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A New Nonrecursive Pseudorandom Number Generator
Based on Chaos Mappings
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Abstract. We introduce a new pseudorandom number generator SSR (the Simplified Shift-
Real random number generator) which generates thek-th random number nonrecursively (di-
rectly) based on chaos mappings on the interval [1,2). We investigate properties of SSR random
numbers and give the theoretical background of generation of random numbers. A practical
integral(all-integer) version SSI of SSR, which is suitable for parallel computation, is also
provided.
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1. Introduction

The aim of this paper is to investigate a nonalgebraic and nonrecursive pseudorandom
number generator(RNG) which has different algorithm from other RNGs. Random
number generators which are used nowadays, for example, feed back shift register
RNGs, Mersenne Twister RNG and so on, are designed so that they generate random
numbers(RNs) sequentially on a single computer. Therefore it is not so easy to ad-
just their algorithm to recent parallel computers for parallel generation of RNs to be
generated. To solve this problem we here introduce new random number generators
SSR and its integral version SSI. They generate RNs nonrecursively by making use of
chaotic behavior of cancellation errors in numerical computation. Since SSR and SSI
RNGs generate thek-th random number directly, they are quite suitable for parallel
computations.

One of the authors proposed a new pseudorandom number generator SR(the Shift-
Real RNG) in [9] [10]. There, although nonalgebraic and nonrecursive RNGs were
given, the theoretical background of the randomness was not clear because of com-
plexity of the SR-algorithm. We here improve the algorithm of SR and introduce
the SSR-algorithm which has a simple mathematical structure and makes us possi-
ble to analyze randomness theoretically. (Of course, the simplicity of SSR-algorithm
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also improves the speed of generation of RNs.) In the next section, following [9],
we give a brief summary of the cancellation error which is the origin of our RNG.
It will be seen that a cancellation error can be think of as a shift of the mantissa of
a floating-point variable. In Sect. 3 we construct a new nonrecursive RNG SSR by
making use of simple multiplication of floating point variables and an artificial shift
of mantissa. In Sect. 4 we investigate properties of SSR RNs by applying NIST’s suit
of statistical tests of randomness. In Sect. 5 we argue the theoretical background of
the randomness of SSR RNG by analyzing chaos mappings which correspond to SSR
computations. There a little bit of ergodic theory is needed. In Sect. 6, using the
knowledge obtained in Sect. 5, we improve randomness and efficiency of SSR RNG.
The improvement is realized as the K-improvement and an extension of SSR compu-
tation. Since a floating-point system is dependent on a computer system, we introduce
in Sect. 7 the SSI random number generator which has the same algorithm as SSR and
uses no floating-point computations. The randomness of SSIK(K-improved SSI) RNG
is tested by NIST’s suit, TestU01 and aχ2 test concerning the distribution of 211-tera
SSRK RNs generated by parallel computations. Finally, in the appendix, we give a
code of essential part of SSIK RNG.

2. The origin of a new random number generator

The origin of our new pseudorandom number generator is cancellation error of numer-
ical computation [9]. If we compute

sinx ≈ x− x3

3! + x5

5! −
x7

7! · · ·+ (−1)n−1 x2n−1

(2n−1)!

= x
(

1− x2

2·3

(
· · ·

(
1− x2

(2n−4)(2n−3)

(
1− x2

(2n−2)(2n−1)

))
· · ·

))
by Horner’s method

G0 = 1,

Gk = 1− x2

(2n−2k)(2n−2k+1) ×Gk−1, k = 1, 2, · · · , n− 1,

Gn = x×Gn−1,

for

xi = 30
19999× i, i = 0, 1, · · · , 19999,

undersingle precisionwith n = 30, we have a strange graph given in Fig. 1(left).
Further if we computeyi = G30(xi) in the same way for

xi = 22+ 4
19999× i, i = 0, 1, · · · , 19999,

and drop the first 3 digits ofyi and take out the succeeding four digits, sayui, such as

y0 = −6.66860437393188E + 000 =⇒ u0 = 8604,
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then the graph of(0.u2j , 0.u2j+1) , j = 0, · · · , 9999, suggests us thatu0, u1, u2, · · · ,
are random numbers (Fig. 1 right).

The reason of disorder of the graph is the cancellation error caused by missing of
leading significant zeros in floating-point computations

Gk = 1− x2

(2n− 2k)(2n− 2k + 1)
×Gk−1 = (−)0.0d2d3d4d5d6 · · ·

for k = 26, 27, 28 and the near. Since the drop of leading zeros can be regarded as a
shift of the mantissa of single precision variable such as

00d2d3d4d5d6 ?? shift left- 00d2d3d4d5d6??

mantissa mantissa

,

if we can cause a shift of mantissa artificially, then we could have a new method of
generating random numbers.

3. The pseudorandom number generator SSR

We introduce here a new nonrecursive pseudorandom number generator SSR (the
Simplified Shift-Real RNG) whose base is an artificial shift of mantissa of floating-
point variable. The SSR is an improved and simplified version of SR in [10], and
enables us to analyze its randomness mathematically because of its simplicity.

Let w0 andx be in [1,2) and

gw0(x) = w0 ◦ x ◦ x ◦ x ◦ · · · ◦ x ◦ x︸ ︷︷ ︸
24 times

.

We computegw0(x) under thedouble precision(IEEE 754 format) such as

wj = wj−1 ◦ x, j = 1, 2, · · · , 24, and gw0(x) = w24.

Here the meaning of◦ in wj = wj−1 ◦ x is the following(Fig. 2):

The SSR computation.
(i) Computewj−1 × x as a usual floating-point multiplication,

(ii) set the exponent ofwj−1 × x so that it represents· · · × 20(→ wj−1 × x is in
[1,2) again), and

(iii) shift all the bits of the mantissa ofwj−1 × x to the left by 1(→ the most
significant bit of the mantissa ofwj−1 × x is dropped and hence a cancellation
error of 1 bit is caused artificially).

Then we construct a pseudorandom number generator SSR by varyingx in [1,2) uni-
formly as follows:

The SSR random number generator.
Let



4 Hirotake Yaguchi and Izumi Kubo

p=49933453,q=22801201,r=491377,s=47513,a=1920000,b=48060000
and set(rk, sk) ≡ (rk modp, skmodq) , k = 1, 2, · · · . For

xk =

{
1.0 + rk

a+sk
if (a + sk) > rk

1.0 + rk−(a+sk)
b−sk

if (a + sk) ≤ rk,

we computeg1(xk) and discard the first three digits ofg1(xk) and take out the suc-
ceeding four digitsαk as thek-th random number.

We note that the sequence{xk} is designed so that it spreads uniformly in the inter-
val [1,2). Further the period of RNs{αk} is pq =1,138,542,698,477,053 becausep, q,
r ands are prime numbers.

The SSR computationwj = wj−1◦x can be treated mathematically in the following
way:

Mathematical representation of the SSR computationwj−1 ◦ x.
Let

(i) ϕx : [1, 2) → [1, 4) beϕx(t) = tx , which corresponds to the multiplication of
t ∈ [1, 2) by x ∈ [1, 2) in the SSR computation,

(ii) ϕe : [1, 4) → [1, 2) beϕe(v) = v if 1 ≤ v < 2 and= v/2 if 2 ≤ v < 4, which
corresponds to the substitution of the exponent of floating-point variablev by
...× 20 , and

(iii) ϕs : [1, 2) → [1, 2) be ϕs(w) = 2w − 1 if 1 ≤ w < 1.5 and= 2w − 2 if
1.5 ≤ w < 2 , which corresponds to the shift of the mantissa of floating-point
variablew to the left by 1.

Thenwj = wj−1 ◦ x is represented bywj = ϕs(ϕe(ϕx(wj−1))) .

If we setΦx(t) = ϕs(ϕe(ϕx(t))) , thenwj = Φx(wj−1) andΦx is a piece-wise affine
function which maps [1,2) onto [1,2) and is written explicitly by

if 1 ≤ x < 1.5 if 1.5≤ x < 2

Φx(t) =


2xt − 1 (1≤ t < 3

2x)
2xt − 2 ( 3

2x ≤ t < 2
x)

xt − 1 ( 2
x ≤ t < 2)

, Φx(t) =


2xt − 2 (1≤ t < 2

x)
xt − 1 ( 2

x ≤ t < 3
x)

xt − 2 ( 3
x ≤ t < 2)

.

The graphs ofΦx andΦ2
x, Φ4

x for x=1.28 are as in Fig. 3.
In the following we sometimes use the word ”SSR value” when we want to refer to

the value ofg1(xk)=Φ24
xk

(1) (more generally,gw0(xk)=Φ24
xk

(w0)). A 4-digit number
αk obtained from SSR valueΦ24

xk
(1) after dropping the first 3 digits will be called the

k-th ”SSR random number”. Since thek-th SSR RNαk is obtained directly through a
computationΦ24

xk
(1), RNs{αk} can be generated in parallel. Therefore SSR RNG is

suitable for parallel computing. Moreover, by varying numbersr ands in the definition
of xk and also by varyingw0 in Φ24

xk
(w0), we can obtain many different sequences of

random numbers. Thus the SSR RNG is a very flexible RNG.
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4. Statistical test of SSR random numbers

We show, using the suit of statistical tests supplied by NIST(http://csrc.nist.gov/rng/),
that SSR RNsαk, k = 1, 2, · · · , are uniform random numbers. It will be known that
results for SSR RNs are of the same level with other well-known RNGs.

NIST’s suit(Version 1.8) consists of 188 tests of the following 15 kinds: Frequency;
block frequency; cumulative sums; runs; longest run; rank; fft; nonperiodic templates;
overlapping templates; universal; approximate entropy; random excursions; random
excursions variant; serial; and linear complexity tests. We applied all the tests to a
file consisting of one-giga bits ofb7 · · · b22 obtained from the mantissab1 · · · b52 of
Φ24

xk
(1). All the parameters we used were default’s values except that the block length

of the block-frequency test is 20000. The number of bit-streams and the length of bit
are 1000 and 1000000 respectively. Under these circumstances, each test of NIST’s
suit generated a finalAnalysisReport and gave us a value ofχ2 test concerning the
distribution of 1000p-values derived from 1000 bit-streams and also a proportion ofp-
values which are greater than 0.01. In order to exclude exceptional values, we repeated
NIST’s test 16 times by varyingr ands in the definition of{xk} such as

r =491377, 492299, 493177, 404041,s =47513, 47699, 47869, 48049,
and averaged the results in the finalAnalysisReports. Since it is tedious to cite all
averages, we give below the maximum and the minimum of averages together with
the results for the feedback shift register method (FSR)Yn = Yn−32 xor Yn−521 and
Mersenne Twister (MT [5]): (In the results,[i = kk] is the serial number of the test.)

[SSR]
AvMax of χ2 test ofp-value= 0.666747 at nonperiodic-templates [i=102]
AvMin of χ2 test ofp-value= 0.338575 at nonperiodic-templates [i=153]
AvMax of proportion of(p > 0.01) =0.992112 at random-excursions-variant [i=183]
AvMin of proportion of(p > 0.01)=0.987188 at fft [i=7],

[FSR]
AvMax of χ2 test ofp-value= 0.685129 at nonperiodic-templates [i=58]
AvMin of χ2 test ofp-value= 0.292520 at nonperiodic-templates [i=34]
AvMax of proportion of(p > 0.01)=0.991750 at nonperiodic-templates [i=44]
AvMin of proportion of(p > 0.01)=0.986788 at random-excursions [i=166],

[MT]
AvMax of χ2 test ofp-value= 0.721409 at rank [i=6]
AvMin of χ2 test ofp-value= 0.304160 at random-excursions-variant [i=179]
AvMax of proportion of(p > 0.01)=0.992250 at nonperiodic-templates [i=138]
AvMin of proportion of(p > 0.01)=0.987500 at fft [i=7].

From these results we think that concerning NIST’s tests properties of SSR RNs are of
the same level with other RNs.
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5. Theoretical analysis of the SSR computation

We consider here the mathematical background why the SSR computationΦx gener-
ates random numbers, and also consider the distribution (probability density function)
of SSR valuesΦ24

xk
(1).

The base of the randomness of SSR values is, in a short word, the chaotic property
of Φx which is characterized by the following (i), (ii) and (iii) ([1], [8]).

(i) Since d
dtΦx(t) = x or 2x and is greater than one,Φx is an expansive function.

This implies that the value ofΦn
x(t) is extremely sensitive to the initial valuet in the

sense that there is anr > 0 such that for each pointt and for eachε > 0 there is a
point t′ with |t− t′| < ε and ak such that|Φk

x(t)−Φk
x(t′)| ≥ r .

(ii) Periodic points with the periodn are given by the intersection of the graphs of
y = Φn

x(t) andy = t, t ∈ [1, 2). Then as the graphs ofΦx, Φ2
x andΦ4

x in Fig. 3
indicate,Φx has dense periodic points.

(iii) Φx is transitive, that is, the orbit of some point of an invariant set ofΦx is dense.
This is known by the following consideration. The probability density functionhx of
the invariant measure ofΦx is given by

hx(t) = limn→∞{ 1
n

∑n−1
k=0 Lk

x1}(t)

([2], [6]), whereLx : L1[1, 2) → L1(1, 2) is the Perron-Frobenius(P-F) operator cor-
responding toΦx which is defined by

if 1 ≤ x < 1.5, (Lxg)(t) =


1

2xg( t+2
2x ) + 1

xg( t+1
x ) (1≤ t < 2x− 1)

1
2xg( t+1

2x ) + 1
2xg( t+2

2x ) (2x− 1≤ t < 2)

,

if 1.5≤ x < 2, (Lxg)(t) =


1
xg( t+1

x ) + 1
xg( t+2

x ) (1≤ t < 2x− 2)

1
2xg( t+2

2x ) + 1
xg( t+1

x ) (2x− 2≤ t < 2)

.

(The Perron-Frobenius operatorL corresponding toΦ is the mapping fromL1 3 g to
L1 3 Lg whereLg is the function satisfying

∫
f(Φ(x))g(x)dx =

∫
f(t)(Lg)(t)dt

for every bounded measurable functionf . Under appropriate conditions,(Lg)(t) is
represented such as(Lg)(t) =

∑
y∈Φ−1(t)

g(y)
|Φ′(y)| ([6], [7]). As an example ofhx(t) we

show in Fig. 4(left) the graphs ofh1.28 which is obtained by numerical computation.)
Since the distribution of{Φn

x(t)}n=1,2,··· is approximated by the invariant measure
with densityhx for almostt ∈ [1, 2) (Fig. 4(right)), SSR valuesΦn

x(t), n = 1, 2, · · · ,
spread nearly uniformly in [1,2). This implies that for almostt ∈ [1, 2), if positive
ε and t̃ ∈ [1, 2) are given, there existsm ∈ N such that|Φm

x (t) − t̃| < ε (i.e., t̃ is
arbitrarily approximated by someΦm

x (t)), which means the transitivity ofΦx. From
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these facts we see thatΦx is a chaos mapping.

What we want to stress here is that

the probability density functionH(t) of {Φ24
xk

(1)}k can be described

by the average ofhx overx ∈ [1, 2), that is,H(t) =
∫ 2

1 hx(t)dx.

The intuitive meaning of the assertion above would be obvious if one sees the graphs
of H(t) and the distribution of{Φ24

xk
(1)}107

k=1 (Fig. 5). As the reason whyH(t) is

described by
∫ 2

1 hx(t)dx, we consider the following necessary condition forH(t).
Suppose that ifq is sufficiently large, the distribution of{Φq

xk(1)}k is described by
H(t) which is independent ofq, and for a bounded measurable functionf it holds that
1
N

∑N
k=1 f(Φq

xk(1)) ≈
∫ 2

1 f(t)H(t)dt for sufficiently largeN . Then averaging over
q=Q, Q+1, · · · , Q+R-1 we have

1
N

∑N
k=1

1
R

{
f(ΦQ

xk(1)) + · · ·+ f(ΦQ+R−1
xk (1))

}
≈

∫ 2
1 f(t)H(t)dt.

If we let R → ∞ in the above, the LHS approaches to1N
∑N

k=1

∫ 2
1 f(t)hxk

(t)dt
because the distribution ofΦn

xk
(1), n = 1, 2, · · · , is approximated byhxk

, and hence∫ 2
1 f(t)

(
1
N

∑N
k=1 hxk

(t)
)

dt ≈
∫ 2

1 f(t)H(t)dt. Sincex1, · · · , xN spread uniformly

in [1,2) asN → ∞, the term 1
N

∑N
k=1 hxk

(t) approaches to
∫ 2

1 hx(t)dx asN →
∞. So we could conclude that

∫ 2
1 f(t)

(∫ 2
1 hx(t)dx

)
dt =

∫ 2
1 f(t)H(t)dt for every

bounded measurable functionf . This means thatH(t) =
∫ 2

1 hx(t)dx.
To ensure that the distribution of{Φ24

xk
(1)}k is described byH(t), we apply the

following statistical test.
Putzk = Φ24

xk
(1). Then we repeat forj = 0, 1, · · · , 9999 the Kolmogorov-Smirnov

test [3] for z1+20000×j , z2+20000×j , · · · , z20000+20000×j and obtain two statisticsκ+
j

andκ−j . It is known that the distributions ofκ+
0 , κ+

1 , · · · , κ+
9999 andκ−0 , κ−1 , · · · ,

κ−9999 are closely approximated by the function 1− exp(−2x2). So we can employ
χ2 test(Fig. 6). The results ofχ2 test for the distributions ofκ+ andκ− are 0.20098
and 0.66702 respectively. Hence the hypothesis that the distribution of{Φ24

xk
(1)}k is

described byH(t) is not rejected at the level of 0.05.

6. Improvement of the SSR random number generator

Although SSR RNs are created by dropping the first 3 digits of SSR values, as the
graph ofH(t) in Fig. 5 suggests, the distribution has a slight asymmetry which NIST’s
tests can not detect (Fig. 7 left). Further the size of SSR RNs is four digit which is not
so long.

In this section we give two improvements of SSR RNG. One is the K-improvement
which improves randomness of SSR RNG, and another is an extension of SSR com-



8 Hirotake Yaguchi and Izumi Kubo

putation which improves efficiency of generation of RNs.

The K-improvement of SSR (SSRK).
Let 1.e = 1.2718281828459 and 1.π̃ = 1.8141592653589. Then, instead of the SSR
value Φ24

xk
(1), we useΦ24

xk
(1.e) − Φ24

xk
(1.π̃) (mod [1,2)), which we call an SSRK

value. (The meaning of mod [1,2) is to transfer the value in (-1,1) to the one in [1,2)
by adding 1 or 2.) An SSRK random number is created in the same way as to SSR
random number by discarding the first 3 digits and taking out the succeeding 4 digits.

The K-improvement is making use of the fact thatΦx is a chaos mapping, andΦ24
xk

(w0)
is extremely sensitive to the initial valuew0. Therefore if we assume that the distribu-
tions of{Φ24

xk
(1.e)}k and{Φ24

xk
(1.π̃)}k are mutually independent, the density function

I(y), y ∈ [1, 2), of SSRK values is given by the convolution

I(y) =
∫ y

1 H(t)H(t− y + 2)dt +
∫ 2
y H(t)H(t− y + 1)dt.

The right graph of Fig. 7 is the theoretical distribution of SSRK RNs which is derived
from I(y). We see that the effect of convolution is marvelous.

The next improvement enable us to generate an 8-digit RN at one time.

The SSRex computation (An extension of SSR computation).
Let Φ̃x be a modification ofΦx such that the size of the left-shift of mantissa istwo.
Then, instead ofΦ24

xk
(1), we useΦ̃26

xk
(1) which we call an SSRex value. An SSRex

random number is the succeeding 8 digits of SSRex value after dropping the first 5
digits.

The SSRex technique brings us an important information that the size of the shift of
mantissa in the SSR computation is variable. In the next section we will make use of
this fact in realizing an integral(=all-integer) version of SSR.

7. SSI – A practical integral version of SSR

The SSR computation essentially relies upon floating-point computations, and the
floating-point system usually depends on a computer system (especially on MPU). So
SSR occasionally generates slightly different RNs if a computer system is different.
To avoid this problem we introduce the SSI random number generator which has the
same mechanism of random number generation as to SSR and uses no floating-point
computations. The base of SSI RNG is the following SSI computation.

The SSI computationΨX(W ) = W •X.
Let W andX be 64-bit integers. Then

(i) computeW ×X as a usual multiplication of 64-bit integers (ignore overflow if
it occurs), and
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(ii) shift the result of (i) to the right by 32 bits (i.e., bitsb1 · · · b32 are moved to
b33 · · · b64), and setb1 · · · b32 = 0 · · ·01 as in Fig. 8. (→ W •X is used as the
nextW .)

In the real SSI RNG below, the size of overflow ”1YYY” in (i) is adjusted so that it
is 4 of 5 bits, which corresponds to the shift of 3 or 4 bits of mantissa in the SSR
computation (because the effective drop of bits is ”YYY”).

The next SSIK RNG corresponds to the K-improvement of SSR RNG in Sect. 6.

The SSIK random number generator.
Set

X=0x88237449a, P=0x7ffffffe1, R=0x39f750241, W=0x18237449a,

Y=0xbdda73ad3, Q=0x7ffffffcf, S=0x32f50fee9, V=0x1dda73ad3,

and compute thek-th SSIK value such as(Ψ22
Xk

(W )) × Xk − (Ψ22
Yk

(V )) × Yk for
k = 1, 2, · · · , whereXk = (X xor (Rk mod P )) andYk = (Y xor (Sk mod Q)).
Then as thek-th SSIK random number we discard the first 16 bits of thek-th SSIK
value and take out the succeeding 32 bits.

The period of SSIK RNG isPQ ≈ 1.18× 1021 becauseP,Q,R andS are prime
numbers. Results of NIST’s test for SSIK RNs are as follows:

[SSIK]
AvMax of χ2 test ofp-value= 0.661006 at nonperiodic-templates [i=38]
AvMin of χ2 test ofp-value= 0.320636 at serial [i=186]
AvMax of proportion of(p > 0.01)=0.991750 at nonperiodic-templates [i=33]
AvMin of proportion of(p > 0.01)=0.986687 at fft [i=7],

Again no particular values are found in the results.
The numbers of hexa-decimal characters 0,1,· · · , F appeared in the hexa-decimal

representation(h1h2h3h4)16 of successive 211,106,232,532,992(=0xC00000000000)
SSIK RNs are

(0) 52776563456789 (1) 52776558944932 (2) 52776562922561

(3) 52776546655991 (4) 52776568973476 (5) 52776564421452

(6) 52776553403380 (7) 52776560693283 (8) 52776561825206

(9) 52776563077608 (A) 52776559739050 (B) 52776569167421

(C) 52776550628626 (D) 52776551750245 (E) 52776549898173

(F) 52776544573775,

and theχ2-value is 16.689. Since theχ2-value at the level 0.05 is 24.9958, the hypoth-
esis of uniformity of appearance is not rejected.

Uniform RNs on [1,2) are made from SSIK RNs by setting the exponent of a
floating-point variable to be· · ·×20, and by settingb1 · · · b32 andb33 · · · b52 of mantissa
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to be 32 bits of thek-th SSIK RN and the successive 20 bits of(Ψ22
Xk

(W ))×Xk after
discarding the first 16 bits respectively. To these RNs we applied BigCrush of TestU01
(V1.2) ([4], http://www.iro.umontreal.ca/-simardr/testu01/ tu01.html), and had the fol-
lowing good result.

========= Summary results of BigCrush =========
Version: TestU01 1.2
Generator: My SSI32 implementation
Number of statistics: 160
Total CPU time: 71:24:46.76
All tests were passed

Concluding Remarks.

(1) The mechanism of random number generation of SSR and SSI is quite
different from other RNGs. So in various scenes they can be served as a one-
more RNG which has different algorithm of RN generation.

(2) Since SSR and SSI generate thek-th RN directly, they are suitable for
parallel computations. For example, if the number of RNs required by one job
is n ×m, then one may split the work inton parts and generatem RNs in the
i-th subjob(i = 1, · · · , n) starting from the(i− 1)×m-th RN.

(3) Ratios of time for creating a file of one-giga bits for NIST’s test are
1(MT), 0.911(FSR) and 3.26(SSIK) under Windows XP x64, Pentium 4 2.8
GHz and Intel’s compiler icl 9.0. Since the speed of SSIK is easily covered
by parallel computation, we can say that SSIK is a practical random number
generator.

Appendix

We give below the essential part of the code of SSIK RNG stated in Sect. 7.

//The following code requires a 64-bit C-compiler.
#include <stdio.h>
typedef unsigned long long int ulli;
typedef struct //Intel’s MPU only

{unsigned int L; unsigned int H;} uiHL;
typedef union {ulli I; uiHL HL;} uiLLHL;
typedef struct

{
ulli p; ulli q; ulli r; ulli s; ulli rk; ulli sk;
ulli XpBase; ulli XqBase; ulli w0; ulli v0;
} SIPara64;

SIPara64 SIParaK =
{
0x7ffffffe1, 0x7ffffffcf, 0x39f750241, 0x32f50fee9, 0, 0,
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0x88237449a, 0xbdda73ad3, 0x18237449a, 0x1dda73ad3
};

unsigned int SSI32K(void)
{
int i;
uiLLHL WLL1, XLL1, WLL1_Wk, WLL2, XLL2, WLL2_Wk;
WLL1.I = SIParaK.w0; WLL2.I = SIParaK.v0;
XLL1.I = SIParaK.XpBase; XLL2.I = SIParaK.XqBase;
XLL1.I ˆ= (SIParaK.rk); XLL2.I ˆ= (SIParaK.sk);
for (i=1; i<=23; i++)

{
WLL1_Wk.I = WLL1.I*XLL1.I; WLL1.HL.L = WLL1_Wk.HL.H;
WLL2_Wk.I = WLL2.I*XLL2.I; WLL2.HL.L = WLL2_Wk.HL.H;
}

WLL1_Wk.I -= WLL2_Wk.I; WLL1_Wk.I <<= 16;
return(WLL1_Wk.HL.H);
}

void SSI32KplusRS(void)
{
SIParaK.rk += SIParaK.r; SIParaK.sk += SIParaK.s;
if (SIParaK.rk >= SIParaK.p) {SIParaK.rk -= SIParaK.p;}
if (SIParaK.sk >= SIParaK.q) {SIParaK.sk -= SIParaK.q;}
}

unsigned int SSI32KBin32(void)
{
unsigned int RanBits;
SSI32KplusRS(); RanBits = SSI32K();
return(RanBits);
}

void SSI32IniK(ulli n)
{
// (rk,sk) is set so that SSIK starts from the n-th RN.
}

int main()
{
printf("1st random number = %08x\n", SSI32KBin32());
printf("2nd random number = %08x\n", SSI32KBin32());
// Use SSI32IniK(n) to start from the n-th RN.
return(0);
}
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