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ENTROPY ANALYSIS OF A NEAREST-NEIGHBOR
ATTRACTIVE / REPULSIVE EXCLUSION PROCESS ON
ONE-DIMENSIONAL LATTICES

By HirROTAKE YAGUCHI

Hiroshima University

Stationary measures for an interactive exclusion process on Z are
considered. The process is such that the jump rate of each particle to the
empty neighboring site is @ > 0 (resp., 8 > 0) when another neighboring
site is occupied (resp., unoccupied) by a particle, and that « # B. According
as @ <fB or a > the process becomes nearest-neighbor attractive or
repulsive, respectively. The method of relative entropy is used to determine
the family .#;,, of stationary measures. The member of .#, is simply
described as the probability measure having the regular clustering property
which is a generalization of the exchangeable property of measures. It is
shown that extremal points of #,, are renewal measures. Thus the struc-
ture of stationary measures for the process is completely determined.

1. Introduction. Exclusion processes are continuous-time Markov pro-
cesses on the state space 2'={0,1}5, S =Z? or R? which describe the
stochastic movement of infinitely many indistinguishable particles on S such
that more than one particle cannot occupy the same site at the same time. A
simple exclusion process is the process such that S = Z? and each particle
executes an independent random walk with the same jump rate except that a
jump to the occupied site is suppressed. Perhaps the simple exclusion process
is at present the unique one for which the structure of stationary measures is
completely known [see Liggett (1976) and the textbook by Liggett (1985) and
also references given there]. The main tool that is usually used in the analysis
of stationary measures for various types of simple exclusion processes is the
method of a coupled Markov process. This method is used to introduce an
order relation on the set of extremal points of stationary measures and is very
effective if the number of sites at which particles jump at the same time on S
is 1 and /or if the jump rate of particles is independent of the configuration ‘of
other particles. However, if the jump rate is influenced by the configuration of
other particles (the exclusion process with speed change), we encounter a
difficulty in applying the method of a coupled Markov process because the
monotonicity concerning the Feller process [see Liggett (1985), Chapter 2, for
the definition] is not assured and hence the usual argument of the coupled
process does not hold: Even though one may make a coupled process, couples
that are created during the time evolution of that process have chances of
collapsing since each particle at the same coordinate may have a different jump
rate due to the different configurations of the other particles.
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In this paper we treat an exclusion process on the one-dimensional lattices
such that the jump rate of a particle is influenced by the nearest-neighbor sites
of the particle, that is, the jump rate depends on whether or not a particle
exists at the neighboring sites. More precisely, we consider a Markov process
on 2'= {0, 1} whose generator is of the form

(Qf)(m) = X {axu(m.-m.) + Bxol me—1mx)

xe”Z

+‘1X11(77x+1”’7x+2) + BX10(”7x+1”'7x+2)} [ f(TIx’xH) - f(n)],

" where « and B are fixed positive numbers (for details see Section 2). The

exclusion process defined by the above generator is the process such that if
a < B (resp., @ > B), then the existence of a particle at the neighboring sites
has an effect which slows down (resp., speeds up) the jump rate of a particle.
So we call our process a nearest-neighbor attractive/repulsive exclusion
process. ’

The purpose of this paper is to investigate the structure of stationary
measures for the above attractive/repulsive exclusion process. (Of course, if
a = B, our process becomes a usual simple exclusion process; and the station-
ary measures are equal to the totality of exchangeable measures). As a main
tool of the analysis we employ the method of relative entropy, which was used
in Holley (1971) and Holley and Stroock (1977) to prove the uniqueness of
stationary measures for the stochastic Ising model [see Liggett (1985)]. How-
ever, the argument given there does not work directly since in an exclusion
process the number of particles is preserved under the time evolution and
hence for each p, 0 < p < 1, there exists at least one stationary measure u,
whose support is on the set of configurations such that the density of particles
over Z is p, and as a result, the process has infinitely many stationary
measures. We apply the relative entropy method to determine the condition for
a probability measure on 2" to be stationary (Theorem 1). We will call that
condition the regular clustering property with index B/a and write (RCP),
for short. The proof of Theorem 1 is given in Section 4 and is fairly compli-
cated because of the terms caused by the coming in and out of particles across
the boundary of cylinder sets in the equilibrium equations. These terms do not
exist in stochastic Ising models. The regular clustering property is a kind of
generalization of the so-called exchangeable property of measures. The struc-
ture of measures having (RCP), is discussed in Section 3. It is shown that the
extremal points of the set of measures having (RCP), are renewal measures
(Theorem 2). Thus the structure of stationary measures for our nearest-
neighbor attractive /repulsive exclusion process is completely determined. In
Section 5 we state a result about a finite range interactive exclusion process on
7! of the form

(QF)(m) = X (x,9)e(x,y;m) [ F(n*?) = f(m)].
x<y

An application of the entropy analysis to a discrete-time interactive exclusion
process such that infinitely many particles can move at the same time is
treated in Yaguchi (1989).
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2. Definitions and results. Let Z be the set of all integers and £~ be the
set {0, 1} equipped with the topology generated by the basic cylinder sets
ila; . a] m=Cm_mem ~-")EZ qy=qa;, i<l<j}, a;  aq;€
{0, l}J i1 ,1<J, 1, JEZ Weset ¢, ;= {la, - a;l:a; - a E{O 1}7-i+1}
and €= {@} UU,;.,%, ;- The Borel ﬁelds generated by ff and < are
denoted by %, ; and ée? respectlvely If we consider that there 1s a particle at
the site ¢ iff n, 1, then n € & represents a configuration of finite /infinite
particles on the one-dimensional lattices. By 0 (resp., 1) we denote the config-
uration of particles on Z such that all sites are empty (resp., occupied) that is,

=(---0000---)and 1 =(---1111---).

We define a Markov process on £, which we call a nearest-neighbor
attractive /repulsive exclusion process, as follows. Let us fix @ and B as
positive real numbers. For each & ;-measurable function f, define

J
Qf)m) = ¥ {axu(me-m.) + Bxou(n.—1m.)

x=i—1

+ax1(Me s 1Mes2) + Bx1o(Mpi1Meia)} [ f(n==*t) = f(ﬂ)],
where

_ (1 if uv = ab,
Xap(u0) = {0 otherwise,
%2+ 1istheelement of Zobtained fromn = (- 1, MMy Mesa ") E Z

x,x+1

andn®
by exchanging the values at sites « and x + 1, namely, n*
(oo MMy MMyre - - ). (Note that Qf isa &,_, ; +2-measurab1e function
on £".) Then Q deﬁnes a Markov generator Q on the set C(Z") of continuous
functions on 2~ [see Theorem 1.3.9 and page 27 of Liggett (1985)]. We can
explain the Markov process defined by the generator Q as follows: Each
particle scattered on Z has its own alarm clock which runs independently of
the others; the clock rings the bell after the exponential holding time with
parameter 2a or 28 according as the number of empty (nearest) neighbor sites
is 1 or 2, respectively; when the bell rings, the clock clears its memory and the
particle tries to move to its left- or right-neighbor site with probability 1/2 and
actually moves if the target site is empty. Note that if a < 8 (resp., @ > B)
then a particle jumps more slowly (resp., rapidly) if there is a particle at one of
the neighboring sites. This is the reason why we call our process the attrac-
tive /repulsive exclusion process (of course, if @ = B, then our process becomes
a well-known simple exclusion process).

A probability measure v on 2" is called a stationary (or invariant) measure
for the Markov process defined by the generator () if it satisfies
J(S, fXn)dv(n) = [f(n)dv(n) for all bounded measurable functions f on Z
for every ¢ > 0. Here {S,},., is the Markov semigroup corresponding to the
generator (0. We denote by .~ the totality of stationary measures for our
exclusion process.

We will say that a probability measure v on £ has the regular clustering
property with index y(> 0) and denote by (RCP), if it satisfies

;y#OI(i[ai aj]j)V(i[ai . aj ]J) = ,y#ol(i[bi bj]j)v(i[bi . bj]])’
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foralll[al M aJ]J,l[bl tte b]Eé ,lSJ, l,JEZ With

;i = by, a; —b and Zak Zbk,
k=i

a

where
#o(la; - a;])) = #{k:aga,, = w, i<k <j-1).

The totality of probability measures having (RCP),, is denoted by .#,. It is easy
to check that .#| is equal to the set of exchangeable measures on Z".

A probability measure v on 2" is said to be translation (or shift) invariant
if it satisfies ¥(A) = v(A + k) for every k € Z and A € ¥, where

A+k={&= (" E_1&xé ") € X thereexists n = ( ""'7—1770771';') €A
S.t. §i=ni+k fOI‘a.lllE Z}.

Note that if v is translation-invariant, then it is not necessary for us to specify
the coordinates in the expression v([a; - - a;];). (For example, we will use
v([00011)) instead of »(;[00011],,,).)

We endow the set of probability measures on £ with the topology of weak
convergence as usual and denote by ext o/ the set of extremal points of a
compact convex set 7 of probability measures on &

Now we can state our results as follows.

THEOREM 1. A probability measure v on & is a stationary measure for the
Markov process with the generator Q) if and only if v has the regular
clustering property with index B/«; that is, /= My ,,.

THEOREM 2. Ext.# = {u},_,.,. Here u’ = 8, (Dirac measure concen-
trated at 0), u’ = §, and ()7) 0<p<1,isthe translatzon-mvarzant proba-
bility measure on 2~ deﬁned by

#Y([1]) =p, w([0]) =1 -p,
(2.1) (v)([a e aj()()]) = Q/-L(,,Y)([ai e ajo])’
(v)([a e ajll]) = q'#(;y)([ A ajll)’

where q and q' is the unique pair of numbers in (0, 1) satisfying
q9'/[(1-g)(1—¢)] =y and (1-q)/(1-q)=(1-p)/p.

REMARK 2.1. We can interpret the measure ;) ™ 0 < p < 1, in various ways
according to the context in which it appears. Below we give three examples for
the convenience of readers.

1. p& is the unique stationary distribution of the two-state Markov chain

. " . 1-
with transition matrix (1 _‘fq, N q).
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2. 4 is the renewal measure on 2" corresponding to the renewal process
whose probability distribution function (p.d.f.) of interarrival time is given
by

B = q’ ifk=1,
fo(k) = y-lq'qk L itk >1.

3. p,(p” is the Gibbs state with the nearest-neighbor interaction on Z such that
the chemical potential J, and the interaction potential .J; are given by

Jo=kT{2log q — log(1 — q) — log(1 - q')}
and
Jy = —kT{logq + logq’ —log(1 — q) — log(1 — ¢")}(= —kT logy),

respectively, where % is the Boltzmann constant and 7' is the absolute
temperature. Here we say that a probability measure v on £  is the
Gibbs state with the nearest-neighbor interaction on Z with the chemical
potential J,, and the interaction potential J; if its conditional probability
vlla; - a;1;1%: ) of la; - - a;l; € ¢, ; given &, (= the o-field
generated by ¢; ;, I <J <i and j <I <J) is equal to

Jj—1
— -1
E; j(n) "exp Mm@ @M+ Y akak+1)}},

J
—(1/kT){JOZ a,+dJ,;
k—i

k=i

where =, /() is the normalizing factor which depends on i, j and 7 =
(ni)ieZ'

3. The structure of the set of regular clustering measures. In this
section we will give the proof of Theorem 2. We postpone the proof of Theorem
1 to the next section since in that proof (more precisely, in the definition of
relative entropy) we use the measure /.Lﬁ,") whose explicit form is described in
this section.

We first show that if » has RCP then it is symmetric in the following sense.

LemMa 3.1. Suppose a probability measure v on 2  has the regular
clustering property. Then

V(i[aiai+1 a’j-—laj]j) = V( [aja, 17 ai+1ai]j)
for ever.'y L[alal_'_l st aJ_]_aJ]J S 'g.

ProOF. Since the lemma is clear for a; = a;, we treat the case a; # a;. It
is sufficient to prove that v(i[OO ---011- 1] ) v(;[11 --- 100 - 0] ) (the
number of 1’s in each cylinder is the same) since y v( [Oa e 11] )=
vGlO---01---1]), s = #o(a, - a) =1, if 1+ Ef’} ja, = the number of
I’sin;[0---01---1];, and so on. Let us show »(;[0011];, 5) = »(;[1100];, 5) to
illustrate the way of proof.
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For c €{0,1}let ¢ = 1 — ¢. Then for each N € N,

V(i[0011]i+3)
- ¢,0011cq

N
E Z Z V(i—N[cN T Cry1CrChoy "

k=1lcy-"rcyei - cChog

©ChL_1CkChyq T EN]i+3+N)

+ 2 v(nlewenoy - €¢,0011E,5 - Exliigin)
o en

- ¢41100¢,

Il

N
E Z Z V(i—N[CN T Cpy1CRCh_1
k=1c

1...chi.,.c”a_l
" Cr-1CkChy1 T cN]i+3+N)

+ Z V(i—N[CNCN-l 0 ¢0011¢,¢y - EN]i+3+N)
¢y ey

[since #o(aa; -+ a;a) = #y(aa; - aia)]

N
=Y Y Y. v(i-nlen - crarCrciog o €41100c,
k=1lc{ " CL_1Cp " "CNCL" " "Cp
CCh_1CkCher T 5N]i+3+N)

+ Z V(i—N[chN—l -+ ¢,0011¢,cy - - EN]i+3+N)
eporee

N

and
V(i[]-]-OO]i+3)
- ¢,1100¢]

N
= Z Z Z V(i—N[cN Tt Cp41CrCr—1 "
k=lcy-"reyef- - chy

©ChL_1CRChi1 T 5N]i+3+N)

+ Z V(i—N[CNcN—l “++ ¢;1100¢,¢y - - EN]i+3+N)'
e e

N
Therefore
v(;[0011];, 5) — »(;[1100];,5)
= . Zc {rli—nlenen—y -+ €,00118:E, -+ Exlivsin)
ey

_V(i—N[chN—l ©++ ¢1100¢,¢y - - EN]i+3+N)}’

for every N € N.
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If we set
v Mot N-1
A01"‘CN_1= {Ci CZ,V—IE{O’I} : Z Cp = Z Chs
k=1 k=1
N-1 N-1
Yoleh —chogl = X lep — cpyl| < 2},
k=2 k=2
for each ¢; - cy_; € {0, 1}V, then for every ¢j --- cj_; € Al ens
V(i—N[CNcN—l -+ ¢,0011¢,¢5 - En—IEN]i+3+N)
< 0%(;_yleyen—y -+ €,0011cics - ¢f_iCnlivgin)
by RCP, where 6 = y + y~ 1. Hence we have
#Ac1~-~cN_1V(i—N[cNCN—1 0 ¢,0011¢,8; *+ Ey_18n]ira4n)
< 6* )y V(i—N[CNCN—l 0+ ¢,0011ciey - cI’V—IEN]i+3+N)
Ci ."cl’V—leAclch_l
< 0%(i_yley - e1)iy)-
Thus
v(;_nlexen—y o+ ¢,00116,C, - - EN]i+3+N)
-1
= 02(#Acl~~~cN_1) V(i—N[CN C1]i—1)>
for every c¢; -+ cy €{0,1}Y, N € N. The same estimate holds for

v(;,_nleyey_y o0 €,11006,Cy -+ Eyligyn). Since #A, ... = (N -1)/16
provided that ¥ Y-}ic, — c¢,_;| > 0, we have

|v(;0011],5) — »(;[1100];,5)| < 820%(N — 1) '
+v(;_y41[11 --- 100110 - - - 00];, v 5)
+v(;_n+1[00 --- 000111 - - - 11];, v »)
+v(;_y4q[11 -+ 111000 - - - 00]; ., v 2)
+v(;_n+1[00--- 011001 - - 11]; . nyo)-

Letting N — » and using the fact that »(--- 111100110000 - --) = 0 and so
on, which follow from RCP, we have v(;[0011], ) = »(;[1100];,3). O

ProPOSITION 3.1. If a probability measure v on 2" has the regular cluster-
ing property, then v is translation-invariant.

Proor. Let us show first that if a;=a; then v(la;a;,, - a;]) =

v(;_qla;a;,; -+ a;];_). By RCP it suffices to check the case when
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#ola; - a) <1.1If a, - - a; = 00110, for example,
v(;100110];  4) = v(;_,[000110];,,) + »(,_,[100110];.,)
= v(;_,[001100];.,) + »(;_,[001101],, ,)
(by RCP and Lemma 3.1)
= v(;_1[00110];  5).

Thus we have v([a; --- a,];) = v(;_,la; -~ a;];,_,) for all n € Z provided
ai =a,;.
' Novsjr suppose a; # a;. If a; - a; = 0011, for example, then
v(;10011];,5) = ¥ ({00111 - 10],,,.,)
E=0 ~

k
+v({n € 2immi1=00,m,=1,¥Yn2i+2}),

and the last term is 0 by RCP. Since »([00111--- 10];,,,,) =
v(;_4[00111 - - - 10];, 5, ,) from the above result, and since v({n € 2% n,_n, =
00,7m, =1,V n =i+ 1} is 0 by RCP, we have »([0011],_ 3) = v(,_,[0011],,,).
Thus v([a; - a;])) = v(;_,le; -~ a;],_)) even if a, # a;, which completes
the proof. O

By Proposition 3.1 it is known that in the repulsive case, that is, in the case
a> B, .#,,, is equal to the set ./ which appeared in Section 3 of Yaguchi
(1986) [of course, 1 — a in that paper should be replaced by the present B8/a;
and by the way present ¢ and q' are related to a, B and y of that paper by
q =1 - BXBy/a) and q' = (1 — ByXB/a), respectivelyl. However, the proof
given there does not cover the attractive case a < B directly, and so we give a
proof which is rather simple and valid for the both cases.

LemMA 3.2.  Suppose v € ext .#, and v # 8y, 8,. Then there exist constants
q and q' with 0 < q, q' < 1 such that

v([00a, -+ a;])/v([0a; --- a;]) = g = »([00]) /v([0]),
v([e; -+ a;11]) /v([a; -~ a1]) = @' = v([11]) /»([1]),

foralla; --- a;.

(Note that v is translation-invariant by Proposition 3.1, and hence it is not
necessary for us to specify the coordinates of cylinders in the statement of the
lemma.)

Proor. (i) We have v([a; --- a;];) > 0 for all [a; ‘- a;],. In fact let

M1={n€<@”= Y=Y (1-n)=YXn-= Z(l—nx)=°°},
-1 -1 1 1

M, = 2\ M,.
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Then v(M;) = 1 since v(M,) = 0 by the translation invariance of v and the

assumption that v # §,, 6;. It is easy to see that the family of basic cylinders
(=& - &), satisfying I <i <j <J and

J—1 J J-1 J
Y 4= Y a, and Y 1-g)=z Y (1-ay)

k=I+1 k=i k=I+1 k=i
is countable and covers M;. Hence we can take a {' = ,;[{;, - {,]; such that
v({") > 0 among them. Since the configuration @, - - a; on the sites {i,..., j}
can be obtained from (' by rearranging the configuration ¢, ., - {;_, on

the sites {I' + 1,...,J’ — 1}, it follows from RCP that v([a; --- a;];) > 0.
(i) Now define a nonnegative translation-invariant function A on ¢ as
follows:

AD) =0,  A([1]) = »([001]) + y»([101]),
A([oa; -+ a,]) = »([00a; -+ a;]),
AM[1---10a, -+~ a;]) = »([1--- 100a; - a,]),

n n-—1

A([11---11]) = yp([101---11]), n>1.

It is easy to check that A satisfies the consistency condition of measures and
(RCP),. Hence we can extend A to a finite (RCP), measure A on 2" uniquely.
Further we have

Mla; -~ a;1) <v(la; - a;]) forall@ +[a, - a;] € <.

Indeed if min{a;,a;} = 0 it is obvious from (i). If a; = a; = 1, we have, for
example,

A([11---11]) = yp([101--- 11])
= y{»([0101...11]) + »([01101 - - - 11])
+v([011101 -+~ 11]) + -+ } [by »(My) = 0]
= »([0011 - -- 11]) + »([00111 - - - 11])

+»([001111 - 11]) + - -~ [by (RCP), ]
<v([011---11]) +»([0111 --- 11]) +»([01111 --- 11]) + -
[by (i)]
=vp([11---11]) [by »(M,) = 0].

Therefore v is represented by two (RCP), measures «; = (1 — M(Z" N v —A)
and k, = A(2)7 1A such as v = (1 — MZ Dk, + M2k, with 0 <MZ) < 1,
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which implies «x; = «, since v € ext .#,. Then a direct computation gives us
A= WNZ)/v(Z)v. Thus q = A(Q”)/V(QZ”) = v([00D/v([0D. O

Now we can complete the proof of Theorem 2 as follows.

ProoF oF THEOREM 2. It is clear that §,, §, € ext .#,. Suppose v € ext .Z,
and v # 8y, 8;; and let ¢ and ¢’ be those of Lemma 3.2. (Note that v is
translation-invariant by Proposition 3.1.) Then we have

1 =»([00]) + »([01]) + »([10]) + »([11])
=qv([0]) + 2(1 — q¢")»([1]) + ¢'»([1]) (by Lemmas 3.1, and 3.2),
and hence
(3.1) (1-p)(1-9q)=p(1-4q),

where p = v([1]). It follows from the translation invariance of v that 0 < p < 1.
On the other hand,

qq'v([01]) = »([0011]) = y»([0101])
= y{»([01]) — »([011]) — »([0100])}
= y{v([01]) — q'»([01]) - [q¥([01]) — qg'»([01D)]},

and hence

(3.2) qq' =y(1—¢q)(1-¢q).

Here we have used the fact that »([01]) > 0 which follows from the assumption
v # 8y, 8, and the translation invariance of ».

Let us see that (3.1) and (3.2) determine ¢ and ¢’ in (0.1) uniquely. Set
x=q/(1 —q) and y = q'/(1 — ¢'). Then the equations become xy =y and
(1+x)/(1 +y)=@Q — p)/p; and the problem is reduced to finding a positive
solution x and y. If (1 — p)/p > 1, we can easily find a unique positive y by
eliminating x, which determines x automatically. To treat the case
a- p)/p < 1, we have only to exchange the role of x and y. Thus a pair ¢
and ¢’ is uniquely determined in (0, 1). Since (2.1) defines a translation-in-
variant measure u{” on 2 uniquely, we have ext .Z, < {u0},_, 1.

It is easy to check that {u(’} c.#,. Then to complete the proof, it is
sufficient to show that {u{’}y.,<; are mutually singular. For 7 =
(- m_meny *-*) € X define Xy(n)=min{k >0: 1, =1} and X,(n) =
min{k > X, 1(77) m, = 1}, n € N. Then X, ’s are random variables on (Z, u{’)
such that {X - X, _1},en are iid. of ‘which distribution f (k) = p,"’)({n
X, -X,_{(n)= k}) k € N, is given by

5 q' if k=1,
fo(k) = vy lg'gkt if k> 1.
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Since L% _,kf,(k) = p~!, we have

( ) . 1 . I _1
pP{m: lim —min{I: ) n;=n} =p~ 1} =1
n—own i=0

by the law of large numbers, which implies

1 n
L= = 1.
1 Eom p}

p,‘p”{n: lim
n—wo N

- In the same way we have
1 —n
Min: lim — . =pt =1.
i {n nwnizZ_lm p}

These show us that {40’} are mutually singular. O

4. The entropy analysis of exclusion process. In this section we will
give the proof of Theorem 1. Before giving the proof let us prepare some
notation. For n = (- n_mgm; -~ ) € 2 define

1 lf Ne—1MxMx—1Mx+2 = ade7

Xabcd(nx—lnxnx+17’x+2) - {O otherwise,

and set

Ny 1M s 1Mxv2) = [@(Xo011 + X1011 + X1100 + X1101)

+B(Xo010 * X1010 + X0100 T X0101) ] (Me— 1MaMe s 1Mer2) -
We sometimes write ,[{]; for { € & ; to stress i and j and denote by {****
or ;[ ]j’x“, I <x <j—1, the set of configurations obtained from the ele-
ments of ;[{]; by exchanging the values at the sites x and x + 1. For { =,[{];
we denote by {,, i <x <j, the value of { at the site x, and by ,_,[7,_,{]; the
element of ¢;_, ; such that the configuration from i — 1to j is ;_;{; - ¢},
and so on. We remark that if we set

I‘(x{) — {N({x—lgx{x+1 x+2)V({) ifi + ISij—z,
’ 0 otherwise,

for { € ¢ ;, then the regular clustering property is equivalent to the condition
(4.1) [(x;¢) =T(x;¢***') forallx € Zand { € ¥.

PROOF OF THE SUFFICIENCY PART OF THEOREM 1. Since 0 is a Markov
generator, we have only to show [Q f(n) dv(n) = 0 for every %; ;-measurable
function f [see Liggett (1985), page 51]. We will show that [Q f,(n)dv(n) =0
for every { =,[{; - -+ {;]; € €, where f, is the indicator function of {. Since

(Qf)(m) = X Nnemm e mer) (05 = f(0)},

x=i—1
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we have
[(Q£)(n) dv(n)
ji-2
= {T(x;02%*1) = T(x;¢)}
x=i+1
+ { (n iz 1§]l Hl) F(i§i—1[77i—1§]j)>

+ Z {F(J - 1;i[{nj+1]j::-]i’j) - F(J N l;i[{nj'tl]jﬂ)}
+ Z= Z {F(i_ 3i—olmi—am;i- 1§]L lt)

0,17;_,=0,1
-T(i - 1;i—2[77i—2"7i—1§]j)}
J,Jj+1 .
+ Y Y { (J,l[{n,ﬂn,»fz]J ) - F(J?i[§”j+1’71+2]j+z)}

"7j+1=011"7j+2=0v1
=8y(Z,7) + 85(i,J) +83(i, j) + Sy(i,j) + Ss(i, j)
=0 [by(4.1)],

which was to be shown. O

The following proposition shows that if the set {0, 1} does not have full
measure for v € ./ then v({) > 0 for every basic cylinder {.

PrOPOSITION 4.1. Suppose v € # and v({0,1}) < 1. Then v({) > 0 for all
nonempty { € €.

We divide the proof into two steps. Given ;[¢; --- {;]; let us write ;[{7 -
Gl - 4l 1fI<z<_1<Jand1ffor some x Wlth i-1l<xx<j the
restriction of ,[{ 1o LG5 *E to the sites {i,..., j}is £ -+ {;. The meamng
is that the conﬁguratlon g gondi,..., J} is obtalned from ¢ Ly by
the one-step transition of a particle. We will write ' > ¢ if there is a
> -chain from {'to {: &' > (P> - > (B> L

Lemma 4.1, Ifv e Sand v({) = 0 for some { =/[{; -+ {;];, then v(A)) =1,

where

o J o J
A;={n€=92”: Y m< Y oor X (1"’7k)<2(1“§k)}~

k=—o k=i k= — k=i

Proor. Since v € .7, we have [(Qf,X(n)dv(n) = 0. Then by (4.2) and by
the assumption that v({) = 0 it holds that v({") = 0 for all {’ satisfying
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' > > ¢ as well as {’ satisfying {' > {. Since

w J o Jj
A2={n€92”: D nkzki_;k and 3’ (l—nk)ZZ(l—ik)}

k= —ow k= - k=i
o Jj+n J Jjtn J
c U{negf: Y m=Y amd X (1—nk>zz<1—;k>}
n=0 k=i—n k=1 k=i—n k=1
= |J F,(¢)
n=0

and since {' > > { for every basic cylinder ¢’ in F,({), the lemma follows. O

Proor or ProposITION 4.1. It is obvious that &, and §, are elements of ..
Hence without loss of generality we can assume that ({0, 1}) = 0 (consider the
measure [v(+) — v({0, 1D]/[v(27) — v({0, 1})] instead of v). Then suppose that
the conclusion is false, that is, »({) = 0 for some { =,[{; --- {;]; # O. Let A,
be the set introduced in the above lemma. It is clear that A, is an infinite
countable set (indeed every n’ with n' > n for some n € A, is an element of
A,), which does not contain 0 and 1 by the assumption. As v is a probability
measure there exists max{(B/a)*Pv(n): n € A}, which is positive and is
attained by the finite elements of A,, say, {n",..., 7’} C A,. Since the proof
is the same, we assume [ = 1 and will write n* instead of 7® for simplicity.
We will treat only the case that n*(€ A,) satisfies %_ .7 < Li_;{,.

Let B, =_,[n*,n*,.1 -+ m*l,. Since v € ./, it follows that
J(Q fg ) dv(n) = 0 for all n € N, and hence we have

0= Y (N(nz & minr)v((n*)>**)

x=—

—N(nf mink 177:+2)V((”7*))}

by (4.2). However, the r.h.s. of the above equation, which is a finite summation
over x essentially, is negative because the equation

*)x,x+1)

N( MM 1n;kn;k+2)(a/ﬁ)#01((n

( *
= N(ni_mink,miee)(a/B)*m

holds for all x € N, and n* is by assumption the unique element which attains
the maximum of (B/a)*™v(x), n € A,. This is a contradiction. O

Now let us begin the proof of the necessity part of Theorem 1.
Suppose v and u are probability measures on 2" and that w(¢) > 0 for all
nonempty { € €. The entropyof von T, ={—n,—n + 1,...,n} relative to
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is defined as

Hp(v) = ; v({)log(v({)/n({))
{E ~n,n
= Y v(Dlogv(l) - X v(Dlogu(l).
{e{—n,n {Eg—n,n

Let v,, ¢t > 0, be the probability measure on Z" defined by

v(f) = [dv(m)(S.)(m),  feC(),

where S, is the semigroup corresponding to Q (of course, v, = v). What we
want to do in the following is to investigate the ‘‘monotonicity” of Hp(v,) as a
function of ¢ when p is taken from ext.#;, the structure of which is
completely known by Theorem 2. Hence we fix here one u(# 8,,8,) from
ext .#; ,, and denote it by u instead of u,, for short. It is easy from Theorem 2
to find a positive constant K, such that for every A {j]j e ¢, i <]j,

[log{u(¢=** ) /m(O} <K,, x€{i,i+1,...,j—1}
‘IOg{M(i[Zi§i+1 gj]j)/“‘(i[gi{i+1 {j]j)}l < K#,
where ;=1 — ¢{;.

In order to investigate the relative entropy of v, we differentiate Hy(v,) at
time ¢ = 0:

a | = n(£)log v (0)

dt geg—n,n t=0

(4.3)

= ¥ (1 +logw(£)) [(Qf,)(m) dv(m)
¢

=Y (logv({))[Si(—n,n) +8Sy(—n,n) + S3(—n,n)
4

+8,(-n,n) + 8s(—n,n)],
where S,(i, j), k = 1,...,5, are those which appeared in (4.2); and

i( L vd0ogu(o)]

dt [€C nn o

= ¥ (log w(£)) [(2£,)(m) dv(m)
19

= Y (log u({))[Sy(—n,n) + 85(=n,n) + Sy(~n,n)
4

+8,(—n,n) + S5(—n,n)].
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For simplicity we set

):(logV(K))Sk( n,n) and T, = 2(10gu(§))3k( n,n),

k=1,...,5.

We will evaluate these S, and T, in the following four lemmas.

LEMMaA 4.2. Suppose v({) > 0 for every nonempty { € €. Then
1 n—2

3 > Y o(T(x;¢2%%1), T(x;¢)) <0,

x=-n+l{e€¢_, ,

Sl_T].:_

where
é(u,v) = (u—v)log(u,/v), u,v > 0.

Proor. We have

n—2
S1=1 Y X (ogv())(T(x; 4=+t = T(x34))

2 x=—-n+1l ¢

1 n=2
9 Z . Z (log y({x,x+1))([‘(x;{) - [‘(x;gx,x+1))
x=—-n+1 ¢
1 »-2 x,x+1
= ——2— Z Z (l og ({( ))(F( e x+1) F(x,{))
x=—-n+1 ¢

T1=—l niz r (T(x;02**Y) = T(x;0)).

x=—-n+1 ¢

( xx+1))

Then the lemma is immediate from the equation

N(gx—l x+1§x£x+2)/“l“({x’x+1) = N({x—lgx{x+1 x+2)/“'(§)’
which follows from the RCP of u [cf. (4.1)]. O

For n € N let
U(n)y= Y [T(=n;&™ ") =T (-n;§)]|,
geg—n—-l,n
Ut(n)= Y |I‘(n —1;¢" ) = 1(
E€ET 4 1
Vi(n)= XY |I(-n-1;¢6""157")-T(~
feg—n—&n ‘

Vi(n) = X [T(n;¢m"*t) —T(n;€)].

geg—n,n+2
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LemMa 4.3. Ty <27'K, U (n), |Ty| < 27K, U*(n), |T,| <27'K,V~(n)
and |T;s| < 27K, V*(n).
Proor. Just as in the proof of the above lemma we have

1 M({—n,—n+1)
- 172} 1 {e§ tog ,u,({) )

(TR E ) N ST I
Then the first half of the lemma is immediate from (4.3). Since

T,= Y Y X (ogu(_,l¢,.¢1)

Nep-oMepn-1%-n {,E{-n+1,n
X{r(_n - 1; _n_2[’r]_n_zn_n_lé’_n{/];n—l,—n)

“T(-n =1, oln_pam o1l nl'1))

_ 1 MENrand)
2 n§-2 E, 4’66;”1," tog l‘*(—n[(—nf']n) )

><{F(—n -1; _n_gln_n-zf—nz—nﬂn)
—F(_n -1 —n—2[n—n—-ZZ—n{—n§']n)}’

it follows from (4.3) that |T,| < 27 'K,V (n). The same estimates hold for T}
and T, respectively. O

LemMa 4.4. If v({) > O for every nonempty { € €, then
S, <27 'MU(n) + 2(a + B)(M + 1)e~ M-,
S; <27 'MU*(n) + 2(a + B)(M + 1)e~M~D
for every M € N.
Proor. dJust as in the proof of the above lemma we have

T > (logv(é:;’g-)“ ))

77 —-n— I{G'gnn

X{F(_n; _n_1[n_n—1{];n’—n+1) - F(_n; —n—1[77—n—1§]n)}

(M) (M), k,¢
=-3 Z r -3 Z r T Z ;
N-n- lge—g—nn n —n- lk =0e=+, —{Gf

where M € N and Z{Gg , LDk + and YD~ are summations over {
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satisfying
e—M < V(g—n,n+1)/y(§) < eM’
(44) eM+k < V(é—-n,n+1)/y(£) < 6M+k+1,
e—(M+k+1) < V(g—n,—n+1)/y(§) < e—(M+k),
respectively. By ("> ** we denote the partial sum of L{"0%* over ¢
satisfying ' ’
) F(_n7 —n—l[n—n—lg];n’_n-'—l) < I‘(_n’ —n—l[n—n—lg]n)'
Then

(M), k, + V({—-n,—n-#l)
_ log——— ~
R S 3 )
X{T(=n; _poaln el 1,7 = T(=n; _iln_,mif],))
(M), k, ++ .
< Y (M+k+1)
geg—n,n
X{F(_n; —n—l[n—n—lg]n) - F(_n; —n—l[n—n—lg];n’ _n+1)}
(M), k, ++
=< Z (M + k + 1)(“ + B)V(—n—l[{—n—l U {n]n)
(€€ 10
<(a+B)(M+Ek+1)e M ¥ y(—m-rtl) [by(4.4)]

{EC_, n
=(a+B)(M+Ek+1)e Mth
which implies that

—~ T Y Y <(atB)(M+1)e D,

Here we have used L%_, (M + k + De " M*® < (M + 1)e~™~D. Since the

same estimate holds for £{"2.* ~ and since

(M)

L X

N-n-1 geg—n,n

<M Y |T(-n;&™ ") —T(-n;é)|

ée {—n —-1,n
= MU~ (n),
we obtain the first half of the lemma. O

LemMmA 4.5. If v({) > O for every nonempty { € €, then
S, <27 MV~ (n) +4(a+ B)(M + 1)e"M=D,
S5 <27 'MV*(n) + 4(a + B)(M + 1)e~ M1,
for every M € N.
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Proor. Since the proof is the same as that of the above lemma except for

1 V- —n-15-n+1 """ Snln
-2 T L T tog orl-n -t £nln)

Nen-2M-pn-1{€E€_pn V(—n[{—ng—n+1 {n]n)

X{F(—n -1 —n—2[”—n—2n—n—1{];n—1’—n)

-I'(-n-1; _n_zln_n—zn-n_lf]n)}’

- which is obtained in the same way as for T, in Lemma 4.3, we omit details. O

For integers i, j and x with i + 1 <x <j — 2, define

E; (x)= Y ¢(F(x;§x’x+l),r(x;§)),

(et ;
where ¢(-, - ) is the function defined in Lemma 4.2. We remark that
(4.5) if I<i and J=>j then E; j(x)zE, ;(x)(=0),
which follows from the subadditivity of ¢(u,v), u,v > 0, that is,
(4.6) d(uy,v;) + d(ug,v5) = d(uy + Uy, vy +05),
and the fact that
) ) F(x;z[m MmN WJ]Z’HI) = [(x; 0771,
MM Myert Mg

and so on.

LEMMA 4.6. Suppose v € . and v({) > 0 for every nonempty { € €. Then

n—2
* Osz_l Z E—n,n(x)

x=-n+1
(4.7) <27YK,+M)(U (n) +U"(n) +V(n) + V'(n))
+12(a + B)(M + 1)e M-,

for every M € N. In particular, lim, . Y7-2  E_, (x) exists, and

lim E (-x)=1lmE_, . (x—1)=0,
Xx—00 x>

-x—1,x

(4.8) ) .
IimE , ,,(-x—-1)=LmE_, . ,(x)=0.
Proor. Since v € ., ((d/dt)Hr(v,)),_, must be 0, that is,
(S, -T)=8;+8S3+8,+8; — (T, + T3+ T, + T5).
Then combining Lemmas 4.2 to 4.5 yields (4.7). If M is taken to be 1 in (4.7),
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we have
n—2
0< ) E_, . (x)<(8K,+56)(a+p),
x=—-n+1
since |U *(n)| < 2(a + B) and |V *(n)| < 2(a + B). Hence the existence of
lim, . X222, ,,E_, (x)is assured by (4.5). The latter half of the lemma is
then clear from

n—2 n—-1

Z E—n,n(x) = Z {E—x—l,x( _x) +E—x,x+1(x - 1)} = 0’
x=-n+1 x=1

n—2 n—2

Z E—n,n(x) = Z {E—-x—z,x(_x - 1) + E—x,x+2(x)} > 0. u
x=-n+1 x=1

PROOF OF THE NECESSITY PART OF THEOREM 1. Since §, and §, are elements
of . and have RCP, it is sufficient for the proof of necessity to show that
every v € . with v({0, 1}) = 0 satisfies (4.1).

By Proposition 4.1 we have v({) > 0 for every nonempty ¢ € #. For inte-
gers i, jand x with i <x <j — 1 set

R=R, j(x) = Y, max{T(x;{®**1),I(x,¢)},
(et ;

r=r; ;(x) = X min{l(x;¢>%1), T(x, )},

(et ;
and note that
R-r= Y |T(x;{%%*") —T(x;0)].

(e ;
Then by the equality ¢(u,v) = ¢(v, ) and (4.6)
E; (x) 2¢(R,r) 2 (R-r)’/R= (R -r)’/(a+B),

which is the inequality similar to that of Lemma 4.5.8 in Liggett (1985); in
particular,

E_, 1.(-2)2U(2)"/(a+B), E_,(x—1)2U"(x)’/(a+p),

E—x—2,x( —X — 1) = V_(x)z/(a + B)’ E—x,x+2(x) = V+(x)2/(a + B)9
for x = 1,2,... . Then by (4.8)
lim U*(x) = lim V*(x) =0.

x— o

Therefore letting n — « in (4.7) yields

n—2 .
0< lim lim E_, (x)<24(a+B)(M+1)e M-D,

n—oox=-n+l
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As M < N is arbitrary it follows that

lim n22 E_, . (x)=0,
% pe—ntl
and hence
E_, (x)=0 foreveryxe{-n+1,-n+2,...,n—-2},neN,
by (4.5). Therefore for every { € €_, ,, n = 2,
[(x;¢=**Y) =T(x,¢), =xe€{-n+1,...,n-2},

which establishes (4.1). O

5. An extension to finite range interactive exclusion process. The
proofs given in Section 4 can be applied to the analysis of finite range
interactive exclusion processes (speed change model) on 7' after a minor
change.

Let L be a positive integer and p(x,y) be transition probabilities for a
discrete-time irreducible Markov chain on Z! with the property

(56.1) p(x,y) =p(y,x) =p(0,)x —y]) and C,= Y kp(0,k) <c.
k=1
For a function c(x,y;n): Z' X 7' X 2"— (0, ») satisfying
0<c(x,y;m) <c, forall x,yandn,
c(x,y;")is B, .1V #,_1 . -Measurable,
consider an exclusion process on 2~ defined by

(Qf)(m) = Y. p(x,y)e(x,y;m) [ f(n?) = f(n)],

x<y
{x, y}nli, jl# 2

for &, ;-measurable functions f. Then we can prove the following result (a
sketch of the proof is given in the Appendix).
ProPOSITION 5.1. Suppose there exists a stationary measure u for the
above process such that u({) > 0 for every nonempty { € ¢ and
(i) there is a constant K, > 0 such that forall { € ¢, ;, i <],
Ogu(l =)
©($)

/L(i[gi gx—lzx£x+1 ZJI]J')
.U'(i[{i gx—lgx{x+l gj]j)
Gi) forall { € €, ;,i <},

p(E*)e(x,y50%7) = u(f)e(x,y;4),
i+L<x<y<j—-L (reversibility condition) .

1 <K, i+L<x<y<j-1L,

=y

log

<K, i<x <j;
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Then a probability measure v on 2 is stationary for the process if and only if
it satisfies (ii) replacing u by v.

As an example of ¢ and p having the above property we can give an
exclusion process associated with a Gibbs state relative to a finite range pair
potential {J,, J,...,J.} (we put J,,, = 0, £ € N, for convenience):

C(x,y§ "7) = exp[(l/kT){an J|x—u|nu + nyz J|y—u|nu}]a
u u
@ = a probability measure on £~ whose conditional probabil-
ityul,la; --- aj]j|,@ifj}(n) is equal to

i<k<k'<j

Ei,j(n)_lexp[—(l/kT){ Y Jy_aiay

u<i<k<j i<k<j<u

+ Z Jk—-unuak + Z Ju—kaknu}:|7

where E; (1) is a normalizing constant.

However, we do not know at present the way of determining the structure of a
corresponding family of measures satisfying condition (ii).

The above proposition shows us that if the coefficient c(x, y; 1) is the same,
then so is the totality of stationary measures regardless of the arbitrariness of
p(x,y) having the property (5.1). And so just as exchangeable measures for
simple exclusion processes our .#, can become a family of stationary measures
for various nearest-neighbor interactive exclusion processes. For example, we

have the following.

ProrosiTION 5.2. Let
c(x,y; "7) — ,y—(Xu(nx-mx)+Xn(1w7x+1)+Xu(ny-my)+X11(nyny+1)}

in the above. Then the set of stationary measures for the corresponding
exclusion process is equal to .#, for every p(x,y) with (5.1).

REMARK 5.1. Our argument essentially relies upon the derivation of the
form

1
S Z p(x’y) Z d)(F(x,y;{"’y),I‘(x,y;{)) <0

2 —n+L<x<y<n-L (€EC_,p
(cf. Lemma 4.2), where
¢(u,v) = (u —v)log(u/v) and T(x,y;¢) =c(x,y;{)v({),

and does not go through if the symmetricity of p(x,y) in (5.1) does not hold [if
p(x,y) # p(y,x) for some x and y]. However, we think that the entropy
analysis is still effective for that asymmetric case.
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APPENDIX

In this Appendix we will sketch the proof of Proposition 5.1. Since the proof
is almost the same as that of Theorem 1 except for the existence of additional
probabilities p(x,y), we will in the following mainly be concerned with the
crucial part of the proof.

It is easy to check that if a probability measure » on %" satisfies condition
(i), then it is stationary for the process. Indeed if we set

(x,y:¢) = {c(x,y;{)v(g) if +I‘4 <x#y<j—-L,
0 otherwise,
condition (ii) is equivalent to
I'(x,y;{) =T(x,y;{*?) forall x,yand (.

Using the dominated convergence theorem, we have for { € ¢, ;,

[(@£:)(n) dv(n)

Y p(x,y) [elx, ;[ f(n™?) = f(n)] dv(n)

x<y

> p(x, ) {T(x,y;¢%7) = T(x,5;0)}

i+L<x<y<j—L

+ Y plxy) X {T(x,y:(£0)™7) = T(x,y;€0)}

x<y<j—L €6 1,1
x<i+L,i<y

+ Y p(x,y) X {T(x,x5(26)"7) = T(x,y;¢8)}

i+L<x<y E€Cii, jeL
x<j, j—L<y

+ > p(x,y)

x<i+L,j—L<y
{x,ynli, j1+2

x X Y (P(x,y;(£06)™7) = T(x,5;€¢8)
(€€, _1i-18€C 4, j+L
= Gl(lh]) + G2(l7.]) + GB(l’J) + G4(l,.])
= O’
where we have denoted £ N { by £ and so on.

Next for a probability measure v on 2" define H; and v, as in Section 4.

Then we have
d 4 4
E(HTn(Vt))t=0 = Sy - X Ty,
k=1 k=
where
Sk~=£§ (log v(£))G(i,j) and Tk~=£§ (log u(£))G(i, J)-
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For neN,n>L,let
A, ={(x,9):x<y,x<-n+L,-n<y<n-L},
A} ={(x,y):x<y,-n+L<x<n,n-L<y},
AL ={(x,y):x<-n+L,n-L<y{x,y)n[-n,n]=* 3},

At ={(x,y):—n+L<x<y<n-—L},

and set
W(n) = ép(x,y)Dx_L,n(x,y),
W*(n) = %p(x,y)D_n,yu(x,y),
WE(n) = ;p(x,y)Dx_L,ﬁL(x,y),
and K
Z*(n) = %p(x,y)E_n,n(x,y),
Z (n) = %p(x,y)Ex_L,n(x,y),
Z*(n) = %p(x,y)E_n,ﬁL(x,y),
Z*(n) = Z‘:p(x,y)Ex_L,ﬁL(x,y),
where K

Di,j(x’y)= Z |F(x’y;§x’y)_r(x’y;§)|y
(€T

Ei,j(x’y)= Z ¢(F(x7y:§x,y)ar(x7y7§))’

EECG

for i,j and x,y with i + L <x <y <j — L. We remark that W-, W* and
W * are bounded with respect to 7. In fact we have D, ; .(x,y) < 2¢, by (5.1)
and hence

Wo(n) < 2¢ X p(x,9) < 2¢L Y p(x,y) =2¢LC,,
x<y x<0<y
x<L,0<y
and so on. Then just like Lemmas 4.2 to 4.5 we can prove
S, =T, = —-27Z*(n),

Ty | <27 'K, W~ (n), ITs™| < 27'K,W*(n), 1T, < 2_1K#Wi(n),
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and
S, < 27MW~(n) + 2351 (M + 1)e”M~De LC,,
Sy < 2 MWt (n) + 2327 (M + 1)e" M D¢ LC,,
S; <27 MW *(n) + 235 (M + 1)e~ M~V C,,
for every M € N. Therefore if v is stationary for the process, it holds that
0<27'Z*(n)
<274 K, +M)(W (n) + W'(n) + W=(n))
+ 8- 23 (M + 1)e” M~y LC,
[cf. (4.7)]. In particular, we have lim,, ,.Z*(n) < », which implies
lim Z (n) = lim Z*(n) = lim Z*(n) = 0.
n—-o n—o n—x
Indeed we have only to use the fact lim ,, , (Z*(m + n) — Z*(n)) > Z~(n).
To complete the proof of Proposition 5.1, it is sufficient to show that the fact
lim, ,.Z (n) = 0 implies lim, ,, W™ (n) = 0 since the rest of the proof is
almost the same as that of the necessity part of Theorem 1. Let {¢,}, . and
{l,}, <n be sequences of positive numbers satisfying
Ek‘l,o, lkTw and Z lp(O,l) <8k'

I>1,

Using the inequality

-1
Y |F(x,y;§"’y)+1"(x,y;§)|} ,

Ex—L,n(x’y) = Dx—L,n(x’y)z{
‘feéc—L,n

it follows from Z (n) — 0 that
lim Zp(x’y)Dx—L,n(x’y)z = O,

n—o A'_l
and hence
lim Y p(x,y)D,_p (x,5) =0,

R AT N{y—x<ly)
for every fixed I, since #{(x,y) € A,: y —x <1,} is bounded with respect
to n. Dividing the summation in W™ (n) into A, N{y —x <[,} and A, N
{y —x > 1,}, we have
0 < limsupW™(n) < 2¢, Y p(x,y) < 2¢yLe,,

n—ow x<y,x<L,0=<y
y—x>1;

and consequently lim, , W~ (n) = 0.
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