

本格化しつつある日本の風力開発

清水幸丸*

1 緒 論

最近風力発電が話題になり始めた。これまで「風を利用する」という行為は、我が国では帆船あるいはヨットといった舟への利用が中心であった。日本では、風の運動エネルギーから電力多量使用時代に間に合う程の電力を得るということは、夢としては成立しても、現実味のとぼしい内容と理解している人々が多い。このような状況から我が国では、独自開発は大幅に遅れた。現在欧米の風車技術は格段の進歩をとげ、1,000kW~1,500kW,直径55m~65m程度が主力商品

になりつつある。さらに、風力発電の拡大に伴って洋上風力(off-shore)開発研究が相当レベルまで進んできている。洋上の場合には、風車規模も大きく5,000 kW程度が開発の対象として上げられている。このような状況になれば、自主開発に腰の重い人々も目を覚ますのでなかろうか。

図1には日本の風車設置状況を示す。400 kW級の中途半端な風車が多数並んでいるが、国際的にみれば「おやおや」という首をかしげる状況である。これは今までの日本であるが、この期におよんで750 kW機、1,000 kW機が建設されはじめ、規模も2万kW~3万

図 1 1999年前半の日本の風車設置状況

^{*} 三重大学, 工学部機械工学科

kW場合によっては6万kWという集合型発電所の建設が進んでいる。この背景には上にも述べたが、大型風車技術開発の成功と、地球規模環境問題の一つ「地球温暖化」対策の諸施策が上げられる。中でも「新エネルギー利用促進に関する特別措置法」(新エネ法)の役割は大きい。

技術開発の内容としては、代表的なものを上げると「風車専用厚翼の開発」、「長尺翼の取り付け方法の開発(1例としてTボルト構造)」、「発電機2発電方法の開発」(2重巻線、2段切り替え発電機、インバータ技術使用の連続可変速発電機)になる。当然であるが部分的には多数の改善点がある。

以下の各節では「風とは」「先端技術風車とは」を述べることにする。

2 風力エネルギーの評価

2.1 風と生活史

風力発電について,よく話題になる問題は,風は吹いたりやんだりであてにならない,すなわち,変動性が大きい,または間欠的であるという点である。

我が国の場合,すなわち,日本列島で長い歴史を背負って生活してきた人々にとって,風は生活の上で農作物に被害を与える,住みにくいといった障害物であり,それをさけて生活してきた。幸い日本は山岳国であり,国土面積の70%が山岳地帯であるために,山かげに住む,あるいは農耕期間の春,夏,秋に風のほとんど吹かない場所に住むという方法をとってきた。人々はわずかの平坦地に耕地を形成し,生活してきた。風は生活に必要でなかった。

これに対して、ヨーロッパ大陸の海岸線に面した 国々、例えばデンマーク、ドイツ、オランダ、ベルギー、フランス、英国、スペイン、ポルトガル等におい ては、大きな山岳部が少なく、冬期間または年間を通 して、絶えず海洋からの一定の強さの風にさらされて 生活してきている。こういった生活空間においては、 風は変動の大きいものではなく、かなり定常状態で、 すなわち、一定速度で吹くものという体感を持つこと になる。このような場所では、風の持つエネルギーの 有効利用技術が進み、揚水、農産物加工の動力源、小 工場の動力源等として、風車が利用されてきた。この 歴史は現在においても引き継がれ、今や750 kW、 1,000 kW、2,000 kWという大型風力発電技術として 脈々と発展してきている。

さて,日本の風は,本当に吹いたりやんだりの気ま ぐれなものなのであろうか。確かに,伝統的に人々の 多く住んでいる場所はそうであるかもしれない。しか し、実際にはそうでない場所、つまりヨーロッパ大陸 の海岸線領域と同様な条件の場所も多数存在する。そ れらの場所は、北海道、本州、四国、九州、南西諸島 と全国に存在する。

2.2 風の定常性と変動性

地球上の風を大きく把握すると図2-1のようになる。同図は、地球上の風の発生状況のモデルを示している。地球上の平均的な風は、主に図2-1右側に示した地球上にそそがれる太陽エネルギーの密度差に基づくヒートポンプ作用によって生じる大気大循環と地球の自転に基づくと言われている。さらに、地域地域における風は、地形やその他地理的諸因子の影響を受け複雑な風となる。

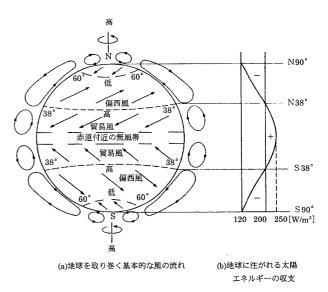
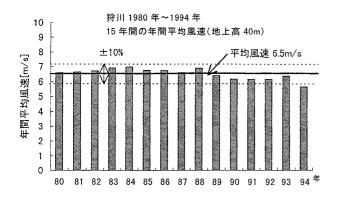
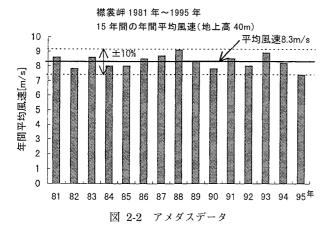
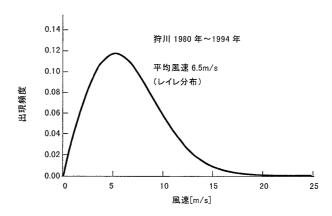




図 2.1 地球上の風の発生モデル 資料「風力発電技術」(清水幸丸・1999)

次に、日本列島における風について注目してみる。 図2-2には、山形県立川町狩川のアメダスデータ(観測点地上高6.5 mと低いので、換算式により地上高40 mへ換算しなおした値)15年分(1980年~1994年)および北海道襟裳岬アメダスデータ(観測点地上高12 mを、地上高40 mへ換算しなおした値)15年分(1981年~1995年)の各年の年間平均値および15年平均値を示す。15年平均値に対して、各年の年間平均値は最大で12%の差が見られるが、通常年では、15年間程度の平均値に対して±5%程度の差が見られるにすぎない。


図2-3には,年間平均風速を与えた場合の年間の風速の出現頻度分布を示す。平均的な考察を行うため, 定評のあるレイレ分布を用いた。自然の風は大体レイ

レ分布関数で示されるような風速分布になるとされている,図2-2,図2-3に示すとおり,それぞれ特定の地点の風は,年間平均で見れば ± 5 %程度,特異年を入れても ± 10 %程度の変動が見られるにすぎない。すなわち,極めて安定していると言える。このデータに基づいて,年間風力発電量をkWhで積算すると,風のエネルギーは風速の3乗に比例するから,年間の発電量の統計は,通常 ± 15 %,特異年は ± 30 %程度の変動が予想される。これがkWh効果と呼ばれるものである。

さて、日変化、季節変化を見ると、次第に変動幅は 大きくなる。場所によっては日変化の変動幅が大きく なるが、この評価をkW効果という言葉で表す。電力 の安定供給のためには、瞬時出力のkWが安定してい る必要がある。例えば、現在、我が国では、昼間と深 夜では電力使用量に4:1の差があるといわれており、 これらの使用電力量の変動に対応するために、夜間の 余剰電力を用いて揚水し、昼間の需要増大時にこの水 を用いて水力発電を行う揚水発電等の手段が用いられ ている。風力発電の瞬時出力は風力の日変化に影響されるため、風力発電による発電量が大きくなると、 時出力の変動に対応するための安定化の手段が必要に なる。しかし、現在は、風力発電量はまだ、全発電量

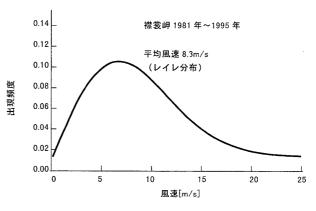


図 2-3 風速出現頻度

の0.01%未満であり、新エネルギー大綱の目標値が成功裏に達成されても0.1%にすぎないので、まだその心配の必要は全くない。

なお、将来において風力および太陽光等の出力変動の大きい発電による発電量が、全発電電力量の5%~10%に達した段階では、電力供給量の安定化の手段として、揚水発電に加えて天然ガスを用いたガスタービン発電を併用することによって発電量の平滑化、すなわちkWh効果を高めるのがよいと提案されている。

3 現在の先端技術風車

3.1 風力タービンの現状

1998年末現在で世界に設置されている風力タービン(風車)の設備容量は、9,839 MWに達している(表 3-4参照)。EUの 2030年の目標値 100,000 MW(1億kW)には、まだしばらくの間があるが、着実に進展している。風力タービンの増設に伴い技術革新も着実に進展している。1980年当初には、主力機の出力が 50 kW であったが、1995年時点で 500~800 kW が主力機となり、1996年には、商用機として1,000 kW~1,500 kW機が登場し、2000年には、1,000 kW機が主力機になると予想されている。

表 3-1 次世代風力タービン

パッシブ型テイータ&ブレー	ブレードに働く推力を利用して、テイータ運動と設計出力以上でのブレーキ効果を
キ付きロータ	発揮させる。
ロータの各種運動の空気力	風力タービン・ロータ直径は、大型化しており各回転角の場所場所で空気力学的特
学的解明および風カタービン	性が異なってくる。この問題を理論的に解明する。さらに、ブレードの強度、および
専用翼型の開発	回転半径各位置で翼に対するレイノルズ数が異なるので、これらの問題を考慮した
	ブレード専用翼型の開発が行われているが、さらに発展させる。.
ギャレス風力タービン	多極発電機を用いることによって、増速ギヤを省略することができる。この方法がいく
	つかのメーカーによって開発されている。
可変発電システム	タービンロータを風の強弱に応じて可変速に回転させると、ロータに衝撃的に加わる
	空力変動力を大幅に緩和できる。可変速発電システムは、いくつかの方法がある。
the min at a second of the sec	この技術は、近未来の重要技術なので、今後継続的な研究が必要である。
低騒音風力タービン	ここ数年、風車ブレード翼端形状、ギャーボックスおよびナセル密閉構造等の改良
•	により騒音は1/3程度に低下している。しかし、さらなる努力により、極力騒音の低い
	風力タービンが追求されている。
柔構造システム	機械・構造、電気・制御面で柔軟な設計思想を導入し、耐久性の向上と重量、コスト
St. I deployed the training	の大幅な低減を実現するシステム。
電力網接続方法の簡略化と	商用電力網に風力発電電力を接続する場合、いくつかの問題が生じる。これらの対
安全確保	応策は、国によって異なる。さらに、電力網なるものはヨーロッパと日本また、日本と
	アジア各国では相当異なる。また、同じ国内でも接続条件が場所によって異なる。経 済的に電力網への接続が可能なように研究開発が待たれる。
高強度・軽重量素材の開発	
7 777 27 1-22227777 1777	ブレード・ナセル等に、高強度・軽重量素材が求められている。
安全管理システムの開発	集合型風力発電所を建設した場合、人件費節約形の高度な安全管理体制が必要
	になる。台風・地震等の災害時にも十分対応できるシステムが望まれる。
風力タービン立地場所の選	風力タービンの設置場所選択は、重要な問題である。特に我が国のように山岳地帯
択手法の開発	の多い国では、多数の風力タービンを設置する場所を特定するのに困難を伴う。山
	岳部凹凸地形と風の関係についての研究は少なく、適格な判断が難しいので、今
the recipient of the transfer	後人工衛星画像等を用いた適地選定手法を開発する必要がある。
精度が高くかつ低価格で行	さらに、風況測定を全国的に行い、強風地域を正確に把握する必要がある。全国的
える風況観測手法の開発	な風況測定に当たっては、低価格で面的な測定が可能なように、アルミポール15m
	を用いる方法が良い。安価なポールでも十分強風に耐えることが過去の測定から明らかになっているので、安価なポールを用いて本数を増やし、面的に強風域の発見
	が望まれる。
	ハーヹみ4 レヘシ。

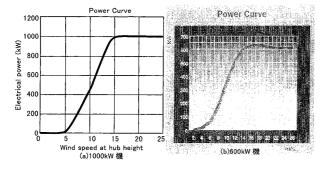


図 3-1 風車出力特性

さらに風力タービンの技術革新が、コスト低減および風力タービン設置場所の拡大に対応できるように行われている。設置場所の拡大とは、これまでの海岸線近くの平坦地だけでなく、浅い海面上、急な斜面や凹凸の大きい山岳部にも建設が拡大しているということである。山岳部では、風の乱れが一段と大きく、風力タービンは変動力に対応できる能力が求められる。このような背景をもとに近未来の風力タービンに求められる革新技術を整理すると表3-1のようになる。

3.2 風力タービンの制御(運転方式および駆動方 式)による分類

図3-1には、風力タービンの出力曲線、すなわち、 出力と風速の関係を2例程示す。風力タービンは設計 出力以上になると発電機容量の制約から風を逃がす必

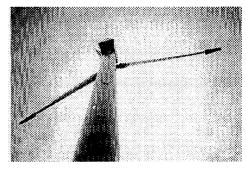


図 3-2 翼端小翼失速制御

表 3-2 風車の発電方式

定速運転		可変速運転		
ピッチ制御	失速制御	ピッチ制御	失速制御	
18	59	8	2	

要がある。この方法には、2つの方法が用いられている。(1) フルスパンピッチ制御(2) 翼端小翼失速制御(図3-2参照)(1) および(2) の方式は、それぞれ特徴があり平均風速の違い、風の乱れ強度によって、その特徴が発揮されるように設計されている。表3-2には、36社87機種のフルスパンピッチ制御および翼端失速制御の分類を示す。定速発電・可変速発電ともに失速制御風車の方がフルスパンピッチ風車より多い。表3-3には、風車の発電方式について、調査結果

表 3-3	フルスパンピッ	チ制御および翼端失速制御の分類

	定速	重 車云		
方式	2段切替方式	2発電方式	可変速運転	直接駆動式
	(2重巻線発電機)			
	極数変換	主発電機+	風速に応じてローター回	直接駆動式発電機
	低風速域	小型発電機	転速度を変える	(減速機なし)
i i	(4~7m/s)6極	(主発電機		
	1	定格の1/5~1/3)		i
	(7m/s~)4極			
	低風速域(4~7/s)		ガスト等による瞬間的な	増速機トラブル無し
1 1	で発電可能	で発電可能	トルク変動をロータ回転	
				ギヤ騒音無し
特徴	低風速域:回転数低	低風速域で小型発電機	回避	
1411	(定格の2/3)→空力	はフルロード		
	的騒音減少		低風速域:回転数低	
1			(定格の2/3)→空力的	
			騒音減少	

を述べている。定速運転発電においても二つの方法がある。一つは,2段切替方式:風速 $3\,\mathrm{m/s}\sim7\,\mathrm{m/s}$ 程度では,6極で低回転発電を行い, $7\mathrm{m/s}$ 以上では,4極で高回転発電を行う。二つ目には,2発電機方式:主発電機プラス小型発電機(主発電機の $1/5\sim1/3$)。可変速発電:風速に応じて回転数を変える。突風によるトルク増大を回転数を高めることによって緩和する。さらに,直接駆動方式では,ロータに発電機が取り付けられており,しかも可変速で発電を行う。

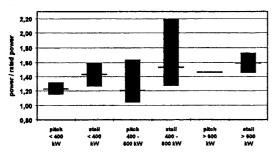


図 3-3 発電出力ピークの瞬時値1)

図3-3には、風車ブレードの制御方法の違いによる発電出力ピークの瞬時値を比較したものである。失速制御方式では、最大で定格出力の2.2倍に達し、フルスパンピッチ制御では可変発電機を組み合わせると1.2~1.3倍程度におさまる。

図3-4には、ロータ直径とkWh当たりの建設単価の年別変化を示す。図3-5には、風車定格の違いによる発電単価と年間平均風速の関係を示す。図3-6には、

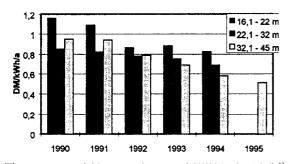


図 3-4 ロータ直径とkWh当たりの建設単価の年別変化1)

ナセル1 kg当たりの設備単価とロータ直径の関係を示す。図3-7には、比風力発電単価と、ロータ直径の関係を示す。図3-8には、中型風車および大型風車の翼端周速度の関係を示す。図3-9には、ナセル1 kg当たりのトルク発生量と風車直径の関係を示す。

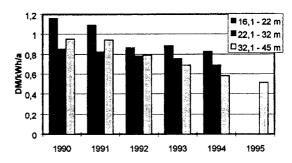


図 3-5 風車定格の違いによる発電単価と年間平均風速の関係1)

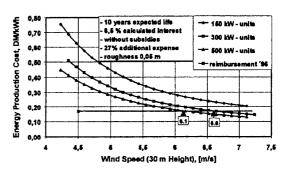


図 3-6 ナセル1 kg当たりの設備単価とロータ直径の関係 10

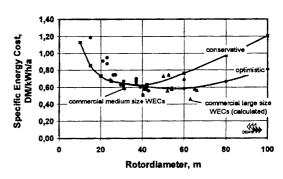


図 3-7 比風力発電単価とロータ直径の関係1)

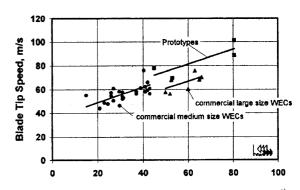


図 3-8 中型風車および大型風車の翼端周速度の関係1)

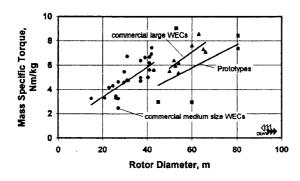


図 3-9 ナセル1kg当たりのトルク発生量と風車直径の関係¹⁾

これらの図は、小型機から大型機に至る過程の風車 を評価する諸コスト要素を示している。大きな結果は、 風車の大型化によって発電単位は低下する傾向にある という事である。

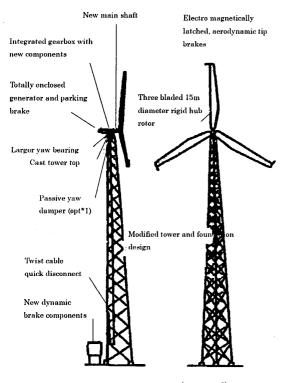


図 3-10 AOC15/50風車²⁾

3.3 先端技術風力タービンの例

図3-10にはAOC15/50風力タービンを紹介する。「翼根側に厚翼を用いたり、チップブレーキ、固定ピッチ、ダウンウインドタイプ、ヨーダンパ付きパッシブヨー等」新しい考え方を多数取り入れた風力タービンである。図3-11にはAOC15/50に採用した翼の翼断面形状、図3-12には改良機AOC15/50と従来機Enertech44/40との性能比較を示す。きめこまかな改良によって、低風速領域の性能が著しく改善される。

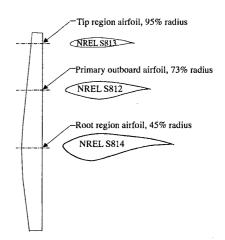


図 3-11 AOC15/50機の翼断面²⁾

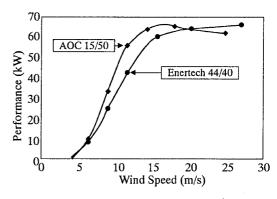


図 3-12 改良型風車の性能比較2)

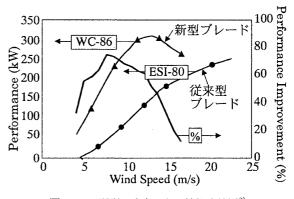


図 3-13 翼型の改良による性能改善例2)

図3-13には、新型風車専用翼型を用いた場合の性能 改善例を示す。翼型によって、50%~60%という性 能改善が達成された例である。風車専用翼型の開発は 今後の重要な研究課題である。

図3-14には、三重大学で開発中のティーター・ブレーキ&ダンパ機構の性能を示す。まだ風胴実験の段階であるが、すぐれたブレーキ効果(定格風速以上で)を示す。

図3-15には、ロータ・発電機一体形のラハウェー 風車を紹介する。この風車には、多極発電機を用いて

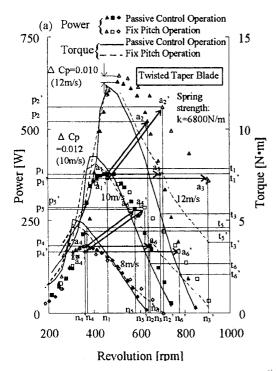


図 3-14 ティーター・ブレーキ&ダンパ機構の性能3)

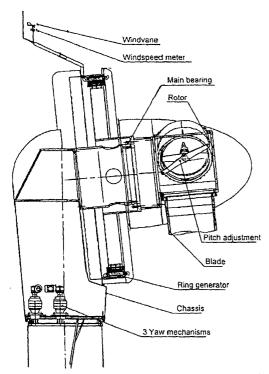


図 3-15 ロータ・発電機一体形のラハウェー風車4)

ギヤーレスを実現し,ロータ・発電機一体形にして, 回転軸を省略している。極めて斬新な風車である。

参考文献

1) J. P. Molly, et al., Status and further development of

表 3-4 世界各国の風力発電設備容量

Denmark				1997	1998
Denmark			Asia		
44 5	2080	2874	India	950	968
	1116	1450	China	166	224
Spain ¹	512	834	South Korea	0	2
Netherlands	325	363	Total	1116	1194
UK	320	334			
Italy	100	180	South & Centre	al America	1
Sweden	117	150	Costa Rica	20	26
Ireland	51	63	Argentina	9	12
Portugal	38	60	Brazil	3	7
Greece	29	39	Mexico	2	3
Austria	20	30	Total	34	48
France ²	10	19			
Finland	12	17	Pacific Region		
Turkey	0	9	Japan	18	41
Norway	4	9	Australia	11	17
Belgium	7 ·	8	New Zealand	4	5
Czech Republic	7	7 .	Total	33	63
Luxembourg	2	5			
Russia	5	5 .	Middle East &	Africa	
Ukraine	5	5	Iran	9	11
Poland	3	3	Israel	6	6
Switzerland	2	3	Egypt	5	5
Latvia	1	, 1	Africa ³	3	3
Romania	0	1	Jordan	1	1
Total	4766	6469	Total	24	26
North America		•	Caribbean	•	4 /9 (1 ± 4 (8 5 ± 1
USA	1590	1952		1,197	i)
Canada	21	83	l includes Caracy li	. 2 boule	a distance
Tetal	1611	2035	Caledonia		t Date \

wind energy in Germany, Proc. European Union Wind Energy Conference 1996, Goteborg (1996), 846.

- 2) A. S. Lexson et a1., 米国エネルギー省/国立再生型エネルギー研究所の先進風車開発計画,ターボ機械,22-2.1994,16.
- 3) Y. Shimizu, et a1., Development of advanced passive-controlled hub of horizonta1 axis wind turbine-(2nd report: behavior of improved mechanism and the effects of b1ade configurations)-, Proc. European Union Wind Energy Conference 1996, Goteborg (1996), 846.
- 4) G. J. W. van Bussel, A Hundred Years of wind Power Development in Europe, Past, Present and Future, Proc. International Conference on Fluid Engineering, Tokyo (1997), 171.
- 5) Wind power monthly, May, 1999.