学位論文の要旨

所 属	三重大学大学院医学系研究科 生命医科学専攻 環境社会医学講座	氏名	中 川	泰	久
主論文の題名					
Molecular biological analysis of cardiac effect of high temperature in rats					
主論文の要旨					
The aim of this study was to investigate direct effects of heat exposure on the heart					
molecular-biologically and pathohistologically, using rats exposed to high temperatures.					
The mRNA expression of <i>natriuretic peptide type A</i> (<i>Nppa</i>), <i>natriuretic peptide type B</i> (<i>Nppb</i>),					
actin alpha 1 skeletal muscle (Acta1), myosin heavy polypeptide 6 cardiac muscle alpha (Myh6)					
and myosin heavy polypeptide 7 cardiac muscle alpha (Myh7) was determined in the hearts of the					
rats. Whereas the expression of Nppa and Nppb rapidly increased immediately after the heat					
exposure, the expression of Actal was gradually reduced, which indicated cardiac overload.					
Moreover, the expression of Myh6 and Myh7 in the heart increased 4 h after the heat exposure,					
which suggested the involvement of a compensatory mechanism. Immunohistochemical staining					
with anti-fibronectin antibody showed that positive cardiomyocytes could be detected sparsely					
4 h after the heat exposure, and they could be clearly observed 8 h after the heat exposure.					
Our results showed that hyperthermia causes myocardial damage shortly after the exposure to heat					
and that the ventricle was more vulnerable to hyperthermia-induced damage than the atrium.					
Cardiac dysfunction may be induced not only by hypercytokinemia but also by the direct effect of					
heat exposure at the early period of heat stroke, which may be one of the mechanisms by which					
heat causes death. Elucidating the mechanism of death from heat stroke could lead to not only					

diagnostic improvement but also the prevention of death from heat stroke.