Monte Carlo Methods Appl. Vol. No. (), pp. 1-12
DOI 10.1515/ MCMA.2007.
© de Gruyter

A New Nonrecursive Pseudorandom Number Generator
Based on Chaos Mappings

Hirotake Yaguchi and Izumi Kubo

Abstract. We introduce a new pseudorandom number generator SSR (the Simplified Shift-
Real random number generator) which generateg-therandom number nonrecursively (di-
rectly) based on chaos mappings on the interval [1,2). We investigate properties of SSR random
numbers and give the theoretical background of generation of random numbers. A practical
integral(all-integer) version SSI of SSR, which is suitable for parallel computation, is also
provided.

Keywords. Random number, Pseudorandom number, Nonrecursive, Chaos, Statistical test,
Parallel computation.

AMS classification.11K45, 65C10.

1. Introduction

The aim of this paper is to investigate a honalgebraic and nonrecursive pseudorandom
number generator(RNG) which has different algorithm from other RNGs. Random
number generators which are used nowadays, for example, feed back shift register
RNGs, Mersenne Twister RNG and so on, are designed so that they generate random
numbers(RNs) sequentially on a single computer. Therefore it is not so easy to ad-
just their algorithm to recent parallel computers for parallel generation of RNs to be
generated. To solve this problem we here introduce new random number generators
SSR and its integral version SSI. They generate RNs nonrecursively by making use of
chaotic behavior of cancellation errors in numerical computation. Since SSR and SSI
RNGs generate thieth random number directly, they are quite suitable for parallel
computations.

One of the authors proposed a new pseudorandom number generator SR(the Shift-
Real RNG) in [9] [10]. There, although nonalgebraic and nonrecursive RNGs were
given, the theoretical background of the randomness was not clear because of com-
plexity of the SR-algorithm. We here improve the algorithm of SR and introduce
the SSR-algorithm which has a simple mathematical structure and makes us possi-
ble to analyze randomness theoretically. (Of course, the simplicity of SSR-algorithm

This work was supported by JSPS KAKENHI (17540111,17540138) and the ISM Cooprerative Re-
search Program (2007-1ISRP-4202).

2 Hirotake Yaguchi and Izumi Kubo

also improves the speed of generation of RNs.) In the next section, following [9],
we give a brief summary of the cancellation error which is the origin of our RNG.

It will be seen that a cancellation error can be think of as a shift of the mantissa of
a floating-point variable. In Sect. 3 we construct a new nonrecursive RNG SSR by
making use of simple multiplication of floating point variables and an artificial shift

of mantissa. In Sect. 4 we investigate properties of SSR RNs by applying NIST’s suit
of statistical tests of randomness. In Sect. 5 we argue the theoretical background of
the randomness of SSR RNG by analyzing chaos mappings which correspond to SSR
computations. There a little bit of ergodic theory is needed. In Sect. 6, using the
knowledge obtained in Sect. 5, we improve randomness and efficiency of SSR RNG.
The improvement is realized as the K-improvement and an extension of SSR compu-
tation. Since a floating-point system is dependent on a computer system, we introduce
in Sect. 7 the SSI random number generator which has the same algorithm as SSR and
uses no floating-point computations. The randomness of SSIK(K-improved SSI) RNG
is tested by NIST’s suit, TestUO1 andya test concerning the distribution of 211-tera
SSRK RNs generated by parallel computations. Finally, in the appendix, we give a
code of essential part of SSIK RNG.

2. The origin of a new random number generator

The origin of our new pseudorandom number generator is cancellation error of numer-
ical computation [9]. If we compute

5

-1
sine ~ x — 3,+§,—

-+ (= 1)n 1(§n)

%.
(155 (- (- s (b))

by Horner’s method

Go =1,

ZZ
szl—mXGk_l, k:1,2,--~7n—l,
Gn:'TXGn—la

for
. 30 N
Ti = 15999 X 4, 1 =0,1,---,19999

undersingle precisiorwith n = 30, we have a strange graph given in Fig. 1(left).
Further if we compute; = Gzo(x;) in the same way for

T; =22+ 1o650 X i, 1=0,1,---,19999
and drop the first 3 digits af; and take out the succeeding four digits, saysuch as
yo = —6.6686043739318& + 000 — wp= 8604

A New Nonrecursive Pseudorandom Number Generator 3

then the graph of0.uz;, O.uzj11) , j = 0,--- ,9999, suggests us thag, u1, u, - - -,
are random numbers (Fig. 1 right).

The reason of disorder of the graph is the cancellation error caused by missing of
leading significant zeros in floating-point computations

72

=1- _1 = (—)0.0d2d3dsdsde - - -
G @) — k1) < O = (7)00dadsdadsds
for k = 26, 27, 28 and the near. Since the drop of leading zeros can be regarded as a
shift of the mantissa of single precision variable such as

mantissa mantissa

00dodzdadsdgl?? Shiftleft o0d,daddsds?7

if we can cause a shift of mantissa artificially, then we could have a new method of
generating random numbers.

3. The pseudorandom number generator SSR

We introduce here a new nonrecursive pseudorandom number generator SSR (the
Smplified Shift-Real RNG) whose base is an artificial shift of mantissa of floating-
point variable. The SSR is an improved and simplified version of SR in [10], and
enables us to analyze its randomness mathematically because of its simplicity.

Let wp andx be in [1,2) and

Guo(T) =wpogoxoxo---oxox.

24 times
We computey,,, (z) under thedouble precisio{IEEE 754 format) such as

Wj = W;-107%, j = la 27 7247 and g’wo(m) = W24

Here the meaning ob inw; = w;_1 o z is the following(Fig. 2):

The SSR computation.
(i) Computew;_1 x z as a usual floating-point multiplication,
(i) set the exponent ofv;_1 x = so that it represents - x 20(— wj—1 X xisin
[1,2) again), and
(i) shift all the bits of the mantissa oy;_1 x z to the left by 1(— the most
significant bit of the mantissa af;_1 x = is dropped and hence a cancellation
error of 1 bit is caused artificially).

Then we construct a pseudorandom number generator SSR by variiri@,2) uni-
formly as follows:

The SSR random number generator
Let

4 Hirotake Yaguchi and Izumi Kubo

p=499334533=22801201y=491377 ,5=47513,6=19200005=48060000

and sef(ry, sy) = (rk modp, skmodq) ,k=12,--- . For
10+ 2= if (a4 sg) >k
Ty = y

S| 10+ B (ot sy) <7y,
we computeys(xy) and discard the first three digits 9f(x;) and take out the suc-
ceeding four digitsy; as thek-th random number.

We note that the sequenéey, } is designed so that it spreads uniformly in the inter-
val [1,2). Further the period of RNy, } is pg =1,138,542,698,477,053 becayse,
r ands are prime numbers.

The SSR computation; = w;_1 0z can be treated mathematically in the following
way:

Mathematical representation of the SSR computatipm o x.
Let
() vz :[1,2) — [1,4) bey,(t) = tz , which corresponds to the multiplication of
t €[1,2) by z € [1,2) in the SSR computation,
(i) ¢e:[1,4) — [1,2) beg.(v) =vifl <v<2and=v/2if2 < v < 4, which
corresponds to the substitution of the exponent of floating-point variable
..x 2% and
(i) ¢s:[1,2) — [1,2) beps(w) =2w —1if1l < w < 15and= 2w — 2 if
1.5 < w < 2, which corresponds to the shift of the mantissa of floating-point
variablew to the left by 1.
Thenw; = wj_1 o x is represented by; = ¢s(pe(pz(wj-1))) -

If we set®, (1) = p,(pe(ps(t))) , thenw; = ®,(w;_1) and®d, is a piece-wise affine
function which maps [1,2) onto [1,2) and is written explicitly by

ifl<z<1b ifl5<x <2
2t -1 (1<t<) 20t -2 (1<t< 2)
O (t) =19 20t -2 (£ <t<2) | D t)=(at—1 (2<t<?)
at—1 (2<t<2) at-2 (3<t<2)

The graphs ofp, and®?2, ®* for x=1.28 are as in Fig. 3.

In the following we sometimes use the word "SSR value” when we want to refer to
the value ofgy(z,)=®2%(1) (more generallygu, (z)=®2 (wo)). A 4-digit number
ay, obtained from SSR vaIu@ﬁ‘k‘(l) after dropping the first 3 digits will be called the
k-th "SSR random number”. Since thkeh SSR RN« is obtained directly through a
computatiorﬂ)ﬁ‘;(l), RNs{a} can be generated in parallel. Therefore SSR RNG is
suitable for parallel computing. Moreover, by varying numbeaiads in the definition
of x;, and also by varyingug in d)%j:(wo), we can obtain many different sequences of
random numbers. Thus the SSR RNG is a very flexible RNG.

A New Nonrecursive Pseudorandom Number Generator 5

4. Statistical test of SSR random numbers

We show, using the suit of statistical tests supplied by NIST(http://csrc.nist.gov/rng/),
that SSR RNsy,, £ = 1,2, ---, are uniform random numbers. It will be known that
results for SSR RNs are of the same level with other well-known RNGs.

NIST’s suit(Version 1.8) consists of 188 tests of the following 15 kinds: Frequency;
block frequency; cumulative sums; runs; longest run; rank; fft; nonperiodic templates;
overlapping templates; universal; approximate entropy; random excursions; random
excursions variant; serial; and linear complexity tests. We applied all the tests to a
file consisting of one-giga bits df; - - - by, obtained from the mantis<a - - - bs, of
d)ffk‘(l). All the parameters we used were default’s values except that the block length
of the block-frequency test is 20000. The number of bit-streams and the length of bit
are 1000 and 1000000 respectively. Under these circumstances, each test of NIST's
suit generated a finalAnalysisReport and gave us a valug dést concerning the
distribution of 100(p-values derived from 1000 bit-streams and also a proportiga of
values which are greater than 0.01. In order to exclude exceptional values, we repeated
NIST’s test 16 times by varying ands in the definition of{x;} such as

r =491377, 492299, 493177, 40404%,=47513, 47699, 47869, 48049,
and averaged the results in the finalAnalysisReports. Since it is tedious to cite all
averages, we give below the maximum and the minimum of averages together with
the results for the feedback shift register method (FBR):= Y,,_3» xor Y,,_s5»; and
Mersenne Twister (MT [5]): (In the resultg,= kk] is the serial number of the test.)

[SSR]

AvMax of y? test ofp-value= 0.666747 at nonperiodic-templatés102]

AvMin of x? test ofp-value= 0.338575 at nonperiodic-templatés 53]

AvMax of proportion of(p > 0.01) =0.992112 at random-excursions-variantl[83]
AvMin of proportion of (p > 0.01)=0.987188 at ffti=7],

[FSR]

AvMax of y? test ofp-value= 0.685129 at nonperiodic-templatés$8]
AvMin of y? test ofp-value= 0.292520 at nonperiodic-templatés34]
AvMax of proportion of(p > 0.01)=0.991750 at nonperiodic-templatés44]
AvMin of proportion of (p > 0.01)=0.986788 at random-excursions166],

[MT]

AvMax of y? test ofp-value= 0.721409 at ranki£6]

AvMin of x? test ofp-value= 0.304160 at random-excursions-variartl[79]
AvMax of proportion of(p > 0.01)=0.992250 at nonperiodic-templatés138]
AvMin of proportion of (p > 0.01)=0.987500 at ffti=7].

From these results we think that concerning NIST's tests properties of SSR RNs are of
the same level with other RNs.

6 Hirotake Yaguchi and Izumi Kubo

5. Theoretical analysis of the SSR computation

We consider here the mathematical background why the SSR computatigener-
ates random numbers, and also consider the distribution (probability density function)
of SSR valuesp24(1).

The base of the randomness of SSR values is, in a short word, the chaotic property
of @, which is characterized by the following (i), (i) and (iii) ([1], [8]).

(i) Since %d)m(t) = x or 2r and is greater than on@,, is an expansive function.
This implies that the value o’ (¢) is extremely sensitive to the initial valuen the
sense that there is an> 0 such that for each poiritand for eacle > 0 there is a
point#’ with |t — #'| < ¢ and ak such that®” (t) — ®k(¢')] > r .

(i) Periodic points with the period are given by the intersection of the graphs of
y = ®(t) andy = t, t € [1,2). Then as the graphs @,, ®2 and ®% in Fig. 3
indicate,®,. has dense periodic points.

(i) @, is transitive, that is, the orbit of some point of an invariant sebpfs dense.
This is known by the following consideration. The probability density functigrof
the invariant measure @, is given by

ho(t) = liMp oo {2 3075 £E1}(2)

(121, [6]), whereL, : L[1,2) — L(1,2) is the Perron-Frobenius(P-F) operator cor-
responding tab,. which is defined by

=9(52) + 29 (1<t<2e-1)
if1 <z <15, (L.g)(t)= 7
2950 + 39(52) (2r—1<t<2)

29(Eh + 29(HE) 1<t<20-2)
if1.5<z<2, (Ly9)t)=

29(58) + 29(5h) (20 -2<t<2)
(The Perron-Frobenius operatdrcorresponding tob is the mapping fromll 9 g to
L' > Lg whereLyg is the function satisfying f(®(x))g(x)dz = [f(t)(Lg)(t)dt
for every bounded measurable functiﬁn Under approprlate condltlonsag)() is
represented such &89)(t) = >_, co- 1) ‘(D, y” ([6], [7])- As an example oh..(t) w
show in Fig. 4(left) the graphs @fi »g which is obtained by numerical computatlon)
Since the distribution of ®7(t)},-12,.. is approximated by the invariant measure
with densityh, for almostt € [1,2) (Fig. 4(right)), SSR value®?(t),n = 1,2,-- -,
spread nearly uniformly in [1,2). This implies that for almest [1, 2), if positive
e andf € [1,2) are given, there exists € N such that®™(t) — t| < e (i.e.,t is
arbitrarily approximated by son@?*(¢)), which means the transitivity ¢b,. From

A New Nonrecursive Pseudorandom Number Generator 7

these facts we see thét, is a chaos mapping.

What we want to stress here is that

the probability density functiof (t) of {®24(1)}k can be described
by the average of, overx € [1,2), thatis,H (¢ fl

The intuitive meaning of the assertion above Would be obV|ous if one sees the graphs
of H(t) and the distribution of 24(1)}1%, (Fig. 5). As the reason whyl (t) is
described byf1 t)dxz, we consider the following necessary condition fé(t).
Suppose that if; is suﬁrcrently large, the distribution of®%, (1)} is described by

H(t) which is independent oj and for a bounded measurable functjoit holds that

~ Zk 1 f (D%k fl t)dt for sufficiently largeN. Then averaging over

0=Q, Q+1, - Q+R 1we have

A0 E {F@8 @)+ + F@ETT) | & [FOH

If we let R — oo in the above, the LHS approaches %kaN:l fff(t)hxk (t)dt
because the distribution @} (1),n =1,2,--- ,is approximated by, , and hence

JZ 1t (% S hay (t) ~ [f f(t)H(t)dt. Sincexy,--- ,xy spread uniformly
in [1,2) asN — oo, the termN fozl hxk() approaches tq"l t)dx asN —
o0. So we could conclude thaff’ f(t) (12 hat) fl t)dt for every

bounded measurable functigin This means thak/ (¢ fl

To ensure that the distribution ({tbiif 1)}y is descrlbed b)H() we apply the
following statistical test.

Putz, = ®24(1). Then we repeat foj = 0,1, - - - , 9999 the Kolmogorov-Smirnov
test [3] for Z1420000xjs 22+20000xjs ***» 220000+20000 j and obtain two statisticsj
andr; . Itis known that the distributions ofd, KT, -+, Kdgge AN Ky, KT, « -+,
Kgggg @r€ closely approximated by the function-lexp(—222). So we can employ
x? test(Fig. 6). The results of? test for the distributions ot andx~— are 0.20098
and 0.66702 respectively. Hence the hypothesis that the distributi@biéf(l)}k is
described byH (¢) is not rejected at the level of 0.05.

6. Improvement of the SSR random number generator

Although SSR RNs are created by dropping the first 3 digits of SSR values, as the
graph ofH (¢) in Fig. 5 suggests, the distribution has a slight asymmetry which NIST’s
tests can not detect (Fig. 7 left). Further the size of SSR RNs is four digit which is not
so long.

In this section we give two improvements of SSR RNG. One is the K-improvement
which improves randomness of SSR RNG, and another is an extension of SSR com-

8 Hirotake Yaguchi and Izumi Kubo

putation which improves efficiency of generation of RNs.

The K-improvement of SSR (SSRK)

Let 1Le = 1.2718281828459 and = 1.8141592653589. Then, instead of the SSR
value ®2%(1), we use®??(1.e) — ®2%(1.7) (mod [1,2)), which we call an SSRK
value. (The meaning of mod [1,2) is to transfer the value in (-1,1) to the one in [1,2)
by adding 1 or 2.) An SSRK random number is created in the same way as to SSR
random number by discarding the first 3 digits and taking out the succeeding 4 digits.

The K-improvement is making use of the fact tlgtis a chaos mapping, alﬂaﬁﬁ(wo)

is extremely sensitive to the initial value). Therefore if we assume that the distribu-
tions of {®24 (1.¢)};, and{®2?(1.7)}, are mutually independent, the density function
I(y),y € [1,2), of SSRK values is given by the convolution

I(y) = [{ H@&)H(t —y+2)dt + [HE)H(t -y + D).
The right graph of Fig. 7 is the theoretical distribution of SSRK RNs which is derived

from I(y). We see that the effect of convolution is marvelous.
The next improvement enable us to generate an 8-digit RN at one time.

The SSRex computation (An extension of SSR computation).

Let CB:E be a modification ofp, such that the size of the left-shift of mantissavi®.

Then, instead ofp24(1), we use®25(1) which we call an SSRex value. An SSRex
random number is the succeeding 8 digits of SSRex value after dropping the first 5
digits.

The SSRex technique brings us an important information that the size of the shift of
mantissa in the SSR computation is variable. In the next section we will make use of
this fact in realizing an integral(=all-integer) version of SSR.

7. SSI - A practical integral version of SSR

The SSR computation essentially relies upon floating-point computations, and the
floating-point system usually depends on a computer system (especially on MPU). So
SSR occasionally generates slightly different RNs if a computer system is different.
To avoid this problem we introduce the SSI random number generator which has the
same mechanism of random number generation as to SSR and uses no floating-point
computations. The base of SSI RNG is the following SSI computation.

The SSI computatio x (W) = W e X.
Let W and X be 64-bit integers. Then

(i) computelV x X as a usual multiplication of 64-bit integers (ignore overflow if
it occurs), and

A New Nonrecursive Pseudorandom Number Generator 9

(ii) shift the result of (i) to the right by 32 bits (i.e., bits - - - b3» are moved to
b3z---bes), and seby - --b3p = 0---01 as in Fig. 8. & W e X is used as the
nextw.)

In the real SSI RNG below, the size of overflow "1YYY” in (i) is adjusted so that it
is 4 of 5 bits, which corresponds to the shift of 3 or 4 bits of mantissa in the SSR
computation (because the effective drop of bits is "YYY”).

The next SSIK RNG corresponds to the K-improvement of SSR RNG in Sect. 6.

The SSIK random number generator.
Set
X=0x88237449a, P=0x7ffffffel, R=0x39f750241, W=0x18237449a,

Y=0xbdda73ad3, Q=0x7ffffffcf, S=0x32f50fee9, V=0xldda73ad3,

and compute thé-th SSIK value such ag¥¥ (W)) x X; — (WE(V)) x Y}, for
k=12, --,whereX; = (X xor (Rk mod P)) andY; = (Y xor (Sk mod @)).
Then as the-th SSIK random number we discard the first 16 bits of khila SSIK
value and take out the succeeding 32 bits.

The period of SSIK RNG isPQ ~ 1.18 x 10?! becauseP, Q, R and S are prime
numbers. Results of NIST’s test for SSIK RNs are as follows:

[SSIK]

AvMax of y? test ofp-value= 0.661006 at nonperiodic-templatés38]
AvMin of y? test ofp-value= 0.320636 at seriai£186]

AvMax of proportion of(p > 0.01)=0.991750 at nonperiodic-templatés33]
AvMin of proportion of (p > 0.01)=0.986687 at ffti=7],

Again no particular values are found in the results.

The numbers of hexa-decimal characters 0,1, F appeared in the hexa-decimal
representatiorihihohzhs)16 Of successive 211,106,232,532,992(=0xC00000000000)
SSIK RNs are

(0) 52776563456789 (1) 52776558944932 (2) 52776562922561
(3) 52776546655991 (4) 52776568973476 (5) 52776564421452
(6) 52776553403380 (7) 52776560693283 (8) 52776561825206
(9) 52776563077608 (A) 52776559739050 (B) 52776569167421
(C) 52776550628626 (D) 52776551750245 (E) 52776549898173
(F) 52776544573775,

and they?-value is 16.689. Since the?-value at the level 0.05 is 24.9958, the hypoth-
esis of uniformity of appearance is not rejected.

Uniform RNs on [1,2) are made from SSIK RNs by setting the exponent of a
floating-point variable to be - x 2°, and by settingy - - - b3» andbsz - - - bs, of mantissa

10 Hirotake Yaguchi and Izumi Kubo

to be 32 bits of thé:-th SSIK RN and the successive 20 bits(bﬁ(zk (W)) x X, after
discarding the first 16 bits respectively. To these RNs we applied BigCrush of TestU01
(V1.2) ([4], http://www.iro.umontreal.ca/-simardr/testu01/ tu01.html), and had the fol-
lowing good result.

========= Summary results of BigCrush =========
Version: TestUO1 1.2

Generator: My SSI32 implementation
Number of statistics: 160

Total CPU time: 71:24:46.76

All tests were passed

Concluding Remarks.

(1) The mechanism of random number generation of SSR and SSl is quite
different from other RNGs. So in various scenes they can be served as a one-
more RNG which has different algorithm of RN generation.

(2) Since SSR and SSI generate thth RN directly, they are suitable for
parallel computations. For example, if the number of RNs required by one job
isn x m, then one may split the work inte parts and generateé RNs in the
i-th subjob(i = 1,--- , n) starting from thgi — 1) x m-th RN.

(3) Ratios of time for creating a file of one-giga bits for NIST’s test are
1(MT), 0.911(FSR) and 3.26(SSIK) under Windows XP x64, Pentium 4 2.8
GHz and Intel's compiler icl 9.0. Since the speed of SSIK is easily covered
by parallel computation, we can say that SSIK is a practical random number
generator.

Appendix
We give below the essential part of the code of SSIK RNG stated in Sect. 7.

/[The following code requires a 64-bit C-compiler.
#include <stdio.h>
typedef unsigned long long int ulli;
typedef struct //Intel's MPU only

{unsigned int L; wunsigned int H;} uiHL;
typedef union {ulli I; uiHL HL;} uiLLHL;
typedef struct

ulli p; ulli g; ulli r; ulli s; ulli rk; ulli sk;
ulli XpBase; ulli XgBase; ulli w0; ulli vO;
} SlPara64;

SlPara64 SlParaK =

{
Ox7ffffffel, Ox7ffffffcf, Ox39f750241, 0x32f50fee9, O, O,

A New Nonrecursive Pseudorandom Number Generator 11

0x88237449a, Oxbdda73ad3, 0x18237449a, Oxldda73ad3

h
unsigned int SSI32K(void)
L
int i;
uiLLHL wWLL1, XLL1, WLL1 Wk, WLL2, XLL2, WLL2_ WKk;
WLL1.I = SlParaK.wO; WLL2.l = SlParaK.vO0;

XLL1.l = SlParaK.XpBase; XLL2.I = SlIParaK.XgBase;
XLL1.lI "= (SlIParaK.rk); XLL2.I "= (SlIParaK.sk);
for (i=1; i<=23; i++)

{
WLL1_Wk.I = WLL1.*XLL1.l; WLL1I.HL.L = WLL1_Wk.HL.H;
WLL2_Wk.I = WLL2.I*XLL2.l; WLL2.HL.L = WLL2_Wk.HL.H;
}

WLLL Wk.I -= WLL2_WKk.I; WLL1_WKk.I <<= 16;
return(WLL1_Wk.HL.H);
}
void SSI32KplusRS(void)
{
SlParaK.rk += SlIParaK.r; SlParaK.sk += SlParaK.s;
if (SIParaK.rk >= SlParaK.p) {SIParaK.rk -= SlParaK.p;}
if (SIParaK.sk >= SlIParaK.q) {SIParaK.sk -= SlParaK.qg;}
}
unsigned int SSI32KBin32(void)
{
unsigned int RanBits;
SSI32KplusRS(); RanBits = SSI32K();
return(RanBits);

void SSI32IniK(ulli n)

/I (rk,sk) is set so that SSIK starts from the n-th RN.
}

int main()

{
printf("1st random number = %08x\n", SSI32KBin32());

printf("2nd random number = %08x\n", SSI32KBin32());
/I Use SSI32IniK(n) to start from the n-th RN.
return(0);

}

References
1. A. Berger,Chaos and Chancele Gruyter, Berlin New York, 2001.
2. A. Boyarsky and P. Gra,Laws of ChaosBirkhauser, Boston Basel Berlin, 1997.

3. D. E. Knuth,The Art of Computer Programming, VolumeAtidison Wesley, MA: Read-
ing, 1997.

4. P.LEcuyer and R. SimardestU01: A C Library for empirical testing of random number
generatorsACM Transactions on Mathematical Software 33 (2007).

12 Hirotake Yaguchi and Izumi Kubo

5. M. Matsumoto and T. Nishimurdjersenne Twister: a 623-dimensionally equidistributed
uniform pseudorandom number generatb€M Transactions on Modeling and Computer
Simulation 8 (1998), pp. 3—30.

6. W. De Melo and S. Van Strie@ne-Dimensional DynamicSpringer, Berlin Heidelberg
New York, 1993.

7. M. Pollicott and M. Yuri,Dynamical Systems and Ergodic TheoBambridge Univ Pr,
Cambridge, 1998.

8. C. RobinsonPynamical System€&€RC Pr, FL: Boca Raton, 1998.

9. H. Yaguchi,Randomness of Horner’s rule and a new method of generating random num-
ber, Monte Carlo Methods and Applications 6 (2000), pp. 61-76.

, Construction of a long-period nonalgebraic and nonrecursive pseudorandom

10.
number generatgMonte Carlo Methods and Applications 8 (2002), pp. 203-213.

Received

Author information
Hirotake Yaguchi, Faculty of Education, Mie University, Tsu City, Japan.
Email: yaguchi@edu.mie-u.ac.jp

Izumi Kubo, Hiroshima Institute of Technology, Hiroshima City, Japan.

A New Nonrecursive Pseudorandom Number Generator

wj:wj,loa:’i\ coox 20 ‘ o‘

Figure 2. The Simplified Shift-Real(SSR) computation

2/\/ 2 — QJ

/ /
1.5 | A 1.5F 4 1.5
/ g |
/ /,
/ \,/ | l i1
1 1.5

2 1 1.5 2 1 1.5 2

|
:._k___._k._m‘_*ﬂ
s N

Figure 3. Graphs of®,, ®2 and®? for x=1.28

1.4 1.4 :
0.7 0.7 ‘
’ hi.08 ' {®T28(1) }n
0 ‘ 0 ‘
1 1.5 2 1 1.5 2

Figure 4. Graphs ofh 2g and the distribution of ®7 ,5(1)}1,

14 Hirotake Yaguchi and Izumi Kubo

1.4 ! 1.4 !
0.7 |- n 0.7 |- .
H(t) {02 (1)}
0 ‘ 0 ‘
1 1.5 2 1 1.5 2

Figure 5. Graphs offf (t) and the distribution of ®24 (1)},

1600 1600
1200 |- - 1200 |-
+ —
800 |- S 800 |- "
400 - = 400 -
0 | | | < 0 | | |
0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2
: o o + _ - -
Figure 6. Distributions ofk, k7, - - -, Kgggg@Ndkq , K1, -+, Kgggg
1.002 ‘ 1.002
1 \ 1
0.998 - 3 0.998 -
[SSR] [SSRK]
0.996 ‘ 0.996 ‘
0 0.5 1 0 0.5 1
Figure 7. Before and after the K-improvement
W x X 1YYY [z222Z - - - - - - - 77777 VWV - - - - - - WW |
I bagbag - -~ v bes
WeX 1000000~ - - - - - - - 000001 ZZZZZ- - - - - - - 77777 |
Brr - oo Bagbag - -« - e bes

Figure 8. The Simplified Shift-Integer (SSI) computation

