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Introduction. The Virasoro algebra % is the Lie algebra over C of the
following form:

1) Z= Y Ce,® Ce,

nel
with the relations

m? —m

(2) [em’ en]'= (m - n)em+n + Tam+n,0e6(m’ ne Z)’

e} € the center of the Lie algebra 2.

The Lie algebra of this type was first appeared in the dual string model of
elementary particle physics (cf. S. Mandelstam [12]). Quite recently the Virasoro
algebra was used to analyze critical phenomena in the two dimensional statistical
physics (cf. A. A. Belavin—A. M. Polyakov—A. B. Zamolodchikov [1]).

Introduce the triangular decomposition = n_ ® §) & n_ of .#, where

3) n,= 3 Ce,,; Bh==Ce®Cej.

n>1

By V. G. Kac [8], for each (4, c) € C?, there exists an irreducible £module
L(h, c), unique up to an isomorphism, with the following property. There exists a
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1014 A. TSUCHIYA AND Y. KANIE

nonzero vector v(h, ¢) € L(h, ¢), called a vacuum element, such that
(4) n,v(h,c) =0;
e(h,c) =hv(h,c), efp(h,c)=cv(h,c);

U(ZL)v(h,c) =L(h,c),

where U(.%) denotes the universal enveloping algebra of Z.

If A and c are real numbers, there exists a nondegenerate hermitian bi-linear
form {,} on L(h,c), unique up to a constant factor, with the following
properties:

(5) {u,e,v} ={e_,u,v}(meZ) and {u,efv} = {efu,v}.

It should be remarked that this hermitian pairing is not necessarily positive-
definite.

Then the problem of unitarity is stated as follows: When is the hermitian
paring {, } positive-definite?

It is easy to show that if the hermitian pairing {, } is positive-definite, then we
get (cf. Proposition 1-4)

(6) h>0 and ¢>0.

Using the so called Kac’s determinant formula, we get easily the following (cf.
Proposition 1-5):

PROPOSITION 1. For h > 0 and ¢ > 1, the hermitian pairing {,} on L(h,c) is
positive-definite.

This proposition was known to many people, for example, V. G. Kac [9].
For the range {(h,¢) € R% h>00<c< 1}, D. Friedan-Z. Qiu-S. Shenker
[4] asserted the following important results:

Assertion 2. Let h>0 and 0 < c <1. If the hermitian pairing {,} on
L(h, c) is positive-definite, then (4, ¢) has the form

6 [(1+2)p- (1+1)q]* -1
M e=l-gipury ™ "= T a2

for some /=1,2,... and1 < g<p<l

P. Goddard-A. Kent-D. Olive [6] constructed operators of the Virasoro
algebra .2, giving unitary representations of .% corresponding to the cited central
charge ¢ =1 — 6/(I + 1)(I + 2), through the so-called coset space representa-
tions associated to the quarternion projective space HP'~!. We apply their
operators to the level 1 integrable highest weight modules L(A) of the affine Lie
algebra of type C¥, and decompose L(A) as a module over the subalgebra of
type CV + C®,, then we get the main result of this paper.
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THEOREM 3. For every (h,c) of the form (7), the hermitian pairing {,} is
positive-definite.

This paper is organized as follows. In §1, we summarize the known results
about “Zmodules L(k,c) and their unitarity. In §2, we summarize the known
facts about the affine Lie algebra of type C{ and their integrable highest weight
modules L(A). In §3, we introduce a subalgebra C + C®; and Segal operators
w.r.t. the pair (g, £) = (C®, C® + CY)). We decompose the level 1 integrable
highest weight module L(A) of g into the sum of integrable highest modules of t
as a f-module, and show that the Virasoro algebra % acts on the space & (A; t)
of t-singular vectors in L(A), where a vector is called t-singular if it is
annihilated by any element of n, N t. In §4, we show that &(A; t) is decom-
posed into the direct sum of some L(#4, ¢)’s corresponding to the values (7) with
multiplicity free, and each L(4, ¢) with the value (7) occurs in &(A; t) for some
dominant integral weight A of level 1. This proof is carried out by calculating the
branching coefficients of the decomposition of the t-module L(A), and by
comparing the characters of the #module L(h, ¢) corresponding to the values
.

The authors express their hearty thanks to Professor M. Jimbo for explicit
computations of the branching coefficients.

§1. Unitarizable highest weight representations of the Virasoro algebra

(1.1) Verma modules and their irreducible quotients. In this paragraph, we
summarize the known facts about representations of the Virasoro algebra
((cf. V. G. Kac [8], F. L. Feigin-D. B. Fuks [2], A. Tsuchiya-Y. Kanie [13]).

The Virasoro algebra £ is the Lie algebra over C of the following form*:

(1-1) Z= Y Ce,® Ce,
nel
with the relations

m3 — m

(1-2) [em’ e”] = (m - n)em+n + _12—_—8”,4.,,’066 (m, ne Z),

e(, € the center of the Lie algebra 2.

The dual space §)* of the abelian subalgebra § = h(ZF) = Ce, ® Cej of £ is
identified with C? by setting for (&, ¢) € C?,

(h,c)(eg) =h and (h,c)(eq) =c.

For each (h, ¢) € C?, the left and right £modules M(h, ¢) and M(h, ¢) with
cyclic vectors |k, ¢y € M(h, c) and {c, h| € M(h, c) are defined respectively by

*The sign of the commutation relation is opposite from the one in A. Tsuchiya-Y. Kanie [13].
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the following defining relations:

(1-3) e lh,c) =0(n>=1), eglh,c) =hlh,c), eflh,c)=c|h,c);
(c,hle_,=0(n>1), {c,hleg=h{c,h|, {c, hlej= c{c,hl.

They are called Verma modules with highest weight (A, ¢) € h*.
The bilinear pairing called the vacuum expectations

(1-4) (Y: MT(h,c) x M(h,c) > C
is uniquely defined by the following relations:
(1-5) (e, hlh,c) =1;
(uelv) = (ulev) (e€P,ue Mi(h,c),ve Mi(h,c)).

For each multi-index M = (my, m,,...) of nonnegative integers with || M| =
X, 51Jm; < oo, we define the elements e, (M) and e_(M) of U(Z) by

(1-6) e.(M)=eMmel2... and e_(M)= ...eM™e™.

Then the Verma modules M(4, ¢) and MT(h, c) have the following bases over
C:
(1-7) {IN, h,c) = e (N)h, c); INI| < 0} € M(h, c);
{¢es b, M| = (c, hle.(M); | M| < 0} € M¥(h,c).
The modules M(h, ¢) and MT(h, ¢) have Z-grading of the forms:

(1-8)  M(h,c)= Y My(h,c) and M¥(h,c)= Y Mi(h,c),
d>0 d=0

where

My(h,c)= Y C|N,h,c¢) and Mj(h,c)= Y C{c, h, M|.
iINll=d 1M||=d

Then
dim M,(h, c¢) = dim Mj(h,c) = p(d),

where p(d) is the number of the partitions of the integer d. Moreover the
decompositions (1-8) are also the weight space decompositions of the #Zmodules
M(h, c¢) and MT(h, c) with respect to . The subspaces M,(h, c) and MJ(h, c)
belong to the same weight (k + d, c) € C2 = §*.
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With respect to this grading, the vacuum expectation (|) is homogeneous in
the sense that (u|v) = 0 unless deg u = deg v.
For each integer d > 0, consider the p(d) X p(d)-square matrix 4,(h,c) =
(A4(h, c)¥) defined by
(1-9)  Ay(h, )y =(c,h, MIN,h,c)  (IM]|=IN|| = d).

Then the matrix A4,(h, ¢) is a symmetric matrix and its determinant is given by
V. G. Kac:

ProrosiTION 1-1. (V. G. Kac [8]). For each d > 0,
4 (d—k)
(1-10) det®4,(h,c) = const.k]:[1 }'I—IICQj’k/j(h’ )P,

where const. means a positive constant and

(1-11)

(k2 - K2)’

o, . (h,c) ﬁh+c_13(k2 1) 4 ~(kak, ~ 1)) +
k(B _j=1{ 24\ 2 12 } 2

Define the subspaces I(h,c) and I'(h,c) of M(h,c) and MT(h,c) as
follows:

(1-12)  I(h,c) = {ve M(h,c);(ulv) = 0forany u € M'(h,c)};
I'(h,¢) = {ve M'(h,c);(ulv) = 0foranyv € M(h,c)}.

Then we get

PROPOSITION 1-2. Let (h,c) € C2
(0) I(h,c) and I'(h, c) are homogeneous subspaces of M(h, ¢) and M¥(h, c)
respectively.
@) I(h,c) and I'(h,c) are maximal proper ZLsubmodules of M(h,c) and
M (h, ¢) respectively.
(ii) The quotient spaces L(h,c) = M(h, c)/I(h,c¢) and Li(h,c) =
M*(h,c)/I(h,c) are irreducible £modules.
(iii) The vacuum expectation factorizes through

(1-13) (y: Li(h, ¢) X L(h,c) - €

and is homogeneous with respect to the grading L(h,c) =X, (L,(h,c) and
Li(h, ¢) = L5 oLly(h, c).
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(iv) On the homogeneous components, the pairings
(1-14) (Da: Ll(h,e) X Ly(h,c) > €

are nondegenerate for all d > 0.

(1.2) Unitarizability. Define the anti-C-linear anti-automorphism of the uni-
versal enveloping algebra U(.Z) of the Lie algebra .#:

(1-15) 0:U(Z) - U(Z)
by the formulae: |
ole,) =e_,(meZ) and o(e}) =e}.
And for each (4, ¢) € R?, define anti-C-linear isomorphism of vector spaces
(1-16) a: M(h,c) > MT(h,c)

by setting o(|M, h, c)) = {c, h, M| for all M with || M| < co. Then this map &
satisfies the following relations:

(1-17) 3(|h, c)) = (e, hl;
5(eu) =5(u)5(e) (e U(L),ue M(h,c)).
For each (h, c¢) € R?, define the hermitian pairing
(1-18) {,}: M(h,c) X M(h,c) > C,
by setting
{u,v} =(a(u)lv)  (u,0€ M(h,c)).

Then by Proposition 1-2, we get

PROPOSITION 1-3. Let (h,¢) € R2
(i) The hermitian pairing (1-18) factorizes through

(1-19) {,}:L(h,c) X L(h,c) = C,

and this pairing is homogeneous with respect to the grading L(h, c) = ¥, (L (h, c).
(ii) On the homogeneous components, the pairing

(1-20) (.} Ly(h, ) X Ly(h,c) > €

is nondegenerate for all d > 0.
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(iii) The hermitian pairing (1-19) satisfies the following relations:
(1-21) {lh, ey, |h, ey} =1;
{u,e_,p} = {equ,v}; {u,ef} = {efu, v}
(meZ, uveL(h,c)).

Remark that the hermitian pairing {,} on L(h,c) are not necessarily
positive-definite.
PROPOSITION 1-4. Let (h, c¢) € R2. If the hermitian form {,} on L(h,c) is
positive-definite, then we get
h>0 and c¢>0.
Proof. Foreachn>1,

n®—n

{e_nlh ey e ylh ey} = {|h,c), eie b, €)} = 2nh + —=

C.

Hence the positive-definiteness of {,} implies 2nh + (n® — n)c/12 > 0 for all
n>1 ged.

The following assertion, easily obtained from the Kac’s determinant formula
(1-10), is known to many people, for example, V. G. Kac [9].

PROPOSITION 1-5. Ifh > 0 and ¢ > 1, then the hermitian form {,} on L(h, c)
is positive-definite.

Moreover by deeply using the Kac’s determinant formula, D. Friedan-Z.
Qiu-S. Shenker [4] got the following assertion:

Assertion 1-6. (D. Friedan-Z. Qiu-S. Shenker [4]). Let0 <c <1land 4> 0.
If the hermitian form {,} on L(h,c) is positive-definite, then (4, c) has the
following form

{1+ 2)p-(+ 1’1

(-22) e=1-opary ™ "7 T a2

forsome/=1,2,... and1 <g<p<l

Their proof of this assertion is very complicated, and it seems that the detailed
proof does not appear yet. It is desirable that a simple proof of this beautiful
formula should be given.

§2. Affine Lie algebras of type C¥. In this section, we summarize the basic
known facts about affine Lie algebras of type C/V and their irreducible represen-
tations after V. G. Kac [10].
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(2.1) Lie algebra of type C,. Let § be the simple Lie algebra over C of type C,
(I=1,2,...). We take the following realization of §:

(2-1) §=58p(1,C) = {4 €gl(21,C); U] +J4 = 0},

where

0 I
J = ( I 0’) and I, is the unit / X /-matrix.
—4

Denote by E;; the 2/ X 21-matr1x whose (i, j)-component is 1, and all other
components are zero. Put h;=E,;—E;, .., (1<j<!) and b= 21_1(311
Then h is a Cartan subalgebra of §. Denote bye (1 <i<l)the element of the
dual space b* of b defined by (h;) =96,; (1 <i, j<I). Then the set A of

roots of (§, b) is given as

(2-2) A={(g2e)1<i<j<l), £26(1<i<)].

The set IT = {ay=¢6 —¢&,...,0;_1=¢_; — &, a;= 2¢,} gives a simple root
system of A, and the set A + of corresponding positive roots is given as

(2-3) ={ete(I<i<j<I)2e(1<i<])}.

For each a € A, define the element E, € § by the following;:
@) E,=E;—E; ;4 fora=e—¢ (I<i#j<l);

(ii) E,= Ei,j+1 + Ej,i—H’ E_,= Ei+1,j + Ej+1,i

fora=¢+e (I1<i<j<l);
i) E,=E, ;. E_,=E,;; fora=2¢ (I1<ixgl).
i i+l a i+1,i i

a

Put §, = CE, for each « € A, then we get the root space decomposition of §
as

(2-4) §=he Eﬁéa'

The highest root 8 of A and the half sum p = 3L, 4, of positive roots are
written respectively as

(2-5) 0=2¢ and p=1le,+ (I—1)e, + - +e,.
Define the §-invariant symmetric bilinear form (,) on § by
(2-6). (X,Y)=1(XY) (X,Ye§),

where tr means the trace as an element of g{(2/,C). Let »: E) - E)* be the linear
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isomorphism defined by (»(h,), h,) = (hy, h,) for hy, b, € b. For a, 8 € h*
put (a, B) = (»~(a), »~*(B)). Then we get

(2-7) (h,, _,) = 28 (5,, J) = 18 (1 < i? .] < l);
v(h)=2¢; (1<j<]).

This §-invariant form (,) on b* is normalized in the sense that (6, 6) = 2.
The dual Coxeter number g of § is defined by

(2-8) g=13(6,0)+(6,8) =1+ (6,8).

Then g =/ + 1 in the case § = 3p(/,C).
Finally define the anti-C-linear anti-automorphism &, of the Lie algebra § by

(2-9) @o(E,) =E_j(ach) and @,(h,)=h,A<i<]).

Then the real subspace §,= {4 € §; @,(A4) = —A} is a compact real form
of §.

(2.2) Affine Lie algebra of type C/. The nontwisted affine Lie algebra ¢
associated to § = 8p(/,C) is defined by the following formulae and is called of
type CV:

(2-10) ga=§®C[t,t7!]®CcoCd,
[x(m)’ y(n)] = [x, y](m + n) + m8m+n,0(x’ y)C;
[d, x(m)] = mx(m), [¢, x(m)] =[c,d]=0 (m,neZ),

where x(m) = x ® t™ for x € §.
We identify § with the subalgebra § ® 1 of g. The abelian subalgebra
h= be Cc ® Cd is called Cartan subalgebra of g. The dual space E)* is

considered as a subspace of h* by setting (a,c) = (a,d) =0 for a € b*.
Define the elements & and oy € h* by
(8,5)=(8,c)=0, (8,dy=1 and ay=8-9.
The set A of roots of (g, §) is given as
(2-11) A= A" U A™
= {k8+y;keZ,yeA};

= {k8; k € Z\ {0}}.



1022 A. TSUCHIYA AND Y. KANIE

And the corresponding root spaces are given as

(212) Gisey=8,@ 05 (keZ,yeh),
se=ber (kez\{0}).

The set II = {ay, ;,..., a;} gives a simple root system of A, and the set A
of corresponding positive roots is written as

(2-13) A,={ké+v;k>0,yeldu(0}} UA,.
Then the Lie algebra g has the triangular decomposition:

(2-14) g=n_@®bheén,; n,.= ) g,..

acl,

Extend (,) on § to the symmetric g-invariant bilinear form (,) on g by the
following:

2-15)  (x(m), y(n)) = 8,1n0(x,¥)  (m,n€Z,x,y€f);
(¢, x(m)) = (d, x(m)) = 0;
(c,e)=(d,d)=0, (c,d)=1.

Then (,) is nondegenerate on § and on g, in particular we can define an
isomorphism »: ) — §* by (»"Y(h), h*) = (h, h*) for h, b’ € b.

The simple coroots (0 < i < /) are defined by &) = 2»(a,)/(a;, a,). De-
fine the fundamental weight A; € h* (0 <i <) by

(A,ef)=98,; and (A,dy=0 (0<i,j<I).

Then we have
(2-16) h*=h*® CA, @ C6.

Consider the element p € f)* defined by

(p,aYy=1(0<i<!) and (p,d)=0,

then we get the important relation:
(2-17) p =g+ 8,

where g is the dual Coxeter number of §.
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Let Q = X!_,Za, be the root lattice of g and put @, = Xi_oZ ; q@,. And put
P={rep*(\,a)Y)eZ(0<i<!)} and

P.={AeP;(\a)y>0(0<i<])}.

The elements from P (or P.) are called integral weights (or dominant integral
weights respectively). Then we get

l
(2-18) P=YZA,®#C8>Q and
i=0

!
P,= Y Z_,A ®Cé.
i=0

The Weyl group W of (g, 1) is the subgroup of GL(bH*) generated by
{r;0 < i < I}, where the elements r, € GL(}*) are defined by

(2-19) r(AN)=A=(\a)e; (Aebh*,0<i<]).

Let W be the subgroup of W generated by {r; < I}, then W preserves
h* and fixes each element of C8 & C A . The group W as a subgroup of GL(H*)
can be canonically identified with the Weyl group of (§, %), hence

(2-20) W=6,x {+1}/,

where &, is the /-th symmetric group.
For each a € h*, define the element ¢, € GL()*) by the formula

(2-21) 1,(A) =A+ (A, da— (A, @) + (o, @)(A, )8,
then we have
tytg=typ and f,,=wiw'  (a,BE h*, we w).

Introduce the subgroup T of GL(H*) defined by
I o
T={t,;a €M), where M= ) Z2¢C bh*.
i=1

Then T is a normal subgroup of W, and the Weyl group W is the semi-direct
product of W and T:

(2-22) W=WxT.
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Finally introduce the anti-C-linear anti-automorphism @ of the Lie algebra g
defined by

(2-23) @(x(m)) = Go(x)(-m)  (x€§,mez);
o(c)=c and &(d)=d.

(2.3) Integrable highest weight modules. In this paragraph, we discuss repre-
sentations of the affine Lie algebra g of type C/V. A left g-module V is called a
highest weight module with highest weight A € H*, if there exists a nonero vector
v € V, called a vacuum vector, such that

(2-24) n,o=0 and h= (A hyw (hep);
and
V=U(g)v,

where U(g) denotes the universal enveloping algebra of g. Then ¥ has the
weight space decomposition:

V= Z 2%
Aep*

where V), = {v € V; hv = (A, h)v (h € b)}. Let P(V) denote the set of weights
of V, then we have

(2-25) P(V)={Aep*;dimV,#0} CcA-Q,.
The formal character of a highest weight module V is defined by

(2-26) ch,= Y dimVe.
AEP(V)

A highest weight g-module V is called integrable, if any element of g, acts
locally nilpotently on ¥ for each a € A™. This definition of the integrability
seems a little sstronger than the one given in V. G. Kac’s book [10], but these two
definitions are indeed equivalent with each other since every real root is a
W-conjugate of a simple root.

For each A € h*, there exists an irreducible highest weight g-modules L(A)
with highest weight A, unique up to isomorphisms. We fix a vacuum vector
vp € L(A). By a result of V. G. Kac [10], the highest weight module L(A) is
integrable, if and only if A € P . Furthermore, any integrable highest weight
module is isomorphic to L(A) for some A € P . Hence the module L(A) with
A € P, may be called integrable highest weight module with highest weight A.
For A € P, k = (A,c) is a non-negative integer and is called the level of A.

The following assertion due to H. Garland [5] is very important for our work.
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PROPOSITION 2-1. For each A € P with (A, d) € R, there exists uniquely a
positive-definite hermitian form {,} on L(A) with the following properties:

{vp,0n) =1 and {u,av) = {@(a)u,v} (u,v€ L(A),ac<g).

Remark that we take the hermitian form {,} as anti-C-linear in the first
argument.

The character of the integrable highest weight module L(A) was determined
by V. G. Kac (see [10]) as follows:

PROPOSITION 2-2. Let A € P . Then

(2-27) chypy= 3 det(w)e”t+P) Y det(w)e*®,
wew wew
and
(2-28) z det(w)ew(") = ef 1"[ (1 _ e—a)mult(u).
wew a€l,

(2.4) Casimir operator. In this paragraph after V. G. Kac [10], we introduce
the Casimir operator © for the affine Lie algebra g of type C".

For each a € A, choose a basis {ul,..., ud} of g, and let {u ..., u%}
be its dual basis of g_, with respect to (,). And choose dual bases {u,,..., u,,,}
and {u!,...,u'*?} of }.

Define the Casimir operator & by

/ dy
(2-29) Q=2"Yp)+ Zlujuf +2 Y Y ul ul
=

a€l, j=1

Then the Casimir operator £ does not depend on the choice of dual bases. And
the operator € can act on any highest weight g-module.

PROPOSITION 2-4. (V. G. KAC [10]). Let V be a highest weight g-module with
highest weight \ € b*, then as an operator on V we have

@ = (A, A) + 27, p))idy.

§3. Construction of unitary representations

(3.1) Segal operators. In this section we construct unitary representations of
the Virasoro algebra % having the central charge ¢ =1—6/(/ + 1)(! + 2),
[=2,3,..., from unitary representations of the affine Lie algebra of type C/.
Let § be the simple Lie algebra of type C;, and let g be the affine Lie algebra of
type C.
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For each x € §, define the formal Laurent series £(z) by

(3-1) (z) =Y x(m)z—m1,

melZ

Define the normal order product of elements from § = § ® C[¢, 1] by

x(m)y(n) (m <n)
(3-2)  x(m)y(n) o = { 3{x(m)y(n) +y(n)x(m)} (m=n)
y(n)x(m) (m>n).
Choose elements u, € g, foralla € A satisfying the conditions (u =1,
and set u® . And choose a basis {uy,...,u;} of b, and let {u,. U u'} be

its dual basis with respect to (,).
Consider the formal Laurent series of operators defined by

!
(3-3) S(z) = ¥ cil(z)az); + ZA o 2%(2)a,(2)

j=1
= Y S(m)z—m"2,
melZ

Then its coefficients are written as

(3-4) S(m) = Z L cul(=r)u(r+m), +Z L cut(=r)u,(r+m);

j=1lrel ach rez

These operators S(m)’s are independent from the choice of elements u,, u; and
u’’s. By the definition of the normal order products . o » the operators S( m)
can act any highest weight g-module.

These operators S(m) were introduced firstly by G. Segal, and their following
properties are proved in V. G. Kac and D. H. Peterson [11].

PROPOSITION 3-1. Let x € § and m,n € Z. Then

[S(m), £(2)] =2(g + c)z’”{z‘—;lz— + (m+ 1)}x"(z);

[S(m), x(n)] = —2(g + ¢)nx(m + n).
PROPOSITION 3-2. Let m,n € Z. Then

[S(m), S(n)] =2(m — n)(g + c)S(m + n)

dim §
+T(m m)8m+n’04(g+ c)ec.
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By Proposition 2-4 and (3-4), easily we get
PROPOSITION 3-3.

S(0) =2 —2(g+c)d.

Now define the operators

(3s)  T(m)= S(m) (meZ); T(0)= dims §

2(g+c) g+c

c

Then by Proposition 3-2, the operators T(m)(m € Z) and T’(0) satisfy the
following commutation relations:

(36)  [T(m), T(m)] = (m = m)T(m + 1) + "7, aT'(0)

[T(m), T'(0)] =0 (m,nel).

Consider an integrable highest weight g-module L(A) with AeP, and
(A,dy €R.Let k= (A, c) be the level of A.

PROPOSITION 3-4.  As operators on L(A),

. dim §
(l) T’(O) = E-I-—k'kldL(A)'

(i1) {u, T(-m)v} = {T(m)u,v} (me€Z,u,veL(A)).

Proof. The statement (i) is clear, since ¢ = k id; 5, on L(A).

E,
(il) Putu,= (—E_E_—) foreacha € A, then u, € g, and (u,,u_,) =1

for all «a € A. On f)n = ;,IR h;, the invariant bilinear t;orm (,) is positive-
definite. Choose an orthonormal basis {uy,...,u;} of hg and set u'=u,
(1 < i < 1). Since Gy(u,) = u_,(a € A) and Go(u;) = u,(1 < i < 1), we get that
@(u (m)) =u_, (—m)a€ A) and@(u;(m)) = u,(—m) (1 <i <) for all m e
Z. Then by the definition of S(m), easily we get that @(S(m)) = S(—m), hence
®(T(m)) = T(—m). Since {u, av} = {w(a)uy, v} forall a € g and u,v € L(A),
we get that {u, T(—m)v} = {@(T(—m)u, v} = {T(m)u, v} ged.

(3.2) Relative Segal operators or coset space representations. Let A denote the
root system of (§, b) (see the paragraph 2.1), and decompose the root system A
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asA=51U52UAL,where
(3-7) A = (£2¢);
b= {1252 <i<D t(ate)2<i<j<};
A ={z(sxe)2<j<D)).

- Define the subspaces f)l and f)z of b by

]
(3-8) b, =Ch, and bh,= ) Ch,
j=2

And define the subspaces {, and i, of § by

(3-9) t,=bo ¥ &, and {,=0,0 ¥ §..

a€l, acd,

Then {, and !, are Lie subalgebras of § and are orthogonal with respect to
(,)- The Lie subalgebra {, (or t,) is isomorphic to the classical Lie algebra of
type C; (or of type C,_, respectively). The subspaces §; and §, are Cartan
subalgebras of f, and f, respectively, and the decompositions (3-9) give the root
space decomposition.

For i = 1 or 2, the intersection fI,. = 1T N A, gives a simple root system of A i
and the half sum g, of positive roots of A,. and the highest roots 6, of 5,. are given
as

(3-10) pr=¢6 and P,=(I—1)e,+ - +¢;
0, =2¢ and 8, = 2e,.
The restriction (,) to £, X {, gives a {-invariant symmetric bilinear form on t,

(i = 1,2), and is normalized in the sense that (8, 6,) = 2 (i = 1,2).
Put f =, + {,, and define the subspaces ti, t, and t of g as follows:

(3-11) t,=f ®cC[s,t '] @ CcoCd,;
t,=L ®C[t,t7']® Cco®Cd,
and
t=t®C[t,r ] ®CcoCd.

Then these spaces t,, t, and t are Lig subalgebras of g, and are invariant under
the anti-C-linear involution . Since t, and t, are orthogonal with respect to (,)
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and [, £,] = 0, we get
(3-12) [Lecl, ], ec[r, Y] =o0.

From the affine Lie algebra t, (i=1 or 2) of type C’ (p=1or /-1
respectively), we define the operators T;(m) (m € Z) and T;(0) just analogously
as T(m) (m € Z) and T’(0) from g. Then we have

PROPOSITION 3-5. (P. Goddard-A. Kent-D. Olive [6]). Forallm,n € Z,
@) [Tl(m)’ Ty(n)] = 0;
(ii) [T(m) = T,(m), T,(n)] =0 (i=1,2).

Proof. The statement (i) is clear from the commutativity (3-12). Now we
prove (ii). Fix i (i = 1,2). From Proposition 3-1, we get

[T(m), x(k)] = —kx(m + k) and [T;(m), x(k)] = —kx(m + k)

for x € ?i and m, k € Z, hence
[T(m) — T,(m), x(k)] = 0.
This implies (ii), since T;(n)’s are constructed from x(k)(x € t,kez). qed
Now define the operators
(13)  T.(m)=T(m) = T(m) = Tp(m)  (me2);

dimg dimf, dimi,

T;(0) =
1(0) g+c g t+c gtec

¢

where g; is the dual Coxeter number of f, (i = 1,2), and in our case, g; = 2 and
g, = 1. Then by (3-6) and Proposition 3-5, easily we get

PROPOSITION 3-6. (P. Goddard-A. Kent-D. Olive [6]). Forallm,n € Z,

3

[T, (m), T, (1)) = (m = m)T. (m + 1) + T8 oT"(0):

[T, (m), T{(0)] =0.

Furthermore by the construction of T, (m), we have

PROPOSITION 3-7. Let x € f and m,n € Z. Then

[T.(m),x(n)] =0 and [T[(0),x(n)] =0.
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And by the same way as in the proof of Proposition 3-4, we get
PROPOSITION 3-8. Forallm € Z andi=1,2,
E(Z(m)) =T,(-m) and ‘B(TJ_(”’)) =T, (-m).

(3.3) t-singular vectors. Now take a dominant integral weight A € P, with
k= (A,c) >0 and (A,d) € R. Then the integrable highest weight g-module
L(A) has a left #Zmodule structure by defining

(3-14) w(e,) =T, (m)(meZ) and =(e}) =T/ (0).
By Proposition 3-8, the Zmodule (L(A), #) is unitary in the sense that
{u,m(e_,)v} = {n(e,)u,v} and {u,7(es)v} = {z(ef)u,v)
forall m € Z and u,v € L(A).
Since ¢ = kid; 5, on L(A), we get
"7(‘—’6) =T (0) = c(l, k)idL(A)a
where
202 + 1 3 20-1P2+(-1)

LR =\ 7%k 25k I+ k

In particular, for kK = 1 we have

6

(3-15) C(I, 1) =1- m

Note that P. Goddard-A. Kent-D. Olive pointed out that these central charges
appear in this coset representation.

Set n (t) =n, Nt, then wehave t = n_(t) ® h & n,(t).

Now introduce the subspace % (A; t) of t-singular vectors in L(A) defined by

(3-16) L (A;t) = {ue€ L(A); n (t)u=0}.

By Proposition 3-7, this subspace #(A; t) of L(A) is invariant under the actions
of Z. So the space & (A; t) has a left #module structure which is unitary with
respect to the positive-definite hermitian form {, } restricted to & (A; t).

Since [, n,(t)] € n_(t), the space F(A;t) is also B-invariant and has the
weight space decomposition with respect to b:

(3-17) LA t)= Y A= Y AL,
Aeh* : AEP(A;t)

where P(A; t) denotes the set of weights of S(A; t).
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Let 7: h* — h* denote the orthogonal projection with respect to (,). And put
P(A; t) = {#(A); A € P(A; t)} € h*. For each A € P(A; t), set

(3-18) L(A; t,A) =2A (A5 1),
where the sum ranges over {A € P(A; t); #(A) = A). Then
F(A; 1, 0) = {ueP(A;t); hu= (N, hyuforh € by,
and the subspaces L (A; t, A) is invariant under the action of %, since
[6,7,(m)] = [, TL(O] =0 (me2).
Let {uy,...,u,} and {u',..., u'} be dual bases of b such that u;, u' € b, and

Uy, ..., u, u%...,u €Bh,. Then by Proposition 3-3 and the fact that
n, ()& (A; t) = 0, we get

PROPOSITION 3-9. For A € P, putk = (A, c). Then
(i) as an operator on F(A; t)

Q o ul(O)“1(0) + 2”—1(131)
20+1+k) 212 + k)

T, (O) =

!
Y w/(0)u;(0) + 2»71(5,)

j=2

2(1+ k)

(ii) Decompose AeP(Ajt) as A= A+ A, € f)i" ® 63‘, then as an operator
on L(A; L, N),

(A, A) +2(p, A) (AL A) + 2(B1, A1)
T.(0)= 200+1+k) 202 + k)

(XZ’—AZ) + 2(52’7\2)
- 2(1 + k) -

d.

This proposition shows that the operator T, (0) on & (A; t, ) is equal to —d
up to a constant.

(3.4) Branching law. In this paragraph‘, we show that the subspace £ (A; t)
of the g-module L(A) describes the branching law of L(A) as a t-module.



1032 A. TSUCHIYA AND Y. KANIE

At first, define the subset P_(t) of P = ZA,® L/_,Z¢; & C8 by

I
(3-19) P (t)={A=kAo+ Y ne; +ad;k>n, >0and
j=1

k>n2>n3> A >nl>0}.

Elements from P (t) are called dominant t-integral weights.

By the same way as in the case of g-modules, we can define a highest weight
t-module with highest weight A € h* due to the triangular decomposition
t=n_(t)®Hh & n ().

The Lie algebra t has the root space decomposition t=h & ¥__ ayta With
respect to the maximal abelian subalgebra 5. Then the set A(t) of roots of (t, §)
is given by

(3-20) A(t) = {a € A5 g, C ),

and t, = g, for a € A(t). Then define the set A™(t) of real roots of A(t) as
A(t) = A™ N A(t).

The highest weight t-module V is called integrable, if for each a € A™(t) any
element a € t, operates locally nilpotently on V. For each A € h*, there exists
an irreducible highest weight t-module L(t, ) with highest weight A, unique up
to isomorphisms. By the same method as for g-modules, it can be shown that the
highest weight t-module L(t, A) with highest weight A € §* is integrable, if and
only if A € P, (t), and that any integrable highest weight t-module is isomorphic
to L(¥, A) for some A € P_(t).

The integrable highest weight t-module L(t, A) can be constructed as follows.
Write A € P (t) as A = kA, + X\_n;e; + a8, and put

A =kAy+ng+ad and N, =kAg+n,e,+ -+ +ng,

then A, and A, are dominant integral weights of t; and t, respectively. Let
L(t;, A;) be the integrable highest weight t-module with highest weight A;
(i = 1,2). Define the t-module L(f, A) by

(3-21) L(t,N) = L(t, A) ®¢ L(t,, A,)
with the following t-action:
(3-22) x,(m)(v; ® v,) = x;(m)v; ® v,;
x5(m)(v; ® vy) = vy ® x,(m)vy;
c(v, ® vy) = kv, ® v,;

d(vy, ® v;) = dv; ® v, + v, ® dv,,
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forx, €, v,€ L(t;,\,), i = 1,2 and m € Z. Then it can be shown that the left
t-module L(t, A) is the integrable highest weight t-module with highest weight
Ae P (1)

Now we can apply the complete reducibility theorem of V. G. Kac and D. H.
Peterson ([11] Proposition 2.9), since A™(t) C A™. Hence we get

PROPOSITION 3-10. Take an element A € P_.. Then the integrable highest
weight g-module L(A) is, as a t-module, uniquely decomposed into a direct sum of
integrable highest weight t-modules.

Note that for each A € P_ (1)
{ue L(t,A);n,(t)v =0} = Cu,,

where v, is a vacuum vector of L(t, ). Fix a vacuum vector v, of L(t; A) for
each A € P_(t) in the following. Then by Proposition 3-7, we get

PROPOSITION 3-11. Let A € P . Then
@ P(E, A) C P(b).
(ii) Define the linear map

(3-23) ®: Y L(t,A) 8c A(A;t) = L(A)
AeP(A;t)

by the formula
®((avy) ® u) = au

for a € U(t), u € #\(A; t) and v, is the fixed vacuum vector of L(t, \). And
introduce a t-module structure in ¥ ¢ pca; 1)L (1, A) ®¢ FA(A; 1) by

a(vou)=aw®u (act,ucH(A;t)andve L(f,N)).

Then this linear map ® is an isomorphism as t-modules and commutes with
Segal operators T(m), T,(m), T, (m) for any m € Z.

(3.5) Unitarity of Virasoro modules. Now we restrict ourselves to the level 1
case. Let A € P, be a dominant integral weight with (A, ¢) = land (A, d) =0,
then A is one of the following / + 1 elements:

Ao, A1=A0+£1,..., AI=A0+81+"’+81.

Now recall the facts on weights:
i
P(Ast)c P (t)nP(A;), P(A)cA -0, Q,=XZ,;
Jj=0 :

ag =08 — 2¢, Q=8 — &,..., a_,=¢&_,— ¢, a; = 2g,.
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Then easily we get

PROPOSITION 3-12.  For each j with 0 <j < [,

s
(i) P(Aj;f)C{A0+rel+ Zsi+1—a6;r,s,aez,0<r<1,
i=1

0<s<l—1,a>0,r+sEj(mod2)}.

s
(ii) F(Aj;t)c{rel+ Yesrs€EZ,0<r<1,0<s< -1,

i=1
r+s Ej(mod2)}.

The main theorems of our paper are the following:

THEOREM 3-13.  For each j with 0 < j < I,

® P(Aj,t)—{rel+2, i HhSEZ0<r<1,0<s<!-1Lr+s=
j(mod2)}.

(i) For each A(r,s) = re, + Xi_je,,, € P(A t), the Lmodule
L(A, t, A(r, 8)) is isomorphic to the irreducible ,‘?module L(h, c¢) with character-
istic

(3-24)

_ 6 ; h_{(I+2)(s+1)—(l+1)(j+1)}2—1
G+D(+2 "7 A1+ 1)1 +2) '

We will prove this theorem in the next section (4.4). From Theorem 3-13, easily
we get

THEOREM 3-14. For each |, p,q € Z withl> 1 and 1 < q < p < I, the irre-
ducible £module L(h(l; p, q), c(1)) has a structure of a unitary Lmodule, where

6

(3-25) c()=1- m

and

[(1+2)p—(1+1)q]* -1
a1+ 1)(1+2)

h(l; p,q) =
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Proof. In the case where / > 2, this is an immediate consequence of Theorem
3-13. Let /=1, then ¢(1) =0 and k(1;1,1) = 0. It is known that L(0,0) is
nothing but the trivial #module C, hence L(0,0) has a unitary #module
structure. ged.

§4. Branching law of L(A) w.r.t. (C,C{" + C))

(4.1) Theta functions. In[11], V. G. Kac and D. H. Peterson have shown that
the character of L(A) is expressed as a quotient of alternating sums of classical
theta functions.

Introduce coordinates (7, uy,..., u; t) in h by

I
(4-1) h=2m/—1(—'rd+ Zujhj+tc) €,
j=1

and identify § with C'*2 = {(r, u, t)}. Consider the domain Y in § defined by
Y = {h € h; Re(d, h) > 0}, then Y is written as

Y =4, XC'XC; #,={reC;Imr > 0}.

Write y € T)_,Re; as y = Xj_;27,¢;, then we get
! I
(v,v)=y*=2X v} and (y,u) =2 ) vu,
j=1 Jj=1

since (¢;, €;) = 38;; and (e, h;) = ;.

For an integer k > 0 and éach p =X/ _pe; € P=%'_Z¢ C b*, we define

the classical theta function ©, (7, u) of (1, u) € #, X C' by

(+2) O, (ru) = L el zk(ny)+k(rw|

YEM+p/k

where e(*) = exp(2@vV —1 *). Note that M = E§=122£j. Then the theta function
®, (7, u) is expressed as

]
(4'3) ®u,k(7’ u) = r[lﬂnj,zk(”a uj)’
j=

where ¢ is the 1-dimensional theta function defined by

k
(4-4) 3, ((7,0) = Y oel=Ty?+ kyv],
YEZ+v/k 2

forveZ, ke2Z,,and (1,0) € #, X C.



1036 A. TSUCHIYA AND Y. KANIE

Also introduce the following alternating sum of theta functions:

(4-5) A, (7,u) = Z det(w) 0, (7, u)

wew

forp€ P and k€ Z, . Let A= (kAy+ A + ad) € P, with k > 1, then by
(2-20,21) we get

'x 2
Y det(w)erMm = e[—(l—z—llc— + a)T + kt |4 (7, u).

weW

Moreover by (2-20) and (4-3), we get

(4-6) A, o(1,u) = det(ﬂm,z,(('r, u;) = d_, 5 (r, uj))

1<i, j<i

For A = (kAy+ A + ad) € P, we define the normalized character of L(A)
by

(4'7) XA(T’ u) = AX+5,k+g("" “)/A,s,g("', u),

where g = g(c) is the dual Coxeter number of §, since p = gA, + 6.
Take A = (kA, + A + ad) € P, then by Proposition 2.2 we have

(4-8) ChL(A)(h) = e[ —sy7 + kt]xa(7, u)
as a function of h = (7, u, t) € Y, where

A+81> 181

“9) " a(kvg) 2

+ a.

Moreover the denominator identity (2-28) can be rewritten as (see M. Jimbo-T.
Miwa [7] (2)-6°):

/
(4-10) Ay (7 u) = n(T)’“"’i:I‘[la(T,zu,.)
x T 60(r,u;+u)6(7,u,~ u;),
1<i<j<!

where 1(7) is the Dedekind’s eta function defined by

(4-11) n(r) = ql/z“nljl(l —q");  q=ce[r],



UNITARY REPRESENTATIONS OF THE VIRASORO ALGEBRA 1037
and

@12) ()= ¥ (—1)"eB(n + %)2” (n ; %)v]

nelz

for (r,v) € #_ X C.

(4.2) Coefficients of branching law. Now we restrict ourselves to the level 1
case. Take a dominant integral weight A, = Ay + & + - +¢; (0 <j <), then

(4-13) chray(h) = e[—sAjfr + t]x’j(*r, u)

as a function of h = (7, u, 1) € Y, where x'(r, u) = Xr(a,(7, u) and

41+3  (I+1-j)
(4-14) T T T Tai+2)

By Propositions 3-11 and 3-12, we get

PROPOSITION 4-2.
1 /-1
(4-15) L(A)=Y X L LtA)eA(Ast),
r=0s=0 7(A)=A(r,s)

and F\(A;t) =0 unless m(A) = Ar,s)=re, +X5_1g,,, and r+s=j
(mod 2).

Since t, and t, are also the affine Lie algebras of same type C{") and C/2;
respectively, so we can define analogous objects in the paragraph above. The
Cartan subalgebras b, of t; and §, of t, are imbedded in ) as

b= {(rout) €h;w =0} and by= {(r,u1) € b5 =0},

where u = (uy, ') and v’ = (uy,..., u;).
For r =0,1 and s(0 < s </ — 1), set

(416) N =Ag+re, €P(t;) and N =A,+ X &, €P. (L)
i=1

Then the characters of L(t;, A,) and L(t,, A%) are given as
chL(tb,\a’)('r, u,t) = e[—s,\xr'r + t]xl,(fr, u);

chp, (7,0, 1) = e[“sxi"' + t]Xfl('r, u’),
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where x. and x/~! denote the normalized characters of L(t;, X,) and L(t,, A%)
respectively, and

41-1  (1-s)
24 4(1+1)°

r 1
SN=7 " ; and sy =
Let A = Ay + A(r, s) — ad € P_(t), then
L(t,N) = L(t;, N, — a8) ®¢ L(t,, A2),
hence by the definition (3-22) of t-action, we get
chpgay(h) =el=tlchrg x_us) (7, up, t)chp, o (7,0, 1).

For each integer r, s, j (r =0,1,0 < s </—-1,0<j <), set

(4-17) E(jir,s;7) = ) e[ar]dim & 5. -as(A)s 1)
a>0
(note E(j; r, s; 7) = 0 unless r + s = j (mod 2)), and
(4-18) e(jsr,s;7) =els(jsr,s)rlE(js r, 55 7),
where
S(]; r, S) = sAj - S)\lr - S>\2s.
Then by Proposition 4-2, we get
PROPOSITION 4-3.

1 /-1

Xi(ru) =X Xe(jsr, s m)xru)xiH(r,w).
r=0s5=0

Finally we get
PROPOSITION 4-4. (i) e(j; r,s; 7) = 0 unless r + s = j (mod 2).
(i) if r + s = j (mod 2), then
((I+2)(s+1) - (1+1)(j+1))°
n(r)e| - a1+ 1)(1 +2)
= Y e[{(+ D)+ + (1 +2(s+1) = I+ 1)(j+1)n}7]

neZ

—e[(j+ D)(s+ 1] X e[{(I+ 1)1 +2)n?

neZ

Tle(j;r,s;7)

F((1+2)(s+1) + (1+ D + D)n)].

The proof of this proposition will be given in the paragraph (4.5).
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Remark 4-5. This proposition allows us to represent e(j; r, s; T) by theta
constants as

n('r)e(j; r,s;T) = 0(1+2)(s+1)—(I+1)(j+1),2(1+2)(1+1)(1"0)

- 19(1+ 2)(s+1)+(I+1)(+1),20+2)I+1) ( T, O) .

(4.3) Character formula for the Virasoro algebra. F. L. Feigin-D. B. Fuks [3]
determined the composition series for Verma modules of the Virasoro algebra &£.
So we can write down the character formulae for the irreducible £modules
L(h, ¢) for all (h, c) € C2 Here we give it in a suitable case for our work.

Now we are interested in the case

C=C(l)=l—mT2—) and

{p(1+1) - q(I+2)}* -1
41+ 1)(1+2) ’

h=nh(l;p,q)=

for integers I, p,q(I>2,0<p <Il+2,0<g<I[+1). For an integer n >0,
put

. (p(1+1) —q(I+2) +n(I+ (I +2)} -1
wpoa.m) = a1+ 1)1 +2) ;

then h(}; p, q) = h(}; p, 4,0).
Here we fix / > 2 and use abbreviation

L(p,q,n) = L(h(l; p,q,n),¢c(1)); M(p, q,n) = M(h(I; p, g, n), c(1)),

for integers p,g,n (n>0,0<p<I+2,0<g<I+1).Set p=1+2-p
and g=I1+1—-¢q,then0<p<I!+2,0<g</+1).

By F. L. Feigin-D. B. Fuks [3], we get the resolution for the £module
L(h(l; p, q), c(1)):

0‘_L(pa q,O)‘_M(P, q>0)'—M(ﬁ’ q, 1)‘_—M(P, q, 2)'>_<- oo

M(p, 3, 1)——M(p,3,2)— ...
..—M(p,q,2n)+—M(p,q,2n + ):— ...
... —M(p,q,2n)—M(p,g,2n+ 1)~—— ...
Let {u, p’} be the dual basis of Hh*(Z) to {eo, €5}, ie. pleg) = w(eg) =1

and p(e)) = w(eo) = 0. Then L(h, c) corresponds to the weight Ap + cp’. Then
by the resolution above, we get
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PROPOSITION 4-6. For integers I, p,q (1 >1,0<p <!+ 1,0<q< ), put
c=c(l) and h = h(l; p, q). Then

ehu+c;l
Z eln{pU+D- qUI+2)}+n?(+ 1)+ 2)]p

h
o T T |

n>1

—ePa Y oln(pU+D+aU+ D) +n 41U+ Dl |

nel
(4.4) Proof of Theorem 3-13. By Proposition 3-9(ii), we get
(4-19)

T, (0) = {s(j; r,s)+ 24(11_:13)1(;+ 2)} —-d on y(Aj; t,X(r,s)).

Thus T, (0) acts on each summand of (4-15) as —d up to a constant. Recall that
T (0) acts on the whole L(A;) as ¢(/,1)id (see (3-15)). Hence we can identify
e“ = ¢[7] and neglect the term e“*. Denote by ch(j; r, s; ) the character of the
Zmodule #(A; t, A(r, 5)) as a function of 7, then by (4-17,19), we get

ch(j;r,s;t)=¢e {s(j; r,s)+ l - ———i——}f E(j;r,s;7).
24 41+ 1)(1+2)

Then by Proposition 4.4, we get

{((I+2)(s+) - (+D(+1))Y -1 1 o
e[-— TSNS T— ﬂfr}n('r)ch(J, r,s;T)

= Y e[{(1+ 1)(1 + 2)n* + ((1+2)(s+1) - (I+1)(j+ D)n)r]

nez

—e[(j+ D(s+ 1] ¥ e[{(1+ 1)1+ 2)n?

+((1+2)(s+ 1) + (1 + 1)(j + 1))n)r].

Hence by Proposition 4.6, ch(j; r, s; ) coincides with the character of the
irreducible #£module L(h(l; j + 1, s + 1), ¢(!)). Thus we get Theorem 3-13 by
Proposition 4-2.

(4.5) Proof of Proposition 4-4*. Here we use the following complementary
decomposition formula for (C/V, Cl(l) + CfP)) given by M. Jimbo-T. Miwa [7,

*Calculations in this paragraph are due to Prof. M. Jimbo.
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@)-7°]:
!
(4-20) n(7)~2’n0(7, u;, — uT)0(7, u;, — uT)
i=1

= X detéx) (7, w)xi(T, uh),

6€6,,,

where the sum Y’ extends over 6 € &, ; such that (1) < --- < 6(/), and if
6(l+1)=j+1(0<j<]),then

Ag= A, and AY = I, + (1 - j)ef = jAG + (1= )AL

Note that uf, Af, ] are the corresponding notions for C{". Hence

(4-21) n(f)_2’i=]_1-[10(7, u; + u*)0(7, u; — u*)

]
I—j
= Z (_1) JX;("', u)xlj'ATO+(l—j)A1\l(T’ uT).
Jj=0

By substituting / — [ — 1 in (4-21), we get

!
Py
Z (-1) JX;("', “)Xi'Aw(l—j)m}(”" ut)
j=0

-1
= n(-r)_zl)('r, u + u")l)(*r, u, — uT) Yy (—l)l—l_sx‘;"l('r, u’)
s=0

1
XsAly+(-1-s5)A} (, “T)-

Then by Proposition 4-3 and the linear independence of normalized characters
x1 (0 <s<1—-1)of C,, we get

(4-22)

I 1
I-j 4.
Z Z (-1) Te(jsr,s; "')Xlr("" “1)X1,'A’fo+(1—j)A§("'a uT)

j=0r=0
= (—1)1—1_sﬂ(7)_20(7a u + u’r)g(,,, U — uv)x];‘Afo+(1—1—s)Aﬁ(T7 ut)~

In the following, we use the notation

Xk, (T u) = X1jA0+(k—j)A1('r’ u) (0<j<k)
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for the normalized character of the level k irreducible representation L(jA, +
(k = j)A,) of C{V, then by (4-6,10), x, ;(, u) is more explicitly given as

19k—j+1,2(lc+2)("" u) = 1’k—j+1,2(k+2)("'a —u)

8(r,2u) :

(4-23) X, (7 u) =

in particular

. (4—24) x1’r(71 u)0(7> 2“) = ﬂz-,,s("’ u) - Q‘}Z—r,é('r’ _u)

for r=0,1.
In these notations, (4-22) is rewritten as

I1 _
Y X1 e s m)xaa- (1 0)x, (1, 0)
j=0r=0

= n('r)—zﬂ('r, u+v)0(r,u—v)x,_1,(7,0),

hence by (4-24)
(4-25)
Lg j+s+1
E Z (-1)’ e(j;r,s; "')Xz,j(”" U){01+r,6("" u) - 191+r,6(”" ‘“)}
Jj=0r=0

= n(7)_20('r,2u)0('r, u+v)0(r,u—v)x,_1,(r,0).

Now we compare the coefficients of e[#] and e[2u] in the above equality (4-25).
At first note the expansion:

6(r,2u)6(r,u+0)8(7,u—v)

. (—1)"*'"+"e[%{(k + %)2+ (m + %)2+ (n + —;—)2}

k,m,n
+Q2k+m+n+2u+ (m—n)v].

and the Euler’s identity

(4-26) I—_[ 1-4qm = Z (_1)"q(3k2+k)/2.
n>1 kez
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Then the equality for the coefficients of e[u] in (4-25) is

1 ) r
Z (_1)J+s+1e(j; 0,s; T)Xl,j(q" U)C[E]
j=0

T 1
=1(7) x1_1s(1,0) T (—1)k+le[5<2(k +m+ %)2 +3k2+ k+ Z}
k,m

1
+2(k + m+ 5)0]

kez 2

X mZE)Ze[(m + %)27 + 2(m + %)v]

—el 35 |1 ki )00,

() X1, (7, v)e[% Y (_1)k+1e[3k +k7]

Then by (4-23)

!
Z (_1)j+se(f§0, 55 T){01—1+1,2(1+2)(”'a v) - 0I—j+1,2(1+2)(7a _U)}
j=0

= "7("')_101,2("" U){ﬂl—s,z(lﬂ)(”'a v) - 01—s,2(1+1)(7’ _U)}-

Compare the coefficients of e[(/ —j + 1)v] in this equality, then we get that
Jj — s is even and

[(1-j+1)

e(J;0,s; T)e_T(H—z—)_T}"(T)

=Y e:fr{f;i—ﬂ -m(l+ 1)}2+ (1 + 1){m + —2—(11—12—)}2]

-y e[f{l%._—{ +I1+m(l+ 1)}2 +7(1+ 1){m + Z(IT;SI—)}Z}
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hence
. [+ D +1) = (s + 1)1 +2)]?
e(J;O’ 8, T)W(T)e - 4(l+ 1)(l+ 2) T
= Zze[f{m2(1+ DI +2)+m[(j+1)(I+1) = (s + 1)(I+2)]}]
—e[(j+D(s+1)] X e[r{m?(1+1)(1+2)

meiZ

+m[(j+ DI +1) + (s + 1D+ 2)]}].

Similarly by comparing the coefficients of e[2u] in (4-25), we get

!
j+s . -1
E (‘1)j+ +1¢’(J§1»S§ T)Xl,j(”',v) =7(r) X1-1,s("'»v)‘90,2(", v),
Jj=0

then by using (4-23) and comparing the coefficients of €[(/ — j + 1)7], we get that
j — s is odd and the formula for e(j; 1, s; 7) is of the exactly same form as for

e(J;0,s; 7). q.e.d.

(4.6) Tensor products of integrable highest modules of A{). We take g = CV
= A{" in this paragraph. Consider the tensor product L(A;,) ® L(A,_, ) of
the level 1 and / — 1 integrable highest weight g-modules, where

Al,j=jA0+(l—j)A1 0<j<).

Decompose it into a direct sum of level / integrable highest weight g-modules,
and define the branching coefficients é( j; r, s; 7) by

)

(4-27) X1, (1, W)X, (1, u) = X &(jir, s51)x,, (7, u).
j=0

Then we get the following remarkable identity:

PROPOSITION 4-7. For integers I, r,s, j 2 <,0<r<1,0<s</-1,0<
j<,
é(jr,ssm)y=e(j;r, s 1)
Proof. In §4.5, we get
!

(4-28) goe(j; 0, 55 1)xs, 5 (7, w0 (7) = Xy, 5(7, u) B1,5(7, u);

!
2 e(is1, s m)x,, (row)n(7) = xyoq, (7, u) Do 5 (7, ).
j=0
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Hence by the definition (4-27) and the linear independence of {x, ,(7,u);
0 <j < 1)}, it is enough to show

(4-29) X1, (mu)n(r) =8, o(7, u).
By the formula (4-24) and 8(1,2u) = &, 4(7, u) — #_; 4(7, u), the formula (4-29)
turns to be

n(T){ﬂZ—r,o(T’ u) - 192—r,o("" —“)} = '91—r,2("'a “){'91,4(’0 u)
—0—1,4(7’ u)}

Now the Euler’s identity (4-26) implies

n(7) = 191,12(”’0) - &5 15(7,0) = =5 15(7,0) + 911.12(7,0).

Then we can show (4-29) by the product formula of theta functions:

o n

10.
11.

12.
13.

14.

2
ﬂa,2(“'a “)‘%,4("', u) = Z 04i+2a—b,12(7’0)02i+a+b,6(7’ “)~
i=0

q.e.d.
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Added.  After the submission of this paper, the authors were informed of the
following two papers. P. Goddard, A. Kent, D. Olive, Unitary representations of
the Virasoro and super-Virasoro algebra (preprint, 1985 now published in Comm.
Math. Phys. 103 (1986), 105-119.) and V. G. Kac, M. Wakimoto, Unitarizable
highest weight representations of the Virasoro, Neveu-Schwarz and Ramond alge-
bras (preprint, 1986). They also constructed unitary representations of the
Virasoro algebra corresponding to Friedan-Qiu-Shenker parameters by using
representations of the affine Lie algebra 4.
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