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Cohomologies of Lie Algebras of Vector Fields
with Coefficients in Adjoint Representations
Foliated Case

By

Yukihiro KANIE*

Introduction

Let (M, %) be a foliated manifold. We have a natural Lie algebra
L (M, F) of vector fields locally preserving the foliation &, and its
ideal 9 (M, #) of vector fields tangent to leaves of #. Here we
are interested in the first cohomologies of £ (M, #) and J (M,
ZF) with coefficients in their adjoint representations. This work is
in a series of F. Takens’ work [7] and the author’s [3], [4]. In
this paper, we use the latter for the general reference.

Our main result is

Main Theorem (i) H' (¥ (M, F); (M, ¥#))=0.
() HY(IT M, F); TM, F)N=ZL M, F)/T (M, F).

If M is compact, & (M, %) is identical with the Lie algebra of
vector fields preserving #. There are compact foliated manifolds
(M, F) such that H'(7 (M, ) ; 9 (M, #)) are of dimension r for
any 7 (0Sr=).

The content of this paper is arranged as follows. In §l, we intro-
duce Lie algebras & and Z for a standard foliation on a eucildean
space, and study their structures. In §2, we investigate properties of
derivations of % and Z, and in §3, we prove Main Theorem for %
and J (flat case). In §4, we give the proof of Main Theorem and
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some examples.
All manifolds, foliations, vector fields, etc. are assumed to be of
C=-class, throughout this paper.

§1. Lie Algebras ¥ and J

1.1. Notations and Definitions. Fix a coordinate system x, ...,

Zpy Y1y +++5 Yo in a (p+¢g)-dimensional euclidean space V= R***, Denote
0 . 0

oz, by 0;(i=1,...,p), and ay.

% Jj, k... for z,...,z,, and Greek indices @, B,... for y,...,y,

by d,(a=1,...,g). Use Latin indices

otherwise stated. Put
?
I = {Z:lf; (z, ¥)0;; f: (x, y) are C™-functions of Zy, ..., L, Y1y« ++, ¥4},

&= {i.' 8.(9)0.5 g.(y) are C™-functions of ¥, ..., ¥},
a=1 .
& =T +Z (as vector spaces).

Then they are subalgebras of the Lie algebra ¥ of all vector fields
on V, and J is an ideal of £.

Let # be a standard codimension-q foliation, defined by parallel
p-planes: y,=constant,..., y,=constant, in V. Any vector field X
in J is tangent to leaves of %, and X is called leaf-tangent. Let
¢. be the one-parameter group of diffeomorphisms generated by
Ye 2, then ¢, transforms every leaf to some leaf for each t,and Y
is called foliation preserving. '

Denote by J, or J,, the subalgebra of 7 of all vector fields in
7 whose coefficient functions depend only on z,,...,z, or v,...,
Y. respectively.

Here we summarize the facts which will be applied later.

Lemma 1.1. (i) Let Xe¥U. If [0, X]=0 for all i=1,..., p,
then X is independent of the variables z,,..., z,.

(i) [T., £1=0,and [T, L]cT.

(i) Let XeZ. If [0, X1€L" for all i, then X is independent
of the variables z,, ..., z,.
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(iv) Let Xe€7, Then [X, [1=X, where I=3 z,0,ET ..

i=1

(v) Let Xe2'. If [X, y.0.1=0 for all i and a, then X=0.
This can be proved by elementary calculations.

1.2 Vector Fields with Polynomial Coefficients. The vector
field X= Z fi(z, ¥)0:+ Z,' g.(z, ¥)0, on Vissaid to be with polynomial

coeﬂiments, if all f;(x, y) and g.(z,y) ((=1,...,p,a=1,...,q) are
polynomials. Such vector fields form a Lie subalgebra 55[ of A. Put

T=7n%, 2=2n9, and Z'=2'NY. Put
4 ~
T o= {Z}l fi(z, )0, €T ; f.(x,y) are homogeneous polynomials of

degree n+1in z,, ..., z,, and of degree m~+1in v, ..., 3.}.

Then
T= 3 Tuus
n,me—1
7Df,=ﬁﬂe7,—27n-l,
na—1
fy.:j.nyy— Zg——lm
m&—1

Moreover, we have easily

Lemma 1.2. (¢f. [4]) Let I be defined in Lemma 1.1 (iv), then
T, ={Xed,; [I, X]=nX}.

Put Z,= {Zq) g.(y)o. e £’ g.(y) are homogeneous of degree m+ 1}.
- a=1
Then &'= 3, %, , and we have

mE—1
Lemma 1.3. Let J=3 y.0.€ %", then £, = {YEZ ; [J, Y]=mY}.

1.3. Proposition 1.4. If a vector field XE€ T satisfies j*(X) (0)
=0, then there exist a finite number of vector fields X, ..., X;.€F
such that

= 51X, Xud and FX)@=0 G=1,..., 20).




490 - YUKIHIRO KANIE
Proof. Clearly it is enough to show the assertion for the case
X=aj..... zip yit. ... yitf(z, )0,

? g
for 2.4+ 3, 7.24. Put h(z, y) =z ..z oy oyl
k=1 a=1

- Case 1. The case where i,=>2 Jor some k.
[i0s, 7' X]—[230,, 2:7?X]
= (4,—1— 204) X— x,h (z, ) (@:f(z, ¥))0,
- (ik—z_saik) X+x,k (.’L', y) (akf(x, y))ai
=(1+0,) X.
Here 0, is Kronecker's delta, so (I+6,)=1>0. And ;j*(z:2X) (0)=0
is obvious.

In the following, we can assume that 7,<1 for all .

Case 2. The case where 3 i,>2. We can assume i,=7,=1. Let
k

¢ be a coordinate transformation

Y T,=x,+ 2,, Ty = — 2y,
’ =z, (i23), .=y, (all a),

then ¢(J)=9. So this case is reduced to Case 1.
In the following, we can assume that 7,=0 for all % except at most
one &,

Case 3. The case where j,=2 for some a. We get
[y:akoa xkoy,,'zX] - [ynxlzoahoa v X1=(1 +5ilzo) X.
Obviously 7'(Y) (0)=0 for all vector fields Y in the left hand.

Case 4. The case where j,<1 for all a. Since we have Z],

> 4—1=3, so this case is also reduced to Case 3, s1m11ar1y as
Case 2. Q. E. D.

Proposition 1.5. If a vector field YEZ' safisfies j*(Y) (0)=0,
then there exist a finite number of wvector fields Y, ..., Y, &% such
that
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Y=3[Y, Y,.] and j(Y)(©0)=0 G=1,..., 20).

Proof. Similarly as in Cases 1 and 2 in the proof of the above
proposition. Q. E. D.

§2. Derivations of  and ¥ (I)

2.1. Let 9= 9ex(J; L) be the space of derivations of J with
values in #. And let 2¢ or 94 be the derivation algebra of &
or J respectively. Remember that a derivation D satisfies the prop-
erty D[X, Y]=[D(X), Y]+[X, D(Y)].

Proposition 2.1. If a derivation D in 2 is zero on J,, for
n+m<—1, then D is zero on J.

Proof. Step 1. To show that D is zero on J .. We prove this
by the induction on 7z for the decomposition .7',=”§_;7,,,_1. When n
is non-positive, the assertion holds by the assumption. Assume that
D is zero on I, . (k<n—1). Let Z€J,_,(nz1), and define the
vector fields X9 and Ye¥£' as D(Z)=X+Y.

Apply D to [0, Z]1€E T o1 (1Si<p), then we get XE7,, by
Lemma 1.1(3) and the hypothesis of the induction.

We get [I, Z]=nZ, by Lemma 1.2. Apply D to the both sides

of this equality, then by Lemma 1.1 (iv), we get
— X=nX+nY,
hence X= Y=0, so D(Z)=0.

Step 2. To show that D is zero on J o, Clearly it is enough to
show the assertion for the case X=1z,5.0,€ 7., Apply D to

X= x‘y,aj =27 [yuai, xiai]3

then we have D(X)=0, because ¥.0,;€J 1o and 21,7 ..
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Step 3. To show that D is zero on J,. The proof is carried
out by the induction on m for the decomposition I y=m;,_l.7 -
When m is non-positive, the assertion holds by the assumption. As-
sume that D is zero on J_,,(k<m—1). Clearly it is enough to show

that D(Y)=0 for the case
Y=y.....yj0,

for 2j,=m+1. There is an index 8 such that j,=1. Apply D to

Y= [yﬁ—lY: y,exiail
then D(Y)=0, because y;'YEZ _, ,_;, and Ve :0: E T 400

Last Step. Decompose J as I = aZ (22 T am)» We prove the
n 1

2 s

assertion of the proposition by the induction on #. The assertion for

n=—1 holds by Step 3. Assume that D is zero on ), 7, .(n<
mE—1

n,—1). It is enough to show that D(X)=0 for the case

for 2 i,=n,+1, and some polynomial f(y) of y,...,, Apply D
to the equality

Y= @A 1D 77X, xipto,] if 7,20,
[zi' X, 2740, ] if ,=0, and ,, >0 for some k,,
we get D(X)=0, because z;"X, zi'X €& P2 (22 T wn)s and zipt'o,,
nSnpg—1 maZ—1
x,,ox,ﬁ,,ef',. ' Q. E. D.

Corollary 2.2. The derivation DE 9 is zero on T, under the

same assumption as Proposition 2. 1.

Proof. It follows from Propositions 1.3 and 1.4 in [4], and Prop-
osition 1. 4. Q. E. D.

2.2. Proposition 2.3. If a derivation D Dy is zero on I, then
D is zero on Z'.
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Proof. Step 1. To show that D(3,)=0 (a=1,...,q9). Apply D
to [0, 0.]1=[I, 9,]=0, then we get D(3,)=%’, by Lemma 1.1(),
@iv).

Define the functions gf(y) as D(9,)=J gf(»)d,€%’. Apply D to
0,,0,=[0,, »,0,], then we get ’

0=[% £ 31=g (),

hence gi(y) =0, so D(d,)=0.

Step 2. To show that D(J)=0, where J=35d. Apply D to
[0,, J1=[1, J]=0, then we get D(J) &', by Lemma 1.1 (i), (iv).

Apply D to [J, y.0.]1=y.0,€7, then we have D(J)=0, by Lemma
.1 (v).

Last Step. Since £ is decomposed as P'= ;L_,' &, (cf. §1.2),
me—1
then by Lemma 1. 3, this step is carried out similarly as Step 1 in
the proof of Proposition 2. 1. Q. E. D.

Corollary 2.4. If a derivdtion D of & is zero on 7 ,, for n
+m =-—1, then D is zero on L.

Proof. Let D be a derivation of -# such that D is zero on 7, .
for n+m=<—1. Let D be the restriction of D to J. Then by
Coroallry 2.2, D' is zero on Z, hence by Proposition 2.3, D is zero
on £ The assertion follows from Propositions 1.3 and 1.4 in [4]
and Proposition 1. 5. Q. E. D.

§3. Derivations of J and ¥ (II)

3. 1. Determination of 2. Let Z be a vector field on V. We
define adZ as adZ(X)=[Z, X] for XU. Then we have

Lemma 3.1. The map: Z—adZ|s, or Z——adZlg of £ into

D or Zg respectively is an into isomorphism.
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Proof. 1t is sufficient to show the injectivity. Let ZEZL. Assume
that adZ(7)=0. By Lemma 1.1 (i), we get the vector fields X
7, and YEZ’ such that Z=X+Y. Then by Lemma 1.1 (i), (iv),
we have X=[Z, I1=0, whence Y=0, by Lemma 1.1 (v).

Q. E. D.

Theorem 3.2. Let D= 2. Then there exists a unique wvector
field Won V such that D=adW|,. Moreover, W is in £.

The proof of this theorem will be given in §3. 3.

Corollary 3.3. Let DE D4 or D4 Then there exists a unique
vector field WEU such that D=adW |, or =adW|g. Moreover, W is
in &.

Proof. Obvious for the case DE 24. Let DE D¢ The restriction
of D to J belongs to 2. Then the assertion follows from Theorem
3.2 and Corollary 2. 4. Q. E. D.

Theorem 3.4. (i) All derivations of & are inner, that is, D¢
=ad & = ¥. Hence

H(Z ; £)=0.

(i2) The derivation algebra of T is naturally isomorphic to %,
that is, Dg= {adW |5; WEL}=L. Hence

H(T; 9)=%/T=Z".
In particular, the space H'(T ; I) is of infinite dimension.
Proof. (ii) By Coroallry 3.3, we have 2,C {adW|s,; Wezl.
The converse inclusion is obvious, because J is an ideal of #. For

the latter half, remember that H'(J ; I)=24/ad I (see §1 in
[3D. Q. E. D.

3.2. To prove Theorem 3.2, we prepare the following four
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lemmata.

Lemma 3.5. Let DE 9. Then there -exists a vector field W,
€ J such that D(0,)=[W, 9,] (mod Z’) for i=1,...,p.

Proof. Define the functions fi(z, ), and the vector fields Y,
e Z, as

? . .
D@)=3% filz, DO+Y,  (1Sisp).
Apply D to the both sides of [d;, 3,]=0, then we have, by Lemma
1.1 (i),

2 i ; .
f; {0.(fi(z, 3))—a:.(filz, ¥))}9,=0 (1=4, k=p),
and so
0: (filz, ) =0,(fi(z, »)) (I1=14, j, k=p).
Therefore, there are unique functions A’ (z, y) (1=<7j=<p) such that

0; (W (z, y))=fi(z, y) (1=, j=p),
i (0, )=0 (1</<p).

Put W,=— i} hi(x, y)0, then we have the assertion of the lemma.
i=1
Q. E. D.

Lemma 3.6. Let DE 2. Assume that D(3,) €% (1<i<p). Then

(i) D@)=0 (1=i=p),

(i) there exists a vector field W, J such that [0, W,]=0 (1
Si<p), and DI)=[W, I] (mod &Z’).

Proof. Define the vector fields X&J and Y2 as DI)=X
+ Y. Apply D to [0, I]=3, then by Lemma 1. 1 (i), (iii), we have
that D(0,)=0 (1=i<p), and X€7,. Hence, by Lemma 1. 1 (iv),
we get

[X, I1=X=D) (mod ¥’).

Therefore, we can put W,=X. Q. E. D.
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Lemma 3.7. Let DE 9. Assume that D(0,)=0 (1=i=p), and
D(DHe¥'. Then, D(xd)e¥ (154, j<p).

Proof. Define the vector fields X;;€7 and Y,€%" as D(x,9,)
=X,+Y,;(1=i, j<p).

Apply D to [0, x,0,1=0.0;, then by Lemma 1.1 (i), we have X;;
€J,(1=i, j<p). Apply D to [I, z,0,]=0, then by Lemma 1.1 (ii),
@1v), we get X,;=0(1=4, j<p). Q. E. D.

Lemma 3.8. Let D 9. Assume that D(0,)=0, and that D(I)
e¥’, D(z0,)eZL (1<i, j<p). Then,

(i) D=0, D(z0)=0 (1=i, j=p),

(ii) there exists a unique vector field Wy on V such that

[W,, o.1=[W,, I1=[W, z.0,]=0,
[Ws 5.0:1=D(y.0:) (I1=4, j=p, 1=a=g).

Moreover, W, is in Z’.

Proof. Define the vector fields X,, €7 and Y,.=% as D(y,9,)
=X.+Y.(1<i<p, 1=a=q). Apply D to [9;, .0;1=0, then by Lemma
1. 1 (i), we have X7, for all i and a. Apply D to y.0,=[v.0,,
I], then by Lemma 1.1 (i), (iv), we get that D(I)=0 and Y,.,=0
for all 7 and a.

Define the functions fi;(y) (1=4, j<p, 1Sa=q) as X..= 2 fL:(¥)0;.
Apply D to ¥,0,=[v.0;, x,0,], then we get J

; i (0;=fu(y) ai+ [y.0:;, D(x:0,)],

hence D(x,0,)=0 (1=i<p), and fi;(y)=0 for all i#j and a.
Apply D to v,0,=[y.0;, x.0,] for i#k, then we get

Fao=fi () 0+ [y.0:, D(x:04)],

hence D(z.0,)=0 (1=i, k<p), and fi,(y)=f4(y) for all i#k and a.
Denote fi;(y) by f.(y) (1=a=gq), then D(y.9,)=f.(»)0.

Let W, be a vector field on V satisfying the equations in (ii).
Since [W,, 8,]1=[W,, I1=0 (1<i<p), then we get W, %', by Lemma
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1. 1(1), Gv). Write W, as W,= 3] h,(y)d,, then
]

[We y.0:.1="Ph.(y)0; (I=sisp, 1sa=q).

Hence, 2,(y) must be equal to f,(y) for all a. . ‘
Q. E. D.

3.3. Proof of Theorem 3.2. Let DE 9. Then, by Lemmata
3.5~3.8, we have a unique vector field Won V such that D
=adWon 7,, for n+m=—1. We can determine W as W=W,
+ W+ W,, where W;(i=1, 2, 3) are given in the above lemmata.
Clearly We 2.

Hence, by Corollary 2.2, we get that D=adW on Z.

Q. E. D.

3.4. Remarks. (1) Any derivation of J or £ is continuous,
because it is realized as adW for some We2.

(ii) Let V' be a subspace of V, spanned by »,...,%,. Then
Theorem 3.4 (i) can be rewritten as in the following form in terms
of C=(V’), which is suggestive for calculations of cohomologies of I

with various coefficients.

Theorem 3.9. Let Dex (C(V')) be the derivation algebra of
the associative algebra C~(V’). Then

H' (T 3 )= Dex (C°(V')).

This follows immediately from the following well-known fact.

Lemma 3.10. There is an natural Lie algebra isomorphism of
L’ onto Dex(C(V')).

We give here its elementary proof for completeness. Let DE Dex
(C=(V)). Define functions g.,(y) (a=1,..., ¢) as D{y.)=g.(y).
Let Y=Y g.(v)9.€% . The vector field Y operates on C*(V’') as a

first-order partial differential operator, then it defines a derivation
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Dy of C~(V’). Easily by induction, we can show that D coincides
with Dy on the polynomial algebra R[y, ..., ¥,]. Hence we obtain
Lemma 3. 10, because when j?(g) (0)=0, g is expressed as g(y)

:'tzpyayﬁgap(y) With gaﬂecm(vl)'

§4. Lie Algebras (M, ¥), 9 (M, &), and Their Derivations

4.1. Lie Algebras Associated with Foliations. Let M be a (»
-++¢)-dimensional manifold and % a codimension-g foliation on M.
Around any point of M, there is a distinguished coordinate neighbor-
hood (Uj Zyyevvy Zyy Y15+ ++5 ¥,), for which a plate represented as y,
= constant,..., y,=constant in U is a connected component of
LN U for some leaf L of & (see e.g. [6] for definitions).

A vector field X on a foliated manifold (M, %) is called leaf-
tangent, if X is tangent to the leaf L through p for any point p of
M, that is, the vector X, belongs to the tangent space T, L of L at
p. A vector field X is called to be locally foliation preserving (or .
f. p., in short), if ¢, maps every plate to some plate, where {@,} is
a one-parameter group of local diffeomorphisms generated by X.

Locally for any distinguished coordinates (i, ..., Zp Yip--+s Yo)»

a leaf-tangent vector field is represented as ﬁ‘f; (z, ¥)0;, and a [ f.

4 q
p. vector field is represented as ), fi(z, ¥)0,+ )] g.(y)0.,, where f;(x,
i=1 a=1
y) (=1,..., p) are C*functions of Zy,..., Z,, V1i,..+, Yo and g, (¥)
(a=1,..., q) are C”-functions of ¥,..., v, Here we use the

notations 0; or 9, instead of —ag— or % respectively, and the con-

vention on indices (see §1.1).

All L f. p. vector fields on (M, #) form a Lie algebra & (M, F),
and all leaf-tangent vector fields form its ideal J (M, #).

If a l. f. p. vector field X is complete, then X is foliation pre-
serving, that is, the diffeomorphism ¢, maps every leaf of & to some
leaf for each t. Simliarly, if a leaf-tangent vector field X is complete,
é, leaves every leaf of # stable. Thus, when M is compact, L f. p.

vector fields are foliation preserving.
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1.2. Derivations. Let 9 (M, F)=Dex (7 (M, F) ; £ (M, F))
be the space of derivations of 7 (M, &%) with values in & (M, %).
And let Z¢(M, F) or 24(M, #) be the derivation algebra of
L (M, #) or I (M, F) respectively. Sometimes we omit & in the
notations 7 (M, F), 9 (M, F), etc.

Lemma 4.1. Let U be an open subset of M, and XL (M, F).
Assume that [X, Y]=0o0on U for any YEIT (M, F) with support
contained in U. Then, X=0 on U.

Proof. Let p€ U. Take a sufficiently small neighborhbood U’ of
p in U, and distinguished coordinates (..., Z,5 y1,..., ¥,) in U’
Let a vector field Y on U’ be any one of 9, z,0,, and ,0,(1<4, j
=p, 1=a=q). Since I (M) is C°(M)-module, there is a vector
field YeZ (M) such that Y=Y on U’ and the support of Y is
contained in U. Then we have [X, Y]=0 on U by the assumption.
By the proof of Lemma 3.8, we have that X=0 on U’, in particu-
lar, at p. Hence we get X=0 on U. Q. E. D.

From this lemma, we get the following two lemmata, similarly as
Proposition 2.4 and Corollary 2.5 in [4].

Lemma 4.2. Let De 9 (M, F) or@go(M, F). Then, D is local.

Lemma 4.3. Let D 2 (M, ). Then, D is localizable (see § 1.2
in [4] for definition).

4.3. Proposition 4.4. Let DE D (M, F). Then, there exists a
vector field W on M such that D=adW|gzu.g,. Moreover, W is in
Z (M, F).

Proof. Take a distinguished coordinate neighborhood system {U,;
(@hoons 2y Voo ¥ }ien on (M, F). Since D is localizable, the
derivation Dy, €D(U,, Z |y,) can be defined for all A€ 4 in such a
way that D(X) [y,= Dy, (X|y,) for all X&.7 (M). Then by Theorem
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3.2, there exists a unique vector field W, on U, such that Dy,
=adW,|gw, for any A&4. On the other hand, we have Dy, |v,nv,
=DvP,U, v, SO W,=W, on U,NU, Hence there is a vector field W
on M such that W=W, on U, for all A€/ and that D=adW |zu,.
Moreover, we have WeZ (M), because W,eZ (U,) for all 2&4.
Q. E. D.

Corollary 4.5. Let D2 (M, F) or 29(M, F). Then there
exists a vector field W on M such that D=adW |gug or=
adW gz respectively. Moreover, W is in £ (M, F).

Proof. Obvious for the case DEZ 5,(M). Let D24 (M). The
restriction of D to I (M) belongs to 2 (M). Then the assertion follows
from Proposition 4. 4 and Lemma 4. 1. Q. E. D.

Then we get Main Theorem similarly as Theorem 3. 4.

Theorem 4.6. (:) All derivations of ¥ (M, %) are inner, that
is, 99(M, F)=ad¥ (M, F)=% (M, F). Hence

H (Z M, #); LM, F))=0.
(i) The derivation algebra of I (M, #) is naturally isomorphic
to (M, F), that is, Dg(M, F)={ad W |gwu.g; Wel (M, F)}
=% (M, #). Hence

H(T M, #); T M, F)N=LM, #)/T (M, F).

4.4, Examples. Let H'=H' (I (M, F); T (M, F))=% (M,
F)1T (M, F) for a foliated manifold (M, Z#). In many cases, H'

are of infinite dimension.

Proposition 4.7. Assume that there is a compact leaf L of F
such that there is a saturated neighborhood U of L, which is a product
foliation DX L, where D* is a q-dimensional disk. Then, H' is of

infinite dimension.

R
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Proof. Every leaf in U is represented by a point of D% Let f
be a function supported in D’ Then f-&Z (M, F)CZ (M, F).
Hence the assertion follows from Theorem 3. 4. Q. E. D.

However, H* may be of finite dimension. Assume that M is
compact. J. Leslie [5] gives examples of dim H'=0, or 1: (1) an
Anosov flow with an integral invariant for dim H'=0, and (i) irra-
tional flows on a two dimensional torus 7° for dim H'=1. We
can modify the latter to get a foliated manifold with dim H'=7n (for
arbitrary n<-+0), that is, irrational flows on an (n+1)-dimensional
torus 1"

We have also other examples. Fukui and Ushiki [2] shows that
dim H'=2 for the Reeb foliation on a 3-shpere S°. Further, Fukui
[1] shows that the following: let (M, &) be a Reeb foliated 3-
manifold, then dim H' is finite, and equals to the number of gen-
eralized Reeb components.
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