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Fractal Characteristics of Free Surface
Profiles of Metal Sheets under Equi-Biaxial
Tension*

Yasushi KUROSAKI**, Masahito MATSUT**,
Tomoyuki TAKAYAMA*** and Akira NAKANISHI****

Free surface profiles of aluminum sheets under equi-biaxial tension are examined
by employing three kinds of fractal analyses, i.e., the zeroset, power spectrum and box-
counting methods. With an increase in plastic strain, long-wavelength components of
the surface profiles become dominant, and their fractal structure tends to become
constant beyond a certain strain. It is found that both surface roughness and fractal
dimensions depend on the equivalent strain, independent of the stress ratio. A method
for simulating the surface roughening behavior is presented by utilizing the power

spectrum method.
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1. Introduction

In sheet metal forming, the phenomenon of sur-
face roughening due to plastic deformation is closely
related to various surface problems, i.e., forming limit
(necking caused by surface imperfection), coating
feasibility, surface quality of products, galling and
other friction characteristics. Thus, many studies on
this phenomenon have been carried out, employing
surface roughness as a characteristic measure and
examining its relationship with plastic strain®®~®,
However, the detailed geometry of a new surface
formed by plastic deformation has not been investigat-
ed ; thus, its actual state remains unclear. One of the
reasons for this is that surface profiles involve various
classes of randomness and are difficult to characterize
quantitatively. In our previous research® we estab-
lished a fractal concept, and presented three analyti-
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cal methods, thereby clarifying fractal characteristics
on free surface profiles of aluminum sheets under
uniaxial tension.

In the present study, using a similar approach to
that used in the aforementioned research, fractals are
shown on free surface profiles of aluminum sheets
under equi-biaxial tension, and their dependence on
the tensile method (stress ratio) and strain is
examined. A method for simulating the variation of
surface roughening with strain is also presented.

2. Determination of Fractal Dimensions

A fractal property is usually characterized by the
fractal dimensions. In general, fractal dimensions of
solid surfaces are regarded as a means of expressing
an apparent complexity (randomness) in their geome-
tries or of estimating their area. Although various
methods for determining fractal dimensions had been
attempted in past investigations, no general methods
have been established, and theoretical relations
among obtained dimensions remain to be solved.
Accordingly, fractal dimensions are determined tenta-
tively in the present study, based on three kinds of
analyses presented in the previous investigation®.
Here, it should be noted that in general, solid surfaces
are not self-similar, but self-affine. Nonuniform
scaling, where shapes are invariant under
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transformations that scale different coordinates by
different amounts, is known as self-affinity. While the
zeroset and power spectrum methods to be mentioned
in the following are regarded as applicable to self-
affine surfaces, the box-counting method, which has
been employed in conventional applications, is based
on a self-similarity assumption and is inadequate for
use with solid surfaces®. However, this method is
still convenient for estimating relative complexity of
surfaces and is therefore also used here.
2.1 Zeroset method

Intersections of surface irregularities and the
basal plane, referred to as zeroset elements here, are
generated and their shapes are directly observed, as
shown in Fig. 1. Even if surfaces are self-affine, if
they are isotropic in-plane, the resultant zeroset ele-
ments become self-similar and reduce their fractal
dimensions by one®. When the area and the periph-
eral length of each zeroset element are denoted by Az
and Lz, respectively, and Lz has the dimension Dy, the
following is obtained from the measure-dimension
relation®.

A%/ZOCLIZ/DZ ( 1 )
When the relation between L; and Az is measured
experimentally, the zeroset dimension D: can be
determined as Dz=2a; from the slope of the log(Lz)
vs. log (A7) plot, denoted by az.

2.2 Power spectrum method

The power spectra Sp and the wavelengths A are
obtained by applying FFT analysis to the surface
profile curves, and the relation SrpoxA™ is assumed.
The power spectrum dimension Des can be determined
from the slope of the log(Sr) vs. log(4) plot, denoted
by B, as follows® :

Dps=2, 0=p<1
Des=E+(3—8)/2, 1£p<3 (2)
Dps - 1, 3 < 8
where E is the Euclidean dimension, and £=1 in this
study.

2.3 Box-counting method
The surface profile curves are closely covered
with boxes of specified shapes and sizes®. While the
shapes of boxes are similar, their sizes are varied (52
kinds of boxes were used in this study). The follow-
ing relation is assumed between the covered box
number N and its side length 7.

—— - - —

(Zerosets)
Basal plane
Surface

Fig. 1 Schematic explanation of zeroset method
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Nocy=Ps (3)
The box dimension Ds can be determined as Ds= —az
from the slope of the log () vs. log(7) plot, denoted
by @z. Since the Dg value depends on the box shape,
two shapes, square and rectangular, were employed ;
their width vs. height ratios were selected as 1 : 1 and
17 2.36 on the graphic plane, respectively.

3. Experimental Procedure

3.1 Material and equi-biaxial tension test

The tested materials were commercially pure
aluminum sheets (A 1100-O, 0.8 mm thick, crystal
grain size 17pm). Their uniaxial properties are
shown in Table 1. The initial surface roughnesses of
the sheets (maximum height roughness R,) were 0.53
pm and 2.13 pm in the directions parallel and perpen-
dicular to the rolling direction, respectively. The
outline of the equi-biaxial tension test is illustrated in
Fig. 2. While circular plates 100 mm in diameter were
machined from the original aluminum sheets, circular
driving plates of the same size were made of killed
steel sheets (0.8 mm thick) and in each of these sheets
a 10-mm-diameter hole was bored at the center.
After the driving plate was put on the aluminum plate
(specimen), both were stretch-formed with a flat-
headed punch 36 mm in diameter and 4 mm in profile
radius. The interface between the punch and the
driving plate was lubricated with graphite grease.
The stretch-forming test was carried out by means of
the sheet metal forming machine under 0.2 mm/s
punch speed. These conditions were found to be

Table 1 Uniaxial properties of A 1100

Tensile * * Total
Direction | strength | N—value | F—value | r—value | elongation
MPa MPa %
0° 103 0.27 193 0.66 27.1
45° 95 0.27 176 1.18 32.8
90° 99 0.28 187 0.66 33.1
Mean 99 0.27 185 0.92 315
*%:0=F¢ N
( Y3 _ Flat—headed punch
636 “ 1 Blank holder
' pe Driving plate
.- (Killed steel)
! Specimen
——~(Aluminum)
[Te}
(=
N

$42.5
~ 6435

—>

Fig. 2 Equi-biaxial tension test

JSME International Journal

NI | -El ectronic Library Service



The Japan Soci ety of Mechani cal

Engi neers

sufficient for deforming the flat head region of speci-
mens until the initiation of localized necking.

3.2 Generation and measurement of zeroset ele-

ments
In order to estimate the zeroset dimension Dz,

small square pieces of 12 mm side length were cut out
from the flat head region of specimens, and their lower
free surfaces (see Fig. 2) were lapped on a precision
lapping plate (0.04 pm R,) with fine diamond powder
(0.125 pm nominal grain size) ; thus, the zeroset ele-
ments were generated. Extreme care was taken not
to cut the valley walls of surface irregularities during
lapping. The zeroset elements were observed at the
central region of the test pieces within a circle of 10
mm diameter through an optical microscope and a
CCD camera. After signals of the magnified images
were transferred to an image processor and processed
into binary images, the area Az and the peripheral
length Lz of each zeroset element were measured.
One picture involved 512X512 pixels, and each pixel
was calibrated as 2.33X2.33 pm®.

3.3 Measurement of surface profile curves
‘ In order to estimate the dimensions Des and Ds,
surface profile data were obtained under the no cutoff
condition by means of a stylus profilometer (Talysurf
10), and their signals were digitized and transferred to
a computer. The stylus end surface was flat and
square (2.5X2.5pm?). The resolution of this measur-
ing apparatus was estimated under the nominal
magnifications of X1000 and X20 as 0.0174 um and
2.054 pm in the vertical and traverse directions, respec-
tively. Measurement of the profile curves was carried
out three times for each of the two directions, parallel
and perpendicular to the rolling direction, on the
lower free surface of the specimen shown in Fig. 2.
These respective directions will be denoted by 0° and
90° hereafter.

4. Results and Discussion

4.1 Surface roughening behavior

Surface curves recorded in the 90° direction are
exemplified in Fig. 3. In the present experiment, when
the equivalent strain €., exceeded 0.71, a trough with
a width near the sheet thickness appeared on the
specimen surface, parallel to the 0° direction. Accord-
ingly, this value was regarded as the critical strain of
necking initiation. From Hill’s anisotropic theory, the
equivalent strain eeq in equi-biaxial tension is expres-
sed as ee=+(1+7)/2|e:], where » is the anisotropic
parameter called an 7-value, and &: is the thickness
strain. Referring to Table 1 and using the in-plane
mean 7-value of 0.92, the relation €.=0.97|e is
obtained ; thus, the difference between eeq and |e:| is
small. Furthermore, it was pointed out that Hill’s
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anisotropic theory is inadequate for aluminum
sheets?, For these reasons, the equivalent strain was
estimated by €.¢=|é:|, assuming an isotropic material.

Variations of surface roughness (maximum
height R,) with tensile strains &, (uniaxial) and €»(=
le:|/2, equi-biaxial) are shown in Fig. 4(a), where.
Ry values in uniaxial tension were measured for the
specimens elongated in the 0° direction. It is seen
from Fig. 4(a) that within a certain strain level the
R, value increases linearly with increasing strains
under the respective tensile methods (stress ratios).
However, the construction of Ry vs. €es plots gives a
single relation including two tensile methods, except
for the steep increase in Ry due to the occurrence of
necking, as shown in Fig. 4(b). Such a result that the
dependence of Ry on the strain can be expressed as a

Initial
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Fig. 3 Examples of recorded surface profiles
(90° direction)
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Fig. 4 Relationship between surface roughness R, and
various strains
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unified relation irrespective of the stress ratio by
employing e was reported previously by Yamaguchi
et al®,
4.2 Zeroset dimension

Images of the zeroset elements obtained in the
equi-biaxial tension test are exemplified in Fig. 5,
where the white parts correspond to the zeroset ele-
ments. The relative cutting height denoted by & is
defined as 6 =(Ryo— Ryc)/Ry0x100(%), where Ry and
Ry are the surface roughness before and after cutting,
respectively. An example of the log-log plots of the
peripheral lengths Lz vs. areas Az measured for the
zeroset elements is shown in Fig. 6, where a linear
relation is observed, indicating that the zeroset ele-
ments follow a fractal geometry. In this study, con-
sidering pixel resolution, the zeroset dimension D:

Fig. 5 Example of image of zeroset plane (geq=0.44,
0=36.89%)

Lz

4

10t 100 10°

2
Az um

Fig. 6 Relationship between peripheral length L, and
area Az of zeroset elements (e.e=0.44, §=236.8%)
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Fig. 7 Relationship between D; and relative cutting
height § (€eq=0.44)
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was determined in the range Az=20 um®. The rela-
tion between Dz and & is shown in Fig. 7, indicating
that Dy is nearly constant and independent of ¢ ; thus,
each asperity of the surface has a uniform fractal
structure. Mean values of D7 for 6 - 8 kinds of & are
denoted by Dz, and their relation with equivalent
strain &e is shown in Fig. 8. D, decreases with increas-
ing €e¢ and attains a nearly constant value of 1.35
beyond €e=0.1. D; values in the case of uniaxial
tension are added to Fig. 8, and it is noted that Dz can
be plotted on a certain unique curve throughout the
uniaxial and equi-biaxial tensions by using €. A
similar result has been obtained with regard to Ry, as
seen in the previous section.
4.3 Power spectrum dimension

- Log-log plots of the power spectra Sr and wave-
lengths A are exemplified in Fig. 9, where Sr values
are expressed by the measured spectra divided by the
measurement time (53.2s). A linear relation which
shows an inflection at A=100 pum is observed ; thus, Sr
follows a multifractal property. Similar phenomena
to this were always seen irrespective of the measure-
ment direction of surface profile curves and the
strains. The transitional wavelength at the inflection
point was found to be nearly constant (1=100 um),
but the reason for this is unclear at present. In the
range of A longer than 100 um, denoted by the region

2.0
18 ¢ o Equi— biaxial
i o Uniaxial
~ 161
[=) “Q
1'4:50(3% « %o, oo o
1.2}
1.0 e

0 02 04 06 08
Eeq

Fig. 8 Relationship between D; and equivalent strain &eq

A um

Fig. 9 Relationship between power spectrum Sr and
wavelength A (90°, €g=0.57)
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bes in Fig. 9, B=<1(Drs=2) was always found, indicat-
ing that a variation in £ has no effect on Dps. A limit
of the shorter wavelength was specified as 10 pm,
taking into account an error due to the geometry of
the stylus profilometer. Finally, the power spectrum
dimension Dps was estimated for A ranging from 10
pm to 100 pm.

The relation between Dps and €eq is shown in Fig.
10. Dps decreases with increasing €e, and attains a
nearly constant value of 1.1 beyond €e=0.1 in the 0°
direction or beyond €. =0.3 in the 90° direction. With
an increase in €eq, the difference between Des values in
the two directions decreases, suggesting that the
fractal of surface profiles tends to be in-plane
isotropic.

4.4 Box dimension

Log-log plots of the covered box number N and
the box width 7, obtained from the surface profile
curves, are shown in Fig. 11, where a linear relation
showing an inflection at the I.P. point is observed again,
presenting an apparently multifractal character. Such
multifractal phenomena were always observed irre-
spective of the box shape, measurement direction and
strain. The slope of the line in region bz was found to

2.0
1.8¢ *0° 490° Equi— biaxial
L6 * 00 2490° Uniaxial
OfF 42
2 L N
A o14f 5,
- AA
121 2o 4
N .O?u 182 13 ‘; ':l ::n "”9’

L0 02 04 06 08
€ eq

Fig. 10 Relationship between Dps and equivalent strain
Eeq

Fig. 11 Relationship between box number N and box
width 7 in box-counting method (90°, €.e=0.21,
rectangular box)
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be always near —1(Ds=1). This is peculiar to the
box-counting method, where in the range of » exceed-
ing a certain limit, details of the surface profiles
cannot be detected and are estimated as smooth.
Taking into account an error due to the geometry of
the stylus profilometer, box dimension Dz was deter-
mined in region az with » ranging from 10 pm to the
I.P. point.

The relation between Ds and equivalent strain €eq
is shown for the case of rectangular boxes in Fig. 12.
While Ds increases in the 0° direction with increasing
Eeq, it decreases in the 90° direction, and then both Dg
values become nearly constant beyond €.,=0.3. The
difference in Dz between the two directions reduces
with increasing €.q, and here also, the fractal tends to
be in-plane isotropic. Although not shown here, the
Dg value in the case of the square box was found to be
less than that in the case of the rectangular box, but
its variation with e, was similar to the afore-
mentioned.

The box width at the aforementioned I. P. point is
denoted by 7¢r, and its relation with e is shown in
Fig. 13. It is noted that 7. increases linearly with
increasing €eq, followed by a steep increase. Strain &eq
upon the steep increase in 7. is about 0.7 in equi-
biaxial tension, and nearly agrees with that on local-
ized necking initiation. A similar phenomenon to this

16
L X
La] *eoag e At
m od;oo (o]
A .

1.2 o o c .
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Fig. 12 Variation of D with equivalent strain €eq
(rectangular box)
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Fig. 13 Variation of critical box width 7. with
equivalent strain eeq (90°, rectangular box)
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was also observed in the uniaxial tension test. Such
a steep increase in #.r is attributable to large surface
waviness caused by localized necking (see Fig. 3).
Although R, was also expected to indicate necking
initiation, it did not give as good a reproducibility and
as clear a result as 7. did.

4.5 Characteristics of surface roughening and

their dependence on stress ratios

Various fractal dimensions obtained in the pres-
ent experiment are summarized in Fig. 14. Results in
the uniaxial tension are also added. Des and Ds are
averages of Dps and Ds in the 0° and 90° directions,
respectively. They as well as D are regarded as
means for expressing in-plane mean properties, and
are focused on in the following discussion.

As discussed previously®, while Dz is a measure
that expresses directly the complexity in surface
geometries, Dps indicates the dependence of power
spectra on the wavelength ; thus, it is taken to be an
indirect measure, because it involves the transforma-
tion of surface geometries into the power spectra. Ds,
which is easy to estimate, is also a measure related to
surface complexity, and its property may be rather
near to that of D;. However, since Dz attributes no
unique value to self-affine surfaces®, it should be used
for an expedient purpose. The different fractal dimen-
sions shown in Fig. 14 have different physical mean-
ings. However, characteristics common to all the
fractal dimensions are as follows:

@D Employing the equivalent strain € facilitates
expression of strain dependence of fractal dimensions
as a single curve, irrespective of the tensile method
(stress ratios).

@ Either of the fractal dimensions becomes con-
stant beyond a certain strain level.

Characteristic @ is also seen in Figs. 10 and 12.
Yamaguchi et al®. carried out tensile tests while
varying strain ratios, and obtained a similar conclu-
sion with regard to surface roughness Ry. These
results suggest that if macroscopic plastic work on
the sheets is specified, their corresponding surface

2.0
. 18t
[=] k
IQ ag W am L L]
< 14- %@%@ - - ° o0 oy "
=) 12?'
100 -MA& Ban e, et
0 0.2 0.4 0.6 0.8

eq

0§z A]_—)ps -:DB(Rectangular)
oDz 2Dps oDs(Rectangular)

Equi— biaxial
Uniaxial

Fig. 14 Comparison among various fractal dimensions
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structure is uniquely determined independent of the
stress ratio. However, further investigations are
required to confirm whether this rule holds in general.
Characteristic @ indicates that when a surface area
increases macroscopically and microscopically with
increasing plastic strain and is eventually dominated
by the newly formed surface, the fractal structure of
surfaces becomes constant.

The D; value in the steady state is found to be
about 1.35. Since it is a dimension of the periphery
curves of zeroset elements generated from a surface,
the dimension of this original surface can be estimated
as 2.35, because the surface dimension is larger by one
than that of the periphery curves, as stated in section
2.1. The decrease in Drs seen before the steady state
means that with an increase in surface area, spectrum
components with longer wavelengths become
dominant. The information on Des is utilized for
simulation of surface roughening, as mentioned in the
following.

5. Simulation of Surface Roughening

An attempt was made to develop a computer
simulator creating surface profiles by modeling a
distribution of the power spectrum and by using
inverse FFT. A model of the spectrum distribution is
schematically illustrated in Fig. 15. First, the relation
of log(Se) vs. log(A) was approximated to three
broken lines, referred to as a base spectrum Sr here.
The parameter A is a wavelength at the boundary
between regions ars and brs shown in Fig. 7, and a
straight line was applied to the range A<A.. From an
examination in the range A>A (region bes),
approximation to two broken lines was regarded as
adequate for the purpose. The slopes of three lines
and the wavelengths at the inflection points are denot-
ed by B, B2, Bs and A, A in Fig. 15, respectively.

Regionl 2 3

Sp, Sp’

T T T T VT T T Ty T

T

Lol LIt

i i)

/11 A2 A

Fig. 15 Three-broken-lines model of power spectra
under equi-biaxial tension
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Fig. 16 Comparison of surface profiles between experiment and simulation (90°)

Second, using the following equation, the base spec-
trum S? was transformed into the spectrum Sp involv-
ing such a random dispersion as shown in Fig. 9.
Sp=SpG*=10A*G* (4)
where G is Gaussian random number, and ¢ and S are
constants in each line constituting the base spectrum.
The real and imaginary parts of Sr, denoted by A and
B, were calculated using the following equations®?.
A=S}? cos(27r¢)} (5)
B=S}?sin(2x¢)
where ¢ is a random number ranging from 0 to 1.
After A and B were determined, surface profiles were
generated through the inverse Fourier transformation.
According to an examination of the input parameters,
the simulation accuracy improved with their values
near the experimental ones. However, good results
were still obtained by fixing 8. and Sz as 1 and 3,
respectively.  Thus, the input parameters were
reduced to four (¢ and A in region 1, & and Az), and
determined from the experimental data. Surface
profiles created by the aforementioned method are
compared with those obtained experimentally in Fig.
16, indicative of a satisfactory simulation except for
the waviness accompanied by the initiation of local-
ized necking. In this way, the validity of the present
simulation has been confirmed. However, it may be
said that this consequence is a matter of course,
because the parameters used in the simulation have
been evaluated directly by the experiment. However,
although not shown here, by introducing some func-
tions expressing the relations of the respective param-
eters ¢, /i, & and A with the equivalent strain &eq,
prediction of a surface profile at any specified strain
was achieved.

6. Concluding Remarks

The results obtained in the present research are
summarized as follows :
(1) In the process of surface roughening under
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uniaxial and equi-biaxial tensions of aluminum
sheets, surface profiles with long wavelength compo-
nents grow with increasing surface area, followed by
a steady state causing a constant fractal dimension.
Accordingly, the fractal structure of newly formed
surfaces due to plastic deformation is regarded as
constant.

(2) The increase in plastic strain reduces the
variation of fractal dimensions in the tested direc-
tions, thus making surfaces in—-plane isotropic.

(3) The box-counting method serves to sensitive-
ly detect the initiation of localized necking in both
uniaxial and equi-biaxial tensions.

(4) As a possible rule with regard to the rough-
ness and fractal dimension of roughening surfaces, it
is suggested that their strain dependence is unifiable
by employing the equivalent strain, irrespective of the
tensile state (stress ratios).

(5) Based on the results of power spectrum anal-
ysis, a method for simulating surface roughening is
presented, and its validity is confirmed.

References

(1) For example, Kienzle, O. and Mietzner, K., Atlas
Umgeformter Metallischer Oberflachen, (1967),
p. 19, Springer-Verlag.

(2) For example, Yamaguchi, K., Nishimura, S.,
Takakura, N. and Hukuda, M., Thickness Depen-
dence of Instability Strains in Uniaxial Tension of
Sheet Metals, J. JSTP.,(in Japanese), Vol. 21, No.
237(1980), p. 909-916.

(3) For example, Kobayashi, T. and Ishigaki, H.,
Granulating Behavior of Surface Texture and
Deforming Limit in Press Forming, J. JSTP.,(in
Japanese), Vol. 15, No. 158(1974), p. 197-205.

(4) Kurosaki, Y., Matsui, M., Kitoh, T. and Ta-
kayama, T., Fractal Analysis of Free Surface
Profile of Sheet Metals under Uniaxial Tension,
Trans. Jpn. Soc. Mech. Eng.,(in Japanese), Vol.
62, No. 602, C(1996), p. 4107-4113.

Series C, Vol. 41, No. 3, 1998

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

492
(5) Mandelbrot, B.B., Self-Affine Fractals and (9) Peitgen, HO. and Saupe, D., The Science of
Fractal Dimension, Physica Scripta, Vol. Fractal Images, (1988), p. 61, Springer-Verlag.
32(1985), p. 257-260. (10) Woodthorpe, J. and Pearce R., The Anomalous
(6) Peitgen, HO. and Saupe, D., The Science of Behaviour of Aluminum Sheet under Balanced
Fractal Images, (1988), p. 45, Springer-Verlag. Biaxial Tension, Int. J. Mech. Sci., Vol. 12, No.
(7) Takayasu, H., Fractal(in Japanese), (1986), p. 18, 4(1970), p. 341-347.
Asakura Publishing. (11) Peitgen, H.O. and Saupe, D., The Science of
(8) Peitgen, HO. and Saupe, D., The Science of Fractal Images, (1988), p. 93, Springer-Verlag.
Fractal Images, (1988), p. 65, Springer-Verlag.
Series C, Vol. 41, No. 3, 1998 JSME International Journal

NI | -El ectronic Library Service



