

(2.13)

This shows

g(x) =

{ ∏n
j=1(x − R−1

j (y)) + (β − y)
∑n

i=1(R
−1
j )

′
(y)

∏
j 6=i(x − R−1

j (y)), y > β∏n−1
j=0 (x − R−1

j (y)) + (β − y)
∑n−1

i=0 (R−1
j )

′
(y)

∏
j 6=i(x − R−1

j (y)), y < β .

As before, divide this by (2.13). Then we have

g(x)

yg(x) − h(x)
=

{
1/(y − β) +

∑n
i=1(R

−1
i )

′
(y)/

(
R−1

i (y) − x
)
, y > β

1/(y − β) +
∑n−1

i=0 (R−1
i )

′
(y)/

(
R−1

i (y) − x
)
, y < β.

Put x = z0 and note that h(z0) = z0g(z0).

Then we obtain, as before,

1

y − z0

=

{
1/(y − β) +

∑n
i=1(R

−1
i )

′
(y)/(R−1

i (y) − z0), y > β

1/(y − β) +
∑n−1

i=0 (R−1
i )

′
(y)/(R−1

i (y) − z0), y < β.

Recall that

Im
1

y − z0

= −Im
1

y − z0

.

Therefore, the equation, corresponding to (2.11),

Im
1

y − z0

=

{ ∑n
i=1 Im

(
(R−1

i )
′
(y)/

(
z0 − R−1

i (y)
))

, y > β∑n−1
i=0 Im

(
(R−1

i )
′
(y)/

(
z0 − R−1

i (y)
))

, y < β
(2.14)

has been proved.
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As before we have∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =
n∑

i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx

for any essentially bounded function f(x). Remark that in this case R0(−∞) = β,
R0(a1−0) = −∞, however Ri(ai+0) = ∞ and Ri(ai+1−0) = −∞ for i = 1, 2, . . . , n−1,
Rn(an + 0) = ∞, and Rn(∞) = β. Then the equation (2.14) ensures us to have

n∑
i=0

∫ ai+1

ai

Im
1

x − z0

f(R(x))dx

=
n∑

i=1

∫ β

∞
Im

(R−1
i )

′
(y)

R−1
i (y) − z0

f(y)dy +
n−1∑
i=0

∫ −∞

β

Im
(R−1

i )
′
(y)

R−1
i (y) − z0

f(y)dy

=

∫ ∞

β

Im
1

y − z0

f(y)dy +

∫ β

−∞
Im

1

y − z0

f(y)dy

=

∫ ∞

−∞
Im

1

y − z0

f(y)dy.

This shows the result in question∫ ∞

−∞
Im

1

x − z0

f(R(x))dx =

∫ ∞

−∞
Im

1

x − z0

f(x)dx.

2.4 Proof of Theorem 4

Recall that z0 = x0+iy0 ∈ C\R satisfies the relation R(z0) = z0 or R(z0) = z0. Theorem 1
shows that dµ := (1/π)ϕ

′
(x)dx is an invariant probability for the transformation R where

ϕ(x) := arctan{(x − x0)/y0}. Define the transformation T on the interval (−π/2, π/2)
by T (t) := ϕ(R(ϕ−1(t))). Then we can get the following Lemma, which is a key to the
proof of Theorem 4.

Lemma 2.1. Assume that the conditions on R in Theorem 1 are satisfied. Then (R, µ)
is measure theoretically isomorphic to (T, λ), where λ denotes the normalized Lebesgue
measure on the interval (−π/2, π/2). Moreover, T has the following properties:

(1) T preserves the normalized Lebesgue measure λ.

(2) The restrictions T |(ϕ(ai),ϕ(ai+1)) (i=0,1,. . . ,n) are monotonic.

(3) T |(ϕ(ai),ϕ(ai+1)) (i=0,1,. . . ,n) are smooth and

T
′
(t) =

|x − z0|2

|R(x) − z0|2
R

′
(x) (2.15)

holds for all t /∈ {ϕ(a1), ϕ(a2), . . . , ϕ(an)}, where x = ϕ−1(t).
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Proof. Recall that we have

Im
1

x − z0

=
y0

(x − x0)2 + y0
2

=
d

dx
arctan

(
x − x0

y0

)
= ϕ

′
(x) .

This is followed by

λ(A) =
1

π

∫ π
2

−π
2

IA(t)dt =
1

π

∫ ∞

−∞
IA(ϕ(x))ϕ

′
(x)dx = µ(ϕ−1(A)).

Hence, we have that λ(A) = µ(ϕ−1(A)) and (R, µ) is measure theoretically isomorphic
to (T, λ). This immediately shows the assertion (1), since R preserves µ.

Because R|(ai,ai+1) (i = 0, 1, . . . , n) are monotonic and ϕ is increasing, T |(ϕ(ai),ϕ(ai+1)) (i =
0, 1, . . . , n) are also monotonic. Recall that ϕ(x) := arctan{(x − x0)/y0} and hence
ϕ−1(t) = x0 + y0 tan t. Then we easily have

T
′
(t) = ϕ

′
(R(ϕ−1(t)))R

′
(ϕ−1(t))(ϕ−1)

′
(t)

=
y0

(R(ϕ−1(t)) − x0)2 + y0
2
R

′
(ϕ−1(t))y0(1 + tan2 t)

=
(x − x0)

2 + y0
2

(R(x) − x0)2 + y0
2
R

′
(x)

=
|x − z0|2

|R(x) − z0|2
R

′
(x),

where x = ϕ−1(t). This completes the proof.

Lemma 2.1 shows that the dynamical system (R, µ) on the real line R is isomorphic
to (T, λ) on the finite interval (−π/2, π/2) and that (T, λ) is piecewise smooth and
piecewise monotonic. The relation (2.15) implies that if the assumption (1.2) is satisfied,
then the transformation T is piecewise expanding and smooth enough.

On the other hand it is already known that such T has a finite number of absolutely
continuous ergodic invariant measures λ1, λ2, . . . , λM and the other absolutely continuous
invariant measures are convex combinations of them (cf. [4], [5] and [9]). Birkhoff’s ergodic
theorem shows that if f̃ ∈ L1(λi) then

lim
n→∞

1

n

n−1∑
k=0

f̃(T kt) =

∫
f̃dλi (λi a.e.)

holds. Note that the supports of ergodic measures are mutually disjoint and that the
normalized Lebesgue measure λ is also a convex combination of λ1, λ2, . . . , λM .

Hence if f̃ is a λ-integrable function, then f̃ is λi-integrable for all i = 1, 2, . . . ,M .
This observation shows that for a λ-integrable function f̃

lim
n→∞

1

n

n−1∑
k=0

f̃(T kt) = f̃ ∗(t) (λ a.e.) (2.16)
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holds and f̃ ∗(t) =
∫

f̃dλi for λ a.e.t ∈ supp {λi} (i = 1, 2, . . . ,M). Now, let f be
a µ-integrable function on R. Then f ◦ ϕ−1 is λ-integrable function on the interval
(−π/2, π/2). Hence, replacing f̃ by f ◦ ϕ−1 and t by ϕ(x) in (2.16), we can get the
relation (1.3). This shows the first part of Theorem 4.

In order to prove the second part, we apply Theorem 1 in [6] to the transformation
in question (see also [5]). Hence, if f̃ is a function of bounded variation defined on the
interval (−π/2, π/2) and if ν̃ is an absolutely continuous probability measure, then there
exist nonnegative constants c1, c2, . . . , cM with

∑M
i=1 ci = 1 and σi

2 ≥ 0 (i = 1, 2, . . . ,M)
for which

lim
n→∞

ν̃

{
1√
n

n−1∑
k=0

(f̃(T kt) − f̃∗(t)) ≤ y

}
=

M∑
i=1

ciN(0, σi
2)(y) (2.17)

holds for all continuity points of the right hand side. If we assume further that σi
2 > 0

for all i = 1, 2, . . . ,M , and that dν̃/dλ is of bounded variation, then

sup
y∈R

∣∣∣∣∣ν̃
{

1√
n

n−1∑
k=0

(f̃(T kt) − f̃ ∗(t)) ≤ y

}
−

M∑
i=1

ciN(0, σi
2)(y)

∣∣∣∣∣ ≤ C√
n

(2.18)

for some C > 0.

Let f(x) be a function of bounded variation on R. Then f̃(t) := (f ◦ϕ−1)(t) is also
a function of bounded variation, because ϕ−1(t) is strictly increasing. Suppose that ν is
a probability measure on R which is absolutely continuous with respect to µ. Then it is
clear that the probability measure ν̃(A) := ν(ϕ−1A) is absolutely continuous. Note that
we have

ν̃

{
t ∈ (−π/2, π/2) ;

1√
n

n−1∑
k=0

(
f̃(T kt) − f̃ ∗(t)

)
≤ y

}

=
(
ν ◦ ϕ−1

) {
t ∈ (−π/2, π/2) ;

1√
n

n−1∑
k=0

(
f̃(T kt) − f̃∗(t)

)
≤ y

}

= ν

{
x ∈ R ;

1√
n

n−1∑
k=0

((
f ◦ ϕ−1

) (
T kϕ(x)

)
− (f ◦ ϕ−1)∗ (ϕ(x))

)
≤ y

}

= ν

{
x ∈ R ;

1√
n

n−1∑
k=0

(
f(Rkx) − f∗(x)

)
≤ y

}
.

(2.19)

Therefore we get the relation (1.4), combining (2.17) and (2.19).
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On the other hand we have

ν̃(A) =

∫
ϕ−1A

dν

dx
(x) dx

=

∫
A

dν

dx
(ϕ−1(t))(ϕ−1)

′
(t) dt

=

∫
A

dν

dx
(ϕ−1(t))y0(1 + tan2 t) dt

=

∫
A

dν

dx
(ϕ−1(t)) y0

(
1 +

(
ϕ−1(t) − x0

y0

)2
)

dt.

This shows that the total variation of dν̃/dλ is equal to the one of

y0

(
1 +

(
x − x0

y0

)2
)

dν

dx
(x).

Therefore, if (x2 + 1)(dν/dx) is of bounded variation, so is dν̃/dλ. This and (2.18) show
the inequality (1.5) of Theorem 4.

In order to prove the last part of Theorem 4 we remark that if deg (h(x)) = n + 1,
then α 6= 0 and hence R((ai, ai+1)) = (−∞,∞) for all i = 0, 1, . . . , n. This implies
that T ((ϕ(ai), ϕ(ai+1))) = (−π/2, π/2) for all i = 0, 1, . . . , n. Thus the transformation
T from the interval (−π/2, π/2) into itself is piecewise C2, piecewise expanding and
piecewise onto. Then it follows by the Folklore Theorem ( Theorem 6.1.1 in [3]) that such
a transformation is exact (see also [1] and [10]). Therefore the number M of absolutely
continuous ergodic measures for T is equal to 1. Hence the third part of Theorem 4 is
proved.

3 Examples

We consider examples and applications in this section. First we prove the following
proposition, which gives a sufficient condition for the existence of z0 ∈ C \ R with
R(z0) = z0.

Proposition 3.1. Let

R(x) = αx + β −
n∑

k=1

bk

x − ak

(3.1)

and 0 ≤ α < 1, bk > 0 (k = 1, . . . , n), a1 < a2 < · · · < an. Assume further that
a1 ≤ (β/(1 − α)) and an ≥ (β/(1 − α)) and that

ai+1 − ai <

√
{b1/3

i + b
1/3
i+1}3

1 − α
(3.2)

holds for i = 1, 2, . . . , n − 1. Then there exists z0 ∈ C \ R with R(z0) = z0.
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Proof. Putting ψ(x) = x + (β/(1 − α)) , we easily have

ψ−1(R(ψ(x))) = αx −
n∑

k=1

bk

x − (ak − (β/(1 − α)))
.

Remark also that R(z0) = z0 if and only if

ψ−1(R(ψ(z0 − (β/(1 − α))))) = z0 − (β/(1 − α)).

Hence we can assume that β = 0 without loss of generality.

First we prove that the equation x = αx−
∑n

k=1 (bk/(x − ak)) has n−1 real solutions.
In fact we have for ai < x < ai+1

(R(x) − x)
′
=

n∑
k=1

bk

(x − ak)2
− (1 − α)

≥ bi

(x − ai)2
+

bi+1

(x − ai+1)2
− (1 − α)

≥
{b1/3

i + b
1/3
i+1}3

(ai+1 − ai)2
− (1 − α).

The assumption (3.2) shows that the right hand side is greater than 0. Hence, G(x) :=
R(x)−x is strictly increasing in (ai, ai+1). On the other hand, as bk > 0 (k = 1, 2, . . . , n),
we clearly have R(ak+0) = −∞ and R(ak+1−0) = ∞. This implies that G(ai+0) = −∞
and G(ai+1 − 0) = ∞. Therefore, R(x) − x = 0 has a unique real solution in (ai, ai+1)
for each i = 1, 2, . . . , n − 1.

The assumptions a1 ≤ 0 and 0 ≤ α < 1 ensure us to have x ≤ αx < R(x) for all
x ∈ (−∞, a1), and hence R(x) − x > 0 in (−∞, a1). Therefore, R(x) − x = 0 has no
real solution in (−∞, a1). Similarly, we can get that there is no real solution in (an,∞).

From the above arguments we have obtained that the equation R(x) − x = 0 has
n − 1 real solutions. On the other hand the equation R(x) − x = 0 clearly has n + 1
solutions. Therefore there is z0 ∈ C \ R with R(z0) = z0. This completes the proof.

Remark 3.1. The condition (3.2) is the best possible in the following sense: Consider
the transformation R(x) = αx − (x − a)−1 − (x + a)−1, where 0 ≤ α < 1 and a > 0.
Then it can be easily proved that R(x) has z0 ∈ C \R with R(z0) = z0 if and only if the
condition (3.2) is satisfied.

We consider some examples using the above proposition.

Example 1. Let us consider the transformation R(x) = αx− bx−1 with 0 ≤ α < 1 and
b > 0. Putting ψ(x) =

√
bx , we get ψ−1(R(ψ(x))) = αx − x−1. Hence, we can assume

b = 1 without loss of generality. However this transformation R(x) = αx−x−1 satisfies
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the assumptions of Proposition 3.1, we directly get that the fixed point z0 of R in C is
z0 = iy0 = i

√
1/(1 − α) in this case. Theorem 2 shows that dµ = π−1Im (1/(x − iy0)) dx

is an invariant probability for the transformation R.

Let us consider the transformation T (t) := ϕ(R(ϕ−1(t))), where ϕ(x) := arctan(x/y0).
Using Lemma 2.1 we have

T
′
(t) =

|x − z0|2

|R(x) − z0|2
R

′
(x)

=
|x − z0|2

|R(x) − R(z0)|2
R

′
(x)

=
|x − z0|2

|α(x − z0) + (x − z0)/(xz0)|2
R

′
(x)

=
α + 1/x2

|α + (1/(xz0))|2

=
αx2 + 1

α2x2 + 1 − α
.

(3.3)

For 0 < α ≤ 1/2 we have the estimation

αx2 + 1

α2x2 + 1 − α
≥ αx2 + 1

α(1 − α)x2 + 1 − α
=

1

1 − α
,

since α ≤ 1 − α. If 1/2 ≤ α < 1, then we have

αx2 + 1

α2x2 + 1 − α
≥ αx2 + 1

α2x2 + α
=

1

α
.

Hence, the transformation T on (−π/2, π/2) is uniformly expansive. Precisely, we have

T
′
(t) ≥ min

(
1

α
,

1

1 − α

)
> 1

for all t 6= 0. Therefore, R(x) = αx − x−1 (0 < α < 1) satisfies the assumption of
Theorem 4 and the conclusions of Theorem 4 are valid for (R, µ).

In the case α = 0, we have

T (t) =

{
t + π/2, (−π/2 < x < 0),

t − π/2, (0 < x < π/2).

Put A = (−π/2,−π/4) ∪ (0, π/4). Then we have T−1A = A and λ(A) = 1/2. Hence
neither (T, λ) nor (R, µ) is ergodic.

Note that the relation R(iy0) = iy0 is regarded as −R(iy0) = iy0. Thus we get the
following example from Example 1.
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Example 2. Let us consider the transformation

R(x) = −αx +
b

x

with 0 ≤ α < 1 and b > 0. As is in Example 1, we can also assume b = 1 without
loss of generality. Remark that the transformation −R(x) is the one in Example 1. This
fact shows that R(z0) = z0 holds for z0 = iy0 = i

√
1/(1 − α). Thus, Theorem 3 can be

applied and hence

dµ =
1

π
Im

1

x − iy0

dx

is an invariant probability for the transformation R. The analogous argument allows us
to have

−T
′
(t) ≥ min

(
1

α
,

1

1 − α

)
> 1,

and hence the same results as those of Example 1 hold.

If the number n of poles is more than 2, it is generally not easy to get the desired
estimation of |T ′

(t)|. However, there are some examples that satisfy the assumption of
Theorem 4.

Example 3. Let us consider the transformation

R(x) = αx − 1

x − 1
− 1

x + 1

with 0 ≤ α < 1. We can easily get that R(iy0) = iy0, where y0 =
√

(1 + α)/(1 − α). As
in Example 1, we obtain

T
′
(t) =

α(x2 − 1)2 + 2x2 + 2

α2(x2 − 1)2 + (1 − α)2x2 + (1 − α)(1 + α)
. (3.4)

The right hand side of (3.4) is not smaller than

α(x2 − 1)2 + 2x2 + 2

(1 − α) {α(x2 − 1)2 + (1 − α)x2 + 1 + α}
≥ 1

1 − α

for 0 < α ≤ 1 − α. For 0 < 1 − α ≤ α the right hand side of (3.4) is greater than or
equal to

α(x2 − 1)2 + 2x2 + 2

α {α(x2 − 1)2 + (1 − α)x2 + 1 + α}
≥ 1

α
.

Therefore, if 0 < α < 1, we also get the inequality

T
′
(t) ≥ min

(
1

α
,

1

1 − α

)
> 1
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for all t /∈ {−π/2, ϕ(−1), ϕ(1), π/2}. If α = 0, then it is clear that the right hand side of
(3.4) is equal to 2 and

T (t) =


2t + π (−π/2 < t < −π/4),

2t (−π/4 < t < π/4),

2t − π (π/4 < t < π/2).

Consequently, Theorem 4 can be also applied for these transformations.

Example 4. Consider the transformations

R(x) = −αx +
1

x − 1
+

1

x + 1
(3.5)

with 0 ≤ α < 1. Because the transformations −R(x) are those in Example 3 and have
the fixed point iy0 (y0 6= 0), we have R(iy0) = iy0, where y0 =

√
(1 + α)/(1 − α). Hence,

Theorem 3 shows that R has the invariant probability density y0/π(x2 + y0
2). Similar

arguments allows us to have the parallel results to those of Example 3.

References

[1] R. L. Adler and L. Flatto. Geodesic flows, interval maps and symbolic dynam-
ics. Bull. Amer. Math. Soc. 25 (1991), 229–334.

[2] R. Bowen. Bernoulli maps of the interval. Israel J. Math. 28 (1977), 161–168.
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