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Theoretical Consideration on Elastic Deformations of Aluminum

by Pseudopotential Method*®

By Masafumi SENOO**, Ikuya FUJISHIRO#*#*#

and Motohisa HIRANO#*#*#%

To discuss the elastic properties of aluminum, the variations of the
crystal energy at OK with the (100) lattice deformations are evaluated by
means of the pseudopotential methods based on the model potential propesed
by the authors previcusly. A distinction is made between the mechanical
behavier of a face centered cubic (fcc) lattice in (100) loading (i.e.
transverse stresses are zero) and in (100) deformation (i.e. transverse
strains are zero). The fcc-bec transitions and the elastic instabilities
associated with the deformations are briefly discussed. Some elastic con-
stants of aluminum at OK are calculated. The stress-strain relations for
large elastic strains up to the theoretical tensile strength are presented.
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whiskers.

To predict the variations of elastic
constants with such various environmemts
and conditions, the atomistic considerations
on the elastic deformations of crystals
are supposed to be one of the effective
methods. So far, an interatomic force of
the pairpotential such as Morse potential,
whose parameters are usually determined by
the elastic constants on a standard condi-
tion, has been often assumed for such cal-

1. Introduction

An elastic constant of solid materials
is one of the most basic properties of
mechanical behaviors. It is generally known
that in principle it has a certain depen-
dence on pressures and temperatures, and it
is changed by machining such as rolling and
drawing or by heat-treatments such as
quenching and annealing ‘.  Though elastic

deformations on crystals are usually re-

stricted to a very small strain, Milstein?
has pointed out that any non-linearity of
the stress-strain relations must be taken
inte account even under the elastic limit
in the cases of the following conditions of
deformations, because of the exceedingly
large strain.

(1) High-speed deformations as a shack
loading, a martensite transformation and a
generation of deformation twins.

(2) Localized deformations near micro-
crack-tip or other stress concentrations.
(3) Deformations of perfect crystals as
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culations @@,

On the other hand, we can obtain thermo-
dynamically the stresses induced by the
elastic deformations of crystals (i.e. the
homogenious deformation of crystal lattice),
if the internal energy of crystals is evalu-
ated as a function of the atomic configura-
tions. The pseudopatential method has pro-
gressed rapidly in recent years. It has
been successfully applied to calculate the
properties of simple metals (of which the

~ion-core is comparatively small and the
Fermi surface is nearly sphere, i.e. the
electronic structure is close to that of
free electrons) “®. However, some diffi-
cult points were recognized in the calcula-
tions of properties with variations of the
crystal volume. The authers have proposed
new model potentials which were successfully
used for the calculations even in the case
of very large volume change, and determined
the pressure-volume relations of aluminum
and other metals from these potentials® 7,

These calculated values fairly .well agreed
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with the ezperimental values.

In the present paper, the elastic de-
formations of the aluminum single crystal at
0K of temperature are theoretically investi-
gated by making use of the medel potential
proposed by the authors previously. This is
a basic step to prediction of the above-men-
tioned variations of the elastic constants.
The variations of the crystal energy with
the monoaxially homogenious deformations in
the perpendicular direction to the (100)
lattice plane of the crystal are evaluated
by the pseudopotential method. The calcula-
tions are carried out under the conditions
of two kinds of deformation modes; the mono-
azial strain deformation in which the trans-
verse strains are zero and the monocazial
stress deformation in which the transverse
stresses are zero. Thus the elastic con-
stants of €11, C12, Young's modulus and
Poisson's ratio are obtained, and are com-
pared with some existing experimental values.
The stress-strain relations under large
deformations are also calculated to evaluate
the variations of the elastic constants with
strains and to consider the ideal fracture
strength.

The face centered cubic lattice (fece)
such as aluminum is equivalent to the body
centered tetragonal lattice with streched
crystal axis in the [100] direction (bet of
~/2 in axzial ratio)(c.f. Fig.1). Hence
discussion is also made whether any elastic
unstable caused by the fce-bec transforma-
tion wunder the monoaxzial deformations
appears or not .

2. Theory and Method of Calculations

2.1 Evaluation of the crystal energy

Following the pseudopatential method
formulated by Harrison® and Heine®, the
total energy of crystal Uy is, taking ac-
count of up to the second perturbation term,
given by

U,:Ueg.f.Uo.,;_UM_f_U” ..................... (1)

where Ugag is the energy of conduction elec-
tron gas, Uy the average value of the elec-
tron-ion interaction energy, Uyps the band
structure energy, and Upgs the electrostatic
energy of ions immersed in conduc-tiedi elec-
tron gas. The method of calculationof these
terms besides Upyg is the same as._that in
previous papers ® 7.  Hence the formalisms
to calculate the energy per atomwith the
atomic volume Q are briefly interpreted as
follows. The numerical calculations in the
present study were carried out in the atomic
units having

R=2m=e%)2=4eg=] rreerrrrnrerrerrcenenans (2)

where Z=h /27, h is Planck’s constant,
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m the electron mass, e the electronic
charge, and e the permittivity of free
space, and then the final results were
transformed into SI units.

The model potential which is used as

- the potential of the ion core to the conduc-

tion electron in crystals is
W' (r)=-4 for 7SRy

2
wen(y)= - €
dreor

for r>Ru

where the potential depth A and the radius
Ry are parameters, z is the valence, i.e.
z=3 in aluminum, and 7 is a distance in
radial direction. The potential parameters
A and Ry are

A=3.9005x10""8] }
Ry=17.159 9x10""' m

as have been determined in the previous
paper 7.
The first term of Eq.(1) is written as

=30k 3¢k, | N
Ueo= Z( 107 167%, T Uc"') (5)
kf=(37[zZ/.Q )HJ ................................. ( 6)

by using the Fermi wave number Rt . The
first term of Eq.(5) is the kinetic energy
of the conduction electrons, and the second
term the ezchange energy. The third term is
the correlation energy,

UCOI_=_()_“5+0_031 In #gererreeviiiennnn, (7)

in use of the atomic units, which was pro-
posed by Nozieres and Pines ® in use of the
atomic units. 2 is the density parameter
of the conduction electrons,

7’52(3.9/47('2)”3 ................................. (8)

The second term of Eq.(1), Ug , is written
as

Us= 8375:??2‘, ( f;:’ )Z—AZ(%L)3 ............ (9)

by using the potential parameters A and
RY. R, is the radius of Wigner-Seitz cell
given by

Ra=(3-Q/4/T)”3 ................................. (10)

— -As shown in Egs.(1) ~ (5), Ugg and Uy

are independent of the atomic configuration
Uss =Z'IS(q){W'(g)/e(q))?
q
Xx(g)e(g) +ooerremravireciierinniiiniannnn. (11)

by using the reciprocal lattice vector of
the crystal, q (with its absolute value ),
where Wi00(g) is the Fourier transform of
the potential Wion(z) in Eq. @), x (¢)

the perturbation characteristic, < (g) the
dielectric function of conduction electrons,
and S (q) is the crystal structure factor.
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Now when the atomic sites are Rj and the
atomic number is N in the crystal unit
lattice, we have

L& R
S(q)= ng‘exp( igR;) (12)
q=mIQI+m2(Iz+maqg ........................ (13)

where 91 , 92 and qg are unit vectors of
the reciprocal lattice, and m1 , mo and
m3 are arbitrary integers. And we have

4 {Siﬂ( aRu)—qRu

on 4
W‘(q)=~-_Q 3

xcos(qRu )} — E——Z_Qq—cos(q.‘?u) --------- (14)

E(q)=1—-2—ez-[l—f( Valg) weeeeereeees (15)
£02q° qlix\q

x(q)=_32m( +4k, q* In lq+2k/|>

2R°R: 8qk, q—2k,

As the correction function f (g¢) in Eq.
(15), we take

f(q): Cvieereereenanarsaaae (17)

ql

A+ R+ 2k )
in the atomic units, which was propesed by
S.am™® in atomic units. Z' in Eq.(11)
means the reciprocal lattice summation be-
sides ¢ =0. Thus Uy depends not only on
the atomic volume but also on the atomic
configurations through the crystal structure
factor S (g¢) . Upg is therefore impor-
tant in evaluating the variations of the
internal energy with the monoazial deforma-
tions. The right side in Eq.(1l), however,
converged rapidly with ¢, and the recipro-
cal lattice vectors were summed for 722
points in the range of ¢ < 8% in the
present calculation.

2. 2 Evaluation of the electraostatic
energy
The final term of Eq.(1), Upgyg, which
is the electrostatic energy of ions con-
figured and immersed in the conduction ele-
ctron gas, was generally given by Harrison”
as

U,s—Z 1.m{ A2 sis(q)r
q

exp{—q*/47) 2/7
x_—_—g__._—_ .................. e
S q;} (18)
where % is a convergence factor. = However,

the convergence of this reciprocal lattice

sum was so slow, that it was insufficient
to take sum of even 9000 points. In the case
of the previous calculations of the P—-V
relations on which the relative configura-
tion of atoms was invariable and only the
atomic volume was changed, it was possible
to represent the dependence on the crystal
structure by the Ewald coefficient «. And

Eq.(18) was written as

Ues= A (19)

The Ewald coefficients for the face centered
cubic (fcc) and the body centered cubic
(bce) structure were calculated by Sholl®,
respectively, as follows

a’c=—-1791 75}
a®°=-1.791 86

The calculated values of « when the
structure is transformed into face centered
tetragonal (fct) by the moncaxzial deforma-
tions have not been reported yet. A method
to evaluate & with the rapid convergence,
however, has been propesed by Harrison?®,
when the axzial ratioc ¢, @ is changed in
a hexagonal closed pack (hcp) structure.
He introduced lines parallel to ¢ -azis
through the reciprocal points in the reci-
procal lattice space, and calculated the sum
along the line and then the sum of the
contribution by each line, in place of the
sum for the whole reciprocal lattice vector
q. In the present calculations, the varia-
tions of the electrostatic energy with the
monoazxia! deformations in the fcc structure
are evaluated by means of this method. The
Ewald coefficient for the fct, afct, is
finally written as a function of the azial
ratic x (=ay/ag) by

a3\ E ..
a=(3E) {ar g+ Lguma) v
where w( my) is the contribution from the
line of m=vVmi+md An arbitrary
constant A was determind such that it
agree with «fct at x=1 (i. e. fee). As

the summation by m¢ in Eq.(21) converged
very rapidly, we could obtain the sufficient
results from summing up to about 50 lines.
The results are shown in Table 1 with that
for bet. As shown in Fig.l, the fcc lattice
is equivalent to the bet lattice with the
azial ratio @1/as =4/2 , while the bec
lattice is equivalent to the fct lattice
with the axial ratio a/as =1//7

Table 1. Variations of Ewald coefficient

with the axial ratic @(/a2 .

al/al2 ofct clbct
0.5 1.77833 -1.68877
0.6 -1.79008 -1.75018
0.7 -1.79186 -1.77717
0.8 -1.79164 -1.78723
0.9 1.79161 -1.79127
1.0 -1.79175 -1.79186
1.1 -1.79134 -1.79170
1.2 -1.78959 -1.79157
1.3 -1.78585 -1.79164
1.4 -1.77975 -1.79175
1.5 -1.77096 -1.79162
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Fig.l. The relation of the face centered
cubic to the body centered tetragonal
(in the case of c-axis parallel to
the loading azis a1).

Therefore, the values of o« fct at ay/a9

=1/4/7 and abct at aj/ag =4/7 in Table
1 are in agreement with the value of «fCC

and «fcc, respectively. They each corres-
pond to the double minimum values.

2. 3 Definition and method of calcula-
tion of deformation modes

The variations of the crystal energy
with the homogenious deformations in the
<100>-direction of the single crystal were
evaluated in the present study. The calcu-
lations were carried out in twe kinds of the
deformation modes as follows: in the mono-
axial strain-deformation (denoted by (100)
deformation),the unit lattice @1 with unit
vectors,a], a9, a3, shown in Fig.l, was
varied under the condition of ayp =a3 =
constant; in the monoaxial stress-deforma-
tion (denoted by (100)lcading), after the
unit lattice @ was varied to have a nomi-
nal strain Ay, the value of a9 =ag was
adjusted to minimize the crystalemergy U}y.
The force applied to the (100)-plane of the
unit lattice was calculated differentiating
the crystal energy per unitlattice 4Uyt with
respect to aj. Then, the true stress was
obtained from the force divided by the cross
section of the unit lattice in both cases.

The elastic constants are determined by
differentiating numerically the true stress

A1 Strain
-02 0 0.2 0-4

——{100}loading
=-—==(100)deformation
—-—bcc

-320 |

Fig.2. Variations of the crystal energy with

strain.
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with respect to the true strain. For the
elastic constants after some finite defaor-
mations of the nomiral strain Ay, we have
taken differential coefficients with respect
to the micro-strains (10-% in step) normal-
ized by A1 . So these values are infinite
strain elastic constants under the nomimnal
strain A 1. The numerical calculations have
been carried out all to the double precision
FORTRAN.

3. Calculated Results and Discussion

3.1 Variations of crystal energy and
structure transformation

The variations of the crystal energy
Uyt with the nominal strain Ay in the <100>
direction are shown in Fig.2. In the (100)
deformation mode the energy has varied mono-
tonously as the anharmonic interplanar
potential, no anomalous behavior was seen in
the variations even at the point of the
strain A7 =-—0.293 at which the crystal
should be transformed ints the bec structure
by the compressive deformation. The reason
was supposed to be that the dependence of
the crystal energy on the structure is hid-
den, because the Fermi energy is increased
rapidly by the volumetric contraction in the
compressive deformation. On the other hand,
in the (100)-loading mode, a fall of the
energy accompanied by the bec structure
transformation is clearly seen in the com-

pressive deformation. At the strain A =
—0.20 where the bcec structue itself
(a1/ay =1//7 ) appears, however, Ut

shows maximum value, and shows minimum value
at A1 =-—0.29. The stable bec structure
is, therefore, not to be seen. It is con-
sidered that the crystal becomes unstable in
elasticity for the compression at Ay =
—0.11 and over at which a point of inflec-
tion appears.

Recently in the pair-potential calcula-
tion for nickel and copper etc, Milstein@ M
has pointed out that a bifurcation of defor-
mation mode in the stress-strain relation
might possibly take place, because of the
elastic instability accompanied with fcc-bec
transformation even in the tensile deforma-

Fig.3. fcc and bet.
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tion. The crystal lattices are shown again
in Fig.3. When @) is deformed in tension
and if @y spreads and @3 shrinks, the
crystal might be possibly transformed to the
bee structure. Straightforward discussions
on such deformation mode are not to be done
in the present calculatiens, for a9 and
a3 could not be independently varied as
mentioned in Sec.2.2. Therefore, postulat-
ing that the bee structure appeared when the
crystal lattice was deformed to stretch A,
calculations were carried out; i.e. Uy for
a deformation mode with a restriction of
a] =ay =ajg /2 was evaluated. The
results are shown in Fig.2. as the bec mode.
In this bec mode Uyt falls so rapidly near
strain of Ay =0.15, and is so close to the
loading mode that the bee structure might
appear. Although bee structure itself does
not appear in the present calculations, it
is reasonable speculated that the bifurca-
tion on the tensile deformation pointed out
by Milstein might take place.

3.2 Stress-strain relations and ideal
fracture strength

The true stress o is plotted against
the nominal strain Aj in Fig.4. In the
(100)-deformation mode the maximum stress
i.e. the ideal fracture strength of=17.4
GPa is attained at A =0.42. Examples of
the stress-strain relation leading to frac-
ture which are calculated based on such
electron theory, have seldom been reported
for aluminum. For copper, a calculation by
using an augmented plane wave (APW) approzi-
mation is reported by Esposito®, where the

20L 1 010
10 005
g
o <
w 0 08
14 el
D o
b ~
= =
o
‘:' A2 Strain o
-101 / 1-00s
!
i
',' (100) loading
N .
~20F ! (100)deformation

-04-02 0 02 04 06 08 IfO
At Strain

Fig.4. Stress-strain curves.

values of the fracture strain A{f=0.55 and
the fracture stress o (f=32 GPa are obtain-
ed. On the other hand. in the (100)-loading
mode the mazimum true stress is o(f=19.0
GPa at A f=0.45.

In discussing the ideal fracture
strength, an interplamar stress of crystals
is sometimes approzimately represented by a
sine curve

o= a{sin(% j_‘}> ................................. (22)

Applying the results of the present calcula-
tion to this equation, the stress-strain
relation fits within the accuracy of a few
percent. For ezample, substituting a'1f=
19.0 GPa and A 1f=0.45, the value of 66.3
GPa has been obtained as the initial slope
of Eq.(22). This is in good agreement with
Young's modulus £ =66.8 GPa mentioned in
the next section. In the compressive defor-
mation over the unstable point at Ay =
—0.11 in the loading mode, the crystal
should be assumed to have becc structure with
stress free at A =-0.20. But the stable
becc structure never appears because the
stress-strain curve has negative slope at
this point.

Although such large elastic deformations
in aluminum are not realized usually experi-
mentally, the caluculated stress-strain
relation may be supposedly useful, when
stresses near crack tip or dislocation core
is studied by a computer simulation etc. The
calculated values are shown in Table 2. The
stress-strain curve on the loading mode is
convex downward nearAj =0, and the stretch
in Ay is associated with a decrease in the
transverse stretch Ao, when Ay =0.2 and
over, A2 almost conmstant, i.e., Ay ~-0.04.
These features show the same tendency shown
in the calculated results with other materi-
als by Milstein 240

As the logarithmic term in Eq.(16) of
x (g) divergesat ¢=2 kf, we have
used a limit value as x (g¢) at this point.

Table 2. Calculated values of stress-strain
relations.

Nominal |Deformation Loading
Strain Stress Stress Strain
I Al [GPa] [GPa] AZ

-0.06 -7.82 -3.62 0.025
-0.04 -4.95 -2.49 0.016
-0.02 -2.35 -1.29 0.008
0.00 0.00 0.00 0.000
0.02 2.12 1.37 -0.007
0.04 4.03 2.80 -0.013
0.06 5.75 4,26 -0.018
0.08 7.29 5.71 -0.022
0.10 8.67 7.12 -0.0206
0.20 13.56 13.16 -0.038
0.30 16.21 17.05 -0.043
0.40 17.41 18.82 -0.043
0.50 17.26 18.52 -0.045
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Although the energy is correctly evaluated
by such a method, its derivative diverges
again. When the reciprocal lattice peint ¢
=2 kit appears by chance during the defor-
mations, therefore, it is impossible to
obtain the details of the stress-strain
relation near this point. This problem is
left for further investigation. In the
present calculation, as this point appeared
near Aj] =-—0.11 in the loding mode, the
curve in Fig.4 was smoothly written near
the point.

3.3 Elastic constants

The calculated elastic constants, Cyj
and C11, at the null strain A| =0 in the
deformation mede are shown in Table 3 com-
paring with extrapolated ezperimental values
at 0K by Kamm *®. It was considered from the
good agreement of both values that the model
potential and the calculating process used
in the present study were sufficiently rea-
sonable. Suzuki®™ and Sarkar®™ reported
other pseudopotential calculations of the
elastic constants of aluminum, in which the
potential parameters were determined so as
to satisfy ezperimental values of same
elastic constants, the cohesive energy, etc.
in a unifying manner. The obtained values
of the elastic constants are C11=98.8~
116.7 GPa and C19=78.4~88.3 GPa by the
former author, and C11=88.2~97.8 GPa and
C19=52.4~60.3 GPa by the latter. On the
other hand, the potential parameters adopted
in the present calculations (c.f. Eq.(2))
were determined by using the atomic volume
at 0K and ezperimental data of the Fermi
surface as mentioned in detail in the pre-
vious paper ‘©.

The strain dependence of E and #» * in
the loading mode is shown in Fig.5. of
course, £ and 7 at the point of A =0
are the same with the reduced values shown
in Table 3. Cy{ denoted in the figure is
a longitudinal elastic constant under the
monoaxial strain-condition at the point of
A in the loading mode. Young's modulus £
increases with the strainup ta A =0.1,
and shows its mazimum there. It is con-
sidered that this feature is caused by the
elastic instability on the compression side
as discussed in the last section.--Poisson’s
ratio v decreases with an increase of the

Table 3. Calculated and experimentai values
of the elastic constants Cjand C1o
(£ and » are reduced values).

Cyy (GPa) Cq,(GPa)] (GPa) v
Pre t
C;fg?“ 111.6 62.4 66.8 0.36
Kamm's
Exp. 114.30  61.92 {70.78 0.351
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Fig.5. Variations of the elastic constants
with strain in the loading mede.

stretch, and twe kinds of elastic moduli,
C11 and E, become close to each other.

In the compressive deformation the values of
the elastic constants were not accurately
obtained because of the divergence of the
derivative in energy near A =-—0.1. Fur-
ther theoretical investigation in this field
may be necessary.

4. Conclusions

Using the model paotential proposed by
the authors previously, the crystal energy
of the aluminum has been evaluated as a
function of the monocaxial defermations. The
following conclusions are obtained.

(1) In the compressive deformation of the
(100)-loading mode, there is an elastic
instablity accompanied with the fcec-bee
structure-transformation. And alsc in the
tensile deformation it is likely that a
bifurcation of the deformation mode takes
place as pointed out by Milstein.

(2) In the loading mode the ideal fracture
strength and fracture strain are 19.0 GPa
and 0.45, respectively, where the stress-
strain relation is approzimately represented
within 5% errors by a sine curve.

(3) The values of the elastic constants at
temperature of 0K, C;=111.8 GPa, Cyo=

 82.4 GPa, E =66.8 GPa and » =0.36, were

obtained, which are in good agreement with
the experimental data. It is considered
that the present calculation is a funda-
mental step to the further investigations of
the elastic constants under various emviren-
ments and conditions.
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