# 複写可

# 簡易圧力評価の範囲拡張と 潤滑油の高圧粘度測定



指導教員 中村 裕一 准教授

平成20年度 三重大学大学院工学研究科博士前期課程物理工学専攻 ナノプロセッシング研究室

田中 祐介

| 第 | 1 | 章 |   | 緒 | 論  |    |   |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  | 1  |
|---|---|---|---|---|----|----|---|----|-----|------|-----|---|----|------------|-----|----|----|---|-----------|----|---|--|--|--|--|--|----|
|   |   |   |   |   |    |    |   |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  |    |
| 第 | 2 | 章 |   | 潤 | 滑  | 油  | の | 粘  | 度   | 理    | 論   | お | よ  | び          | 表   | 示  | 式  |   |           |    |   |  |  |  |  |  |    |
|   | 2 |   | 1 |   | 絶  | 対  | 反 | 応  | 速   | 度    | 論   | に | よ  | る          | 粘   | 度  |    |   |           |    |   |  |  |  |  |  | 3  |
|   | 2 |   | 2 |   | 粘  | 度  | _ | 圧  | 力   | 関    | 係   | 式 |    |            |     |    |    |   |           |    |   |  |  |  |  |  | 9  |
|   |   |   |   |   |    |    |   |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  |    |
| 第 | 3 | 章 |   | 実 | 験  | 装  | 置 | 及  | び   | 実    | 験   | 方 | 法  |            |     |    |    |   |           |    |   |  |  |  |  |  |    |
|   | 3 |   | 1 |   | ダ  | イ  | ヤ | モ  | ン   | k    | ア   | ン | ビ  | ル          | セ   | ル  | 高  | 圧 | : 装       | 置  | Ţ |  |  |  |  |  |    |
|   |   |   |   |   | サ  | フ  | ア | 1  | ア   | ア    | ン   | ビ | ル  | セ          | ル   | 高  | 圧  | 装 | 置         |    |   |  |  |  |  |  | 14 |
|   | 3 |   | 2 |   | 加  | 圧  | 装 | 置  |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  | 21 |
|   | 3 | • | 3 |   | 落  | 球  | 法 | に  | ょ   | る    | 粘   | 度 | 測  | 定          |     |    |    |   |           |    |   |  |  |  |  |  | 23 |
|   | 3 |   | 4 |   | 圧  | 力  | 決 | 定  | 法   | お    | よ   | び | 圧  | 力          | 較   | E  | 図  |   |           |    |   |  |  |  |  |  | 27 |
|   | 3 |   | 5 |   | 高  | 圧  | 粘 | 度  | 未   | 知    | 油   | の | 圧  | 力          | 決   | 定  | 法  |   |           |    |   |  |  |  |  |  | 33 |
|   | 3 |   | 6 |   | 試  | 料  | 油 | お  | ょ   | び    | 高   | 圧 | 粘  | 度          | Ø   | W  | LF | I | プログロ プログロ | 可烷 | 寻 |  |  |  |  |  | 35 |
| 第 | 4 | 章 |   | 実 | 験  | 結  | 果 | 及  | び   | 考    | 察   |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  |    |
|   | 4 |   | 1 |   | 2G | Pa | ま | で  | の   | 圧    | 力   | 較 | 正  | 図          | の   | 構  | 築  |   |           |    |   |  |  |  |  |  | 38 |
|   |   | 4 |   | 1 |    | 1  |   | 空  | 加   | 圧    | ね   | じ | 回  | 転          | 角   | ٢  | 粘  | 度 | 么         | 西己 | 3 |  |  |  |  |  |    |
|   |   | 4 |   | 1 |    | 2  |   | 各  | 液   | 体    | の   | 圧 | 力  | 較          | 正   | 図  | の  | 再 | 現         | 上性 | = |  |  |  |  |  |    |
|   |   | 4 |   | 1 | •  | 3  |   | 全  | 試   | 料    | 油   | の | 圧  | 力          | 較   | E  | 図  |   |           |    |   |  |  |  |  |  |    |
|   | 4 |   | 2 |   | 簡  | 易  | 高 | 圧  | 粘   | 度    | 評   | 価 | お  | ょ          | び   | 回  | 帰  | 茳 | 4         |    |   |  |  |  |  |  | 40 |
|   |   | 4 |   | 2 |    | 1  |   | DC | S   | お。   | よ   | び | PΑ | <b>O</b> 4 | ļ   |    |    |   |           |    |   |  |  |  |  |  |    |
|   |   | 4 |   | 2 |    | 2  |   | エ  | タ   | )    |     | ル |    |            |     |    |    |   |           |    |   |  |  |  |  |  |    |
|   |   | 4 |   | 2 | •  | 3  |   | Da | phr | ne73 | 373 | お | j  | : U        | ř 7 | 47 | 4  |   |           |    |   |  |  |  |  |  |    |
| 第 | 5 | 章 |   | 結 | 論  |    |   |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  | 67 |
|   |   |   |   |   |    |    |   |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  |    |
|   |   |   |   | 謝 | 辞  |    |   |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  | 68 |
|   |   |   |   | 参 | 考  | 文  | 献 |    |     |      |     |   |    |            |     |    |    |   |           |    |   |  |  |  |  |  | 69 |

71

付録1 粘度算出プログラム

付録2 WLF式による圧力算出プログラム

付録3 圧力室の様子

付録

付録4 実験詳細データ例

付録 5 PAO4 の Roelands 式

付録 6 WLF式のデータの回帰

## 第1章 緒論

歯車,転がり軸受,エンジン動弁系およびトラクションドライブなどの弾性流体潤滑(EHL)状態では,ナノメーターオーダーの極めて薄い油膜で潤滑され,最近では潤滑油の分子設計にナノテクが利用されている.EHL状態の潤滑油分子設計にはその高圧力下の粘度,密度などが基礎物性データとなり,特に粘度-圧力特性が最も重要である.

潤滑油のレオロジー特性に対する圧力増加はほぼ温度低下と同じ効果があり、したがって油(液体)は圧力上昇とともに粘度が増大し、いずれ固化(ガラス化)する. EHL、トラクション下の潤滑油の力学状態は粘性域、粘弾性域、弾塑性域など非ニュートン固化域へと遷移すると考えられ、各領域の境界線は圧力×粘度-圧力係数によって決まり[2][3]、したがって固化域においても、ニュートン粘度は重要となる.

通常の高圧粘度測定装置は金属製の圧力容器を用いており、多くの装置で油漏れなどにより安定した発生圧力は数百 MPa 程度、高くとも 1GPa 程度で、高圧粘度測定技術は特殊で困難な技術と考えられている.

中村らはこれまで,数 GPa が容易に発生できるダイヤモンドアンビルセル高圧装置 (Diamond- Anvil pressure Cell, DAC) という小型装置を用いて潤滑油の粘度 [4] [5],粘弾性特性 [6] および弾性係数 (密度) [7] などの高圧力下の物性測定を行ってきた.

しかしながら DAC では通常圧力測定にルビー蛍光法を用いているため、この方法の習得および測定には時間がかかり、また高精度の分光システムも必要である. 物質の相転移で圧力を決める圧力定点も利用されているが、較正物質が少なく任意の圧力を設定できない. 従って、簡単な方法で圧力が定まれば DAC による簡便な高圧粘度測定が可能となるため、DAC の普及が期待される. また金属製高圧粘度計に比べ、油一滴で測定できるマイクロ計測の利点を持つ.

そこで最近の研究では、DAC の加圧ねじ回転角と圧力の関係が、高圧粘度 既知のいくつかの油種で 0.8GPa まで再現性 20MPa 程度でほぼ一本の圧力較正 図となり、通常のルビー蛍光法より簡単に圧力を決定できることを示した[8].

本研究では、すでに確立されている 0.8GPa までの潤滑油の簡便な高圧粘度

測定法を 2GPa まで拡張するため、Bridgman によって 3GPa まで高圧粘度が報告されているアルコール類[9]を、エステル油、合成炭化水素およびエタノールとともに高圧粘度標準液と考え、室温で 2GPa まで空加圧ねじ回転角と対数粘度勾配の関係、圧力較正図の再現性を検討し構築する。そしてそれらを用いて1GPa~2GPaのエステル油、エタノール、静水圧媒体油(Daphne 7373、7474)などの高圧粘度を評価する.

第2章 潤滑油の粘度理論および表示式

#### 2.1 絶対反応速度論による粘度

絶対反応速度論の自由体積理論[10]によると、液体内には空孔が存在し、 その空孔を埋めるようにして分子が移動することにより液体の流動が発生する。そして、分子が移動する際の抵抗により粘性が発生するとしている。そこで、図 2-1 のような液体中の分子モデルを考える。

図中の二つの分子層は距離  $\lambda$  だけ離れており、その一方が応力の作用で他方を追い越してすべるものとする.また、 $1 cm^2$  当たりのせん断力を f とし、せん断速度を  $\Delta u$  とする.このとき定義より粘度は次式で表される.

$$\eta \equiv \frac{f\lambda_l}{\Delta u} \tag{2-1}$$

ここで、他方に対する一方の層の運動は、一分子がある平衡状態位置から同じ層内の平衡状態位置に移動することを意味すると仮定すると、この運動が起こるには、適当な空孔を発生させる必要があり、このため他の分子を押しやるための仕事をしなければならないので、エネルギーの消費が起こる. すなわち、この運動が起こるということは、系がポテンシャルエネルギー障壁を乗り越えることと同等であると考えられ、この抵抗が粘度に寄与することになる. 図 2-1 の λは二つの平衡状態位置間の距離で、同じ方向の隣接分子間の距離を ゐとし、近似的に λに等しいとする. また、同じ方向と垂直な方向に隣接する分子間の距離を ゐとする. これらの条件のもとに分子の流れに対するポテンシャルエネルギーの様子を図 2-2 に示す.

一つの分子がポテンシャルエネルギーの壁をのり越えて行くとき,その分子にかかる応力は次に示す式で計算される.

$$F = f \lambda_2 \lambda_3$$
 (2-2)

(ポテンシャルを乗り越える応力 = 単位面積当たりにかかる力×有効面積)

そして,一分子の移動の前後におけるエネルギー差は,Fに移動量をかけ ることにより求められ,次に示す式のようになる.

$$E = F\lambda = f\lambda_2\lambda_3\lambda \tag{2-3}$$

図 2-2 の中の  $\varepsilon$  は 0 K における活性化エネルギー (ポテンシャルエネルギ 一の壁の高さ)といわれている.これを用いて、ある分子が 1 秒間に壁を乗 り越える回数を表すと次式のようになる.

$$\kappa = \frac{kT}{h} \frac{F''}{F} \exp\left(-\frac{\varepsilon_0}{kT}\right)$$
(2-4)

 $\kappa$ :透過係数,今回は $\kappa=1$ とする

F": 活性化状態に於ける分子の単位体積当たりの分配関数

F:始めの状態に於ける分子の単位体積当たりの分配関数

次に液体の流動を起こす力が働く時(せん断)のことを考える.この時, エネルギーの壁前後で高さ(flalala)/2がだけ変化するから,力を受けた方向(前 方) へ分子が移動する回数は次式で示される.

$$\kappa_{f} = \frac{kT}{h} \frac{F''}{F} \exp \left\{ -\left(\varepsilon_{0} - \frac{1}{2} f \lambda_{2} \lambda_{3} \lambda\right) / kT \right\}$$

$$= k \exp \left(\frac{1}{2} f \lambda_{2} \lambda_{3} \lambda / kT\right)$$
(2-5)

また、それと同時に後方へ分子が移動する回数も次式の様に示される.

$$\kappa_{h} = k \exp\left(-\frac{1}{2} f \lambda_{2} \lambda_{3} \lambda / kT\right)$$
(2-6)

以上の式により、前方または後方への分子がある平衡状態位置から他の平 衡状態位置へと移動する回数が求まった.これに距離 λをかけると分子が毎 秒移動する距離、即ち運動速度となり、前方へは kfl, 後方へは kblとなる. 結果として応力fが作用した結果,前方へ移動する正味の速度は(kf - kb)  $\lambda$ となり、これは定義によって Δu であるので 式(2-5) および 式(2-6) により 以下のように導かれる.

$$\Delta u = \lambda k \left\{ \exp\left(\frac{1}{2} f \lambda_2 \lambda_3 \lambda / kT\right) - \exp\left(-\frac{1}{2} f \lambda_2 \lambda_3 \lambda / kT\right) \right\}$$

$$= 2\lambda k \sinh \frac{f \lambda_2 \lambda_3 \lambda}{2kT}$$
(2-7)

ここで、fは通常の液体に於いては  $1dyne/cm^3$  程度であり、  $\lambda$ ,  $\lambda$ , および  $\lambda$ もほぼ分子の大きさの  $10^{-8}$  cm 程度であるので,  $2\kappa T\gg f\lambda_2\lambda_3\lambda$  となる.この ことから、式(2-7)を展開する時に第一項以外の項を全て省略することがで きるとすると、式(2-1)は以下の様に書き換えることができる.

$$\eta = \frac{\lambda kT}{\lambda_2 \lambda_3 \lambda^2 k} \tag{2-8}$$

この式に、式(2-4)で得られる κを代入すると、次式が得られる.

$$\eta = \frac{\lambda h}{\lambda_2 \lambda_3 \lambda^2} \frac{F}{F''} \exp\left(\frac{\epsilon_0}{kT}\right) \tag{2-9}$$

この式において厳密ではないが ス= ス,と近似すれば、以下の式となる.

$$\eta = \frac{h}{\lambda_2 \lambda_3 \lambda} \frac{F}{F''} \exp\left(\frac{\varepsilon_0}{kT}\right)$$
(2-10)

 $\lambda \lambda \lambda \lambda$  は近似的に液体状態における一分子の占める容積であり、これを  $V/N_0$  としてもよい. ただし V はモル容積、 $N_0$  はアボガドロ定数である. 式 (2-10) に代入すると

$$\eta = \frac{hN_0}{V} \frac{Z}{Z''} exp \left| \frac{\varepsilon_0}{k_B T} \right| \tag{2-11}$$

となる. ここで、はじめの状態と活性化状態の平衡定数を K とすると

$$K = \frac{Z''}{Z} exp \left[ -\frac{\varepsilon_0}{k_B T} \right] \tag{2-12}$$

であり, また, 熱力学の関係式より

$$K=exp\left[-\frac{\Delta F}{RT}\right] \tag{2-13}$$

なので、この式(2-12)と式(2-13)を用いて式(2-11)を以下の式のように書くことができる. ただし、 $\Delta F$  は 1 mol 当たりの活性化自由エネルギーである.

$$\eta = \frac{hN_0}{V} exp \left( \frac{\Delta F}{RT} \right) \tag{2-14}$$

さらに、 AF は熱力学的に以下のように表される.

$$\Delta F = \Delta U - T \Delta S + P \Delta V \tag{2-15}$$

ここで、 $\Delta U$  は活性化エネルギー、P は圧力、 $\Delta V$  は活性化体積、 $\Delta S$  は活性化エントロピーである.これを式(2-14)に代入して、

$$\eta = \frac{hN_0}{V} exp \left| \frac{\Delta U}{RT} \right| exp \left| -\frac{\Delta S}{R} \right| exp \left| \frac{P\Delta V}{RT} \right|$$
 (2-16)

以上から、温度が上昇すると式(2-4)により、分子が 1 秒間に壁を乗り越える回数が増大し、それにより液体の流動が活発となり、これらの現象によ

り粘度が減少することが分かる. また、式 (2-10) からもこの温度増加に伴い、粘度が減少していくことが分かる.

また、Vを液体の分子容、Vsを膨張していない固体の分子容とすると、その差 V-Vs は液体中の空孔の数となり、それは液体の流動性に比例する. 粘度は流動性の逆数で表されるため次のようになる.

$$\eta = \frac{C}{V - Vs} \tag{2-17}$$

ここで、Cは定数を表す.上式より、空孔の数が増えれば増えるほど動ける分子の数が多くなり、流体の流動性が増加し、粘度が下がることが分かる.また、流体が高圧力状態におかれた場合、流体の分子容が縮むことになるので流動性が減少し、粘度が増加することになる.

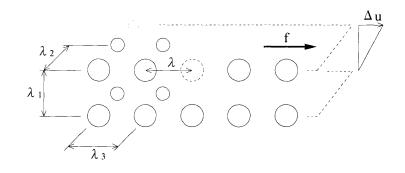



図 2-1 液体中の分子モデル

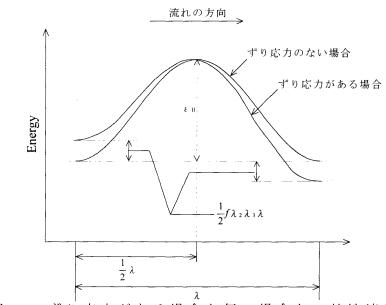



図 2-2 ずり応力がある場合と無い場合との粘性流動に 対するポテンシャルエネルギー

#### 2.2 粘度一圧力関係式

弾性流体潤滑(EHL)理論では、潤滑油粘度の圧力による増加は圧力の指数関数として次式で近似されている(Barus の式).

$$\eta(T, P) = \eta(T, 0) \exp(\alpha(T) \cdot P)$$
 (2-18)

T は温度,  $\eta$  (T,P) は常圧における潤滑油の粘度,  $\eta$  は圧力 P における潤滑油の粘度,  $\alpha$  は粘度-圧力係数をあらわす.

So と Klaus は、鉱油やポリマーおよびレジンを含む油、純炭化水素を対象とした油の  $\alpha$  を、動粘度と密度および Walther の式における m の関数で表している.

$$\alpha = 1.216 + 4.143 (\log v)^{3.0627} + 2.848 \times 10^4 \text{ m}^{5.1903} \times (\log v)^{1.5967} - 3.999 (\log v)^{3.0975} \cdot \rho^{-0.1162}$$
(2-19)

ここで、 $\nu$ は動粘度であり $\rho$ は密度である.

従来、粘度-圧力係数  $\alpha$  を推算する式がいくつか提案されているが、以下に示す Wu and Klaus の式は 2 点の温度における動粘度から求めることができるので使い易い.

$$\alpha = (0.1657 + 0.2332 \log \nu) \cdot m \times 10^{-8}$$
 (2-20)

また、Walther の式を以下に示す.

$$\log \log (v + k) = - m \log T + b \qquad (2-21)$$

 $\nu$  は油の動粘度, $\Gamma$  は絶対温度,m,b は油により決定する定数である。k は定数で,ASTM(アメリカ材料試験協会規格)では 0.7 であるが,一般には $\nu$   $\geq 1.5$  cSt のとき 0.6, $\nu$  < 0.7 cSt のとき 0.75 とする。式(2-19)によると,計算値は 0.07 GPa 以下の圧力範囲で実測値と 15 %以内の精度で一致すると述べている。Roelands らはポリマーを含まない鉱油の  $25\sim 90$   $^{\circ}$  の温度範囲,0.1 GPa 以下の圧力範囲の実測粘度をもとにして,高圧粘度と環分析値を関係づけた

式を提案している.

$$\log (\eta / \eta_0) = (P / 5.566 \times 10^7)^y \times \{(0.002CA + 0.003CN + 0.055) \log \eta_0 + 0.228\}$$

$$\log (y - 0.890) = 0.00855 (CA + 1.5CN) - 1.930$$
(2-22)

CA, CN はそれぞれ全炭素数に対する芳香族とナフテン環を構成する炭素数の比を百分率で表したものである.式(2-18)と式(2-22)の違いは油の組成により決まるyにより表されている.

粘度は圧力の増加に伴い指数関数的に増加するが、高圧になるにつれて粘度増加は次第に鈍化し、また温度の上昇によっても粘度変化は小さくなる. このことを補正するために Roelands は、次式も提案している.

$$\eta = \eta_0 \exp \left[ \left( \ln \eta_0 + 9.67 \right) \left\{ \left( \frac{T + 135}{T_0 + 135} \right)^{-S_0} \left( 1 + 5.1 \times 10^{-9} \, p \right)^2 - 1 \right\} \right]$$
(2-23)

ここで、 $T_0$ は基準温度、S0、Z は油に固有のパラメータである. (PAO4 では S0=1.047、Z=0.570、 $T_0=30$   $^{\circ}$   $^{\circ$ 

また、Bridgman は、液体の圧力の指数と粘度の関係は、低粘度時には圧力軸に対して上に凸、高粘度時には下に凸となり、その変曲点は複雑な分子構造をもつ液体では低圧力時に、単純な分子構造では 1.2 GPa 以上の高圧であらわれると述べている. 計量研では次式に示す最も簡単にその傾向をあらわす式も提案している[12].

$$\eta = \eta \cdot \exp (aP^3 + bP^2 + cP)$$
(2-24)

上式の a, b および c は液体固有の定数である.

高圧力下における潤滑油の粘度 - 温度関係式として Crook は式 (2-18) から油膜厚さを求める熱的解析に次式を用いる.

$$\eta = \eta \circ \exp \left(\alpha P - \beta \Delta T\right) \tag{2-25}$$

βは粘度-温度係数, ΔTは基準温度からの上昇温度である.

この式において村木らは粘度 - 温度係数  $\beta$  を圧力の一次関数と仮定し、トラ クション係数の解析に用いている.

自由体積理論から潤滑油粘度 η(T, P)をガラス転移温度と自由体積の熱 膨 張 の 圧 力 依 存 の 項 で 与 え ら れ る 安 富 ら の 式 が あ る . 式 (2-26) に 安 富 ら の 式 を示す[13][14].

$$\log_{\mathcal{H}}(T,P) = \log_{\mathcal{H}_{S}} \frac{C_{I} \cdot (T-T_{g}(P)) \cdot F(P)}{C_{2} + (T-T_{g}(P)) \cdot F(P)}$$
(2-26)

ここで、 $C_1$ 、 $C_2$ は WLF 定数で、 $\eta g$ はガラス転移温度における粘度( $\eta g = 10^{12}$  Pa ·s) である. Tg(P), F(P) はそれぞれ圧力の関数で表されるガラス転移温 度と熱膨張係数で以下のように表される.

$$T_g(P) = T_g(0) + A_1 \ln(1 + A_2 P)$$
 (2-27)

$$F(P) = 1 - B_1 \ln(1 + B_2 P)$$
 (2-28)

こ の 式 で は 物 理 的 意 味 の 明 確 な ガ ラ ス 転 移 点 , 熱 膨 張 係 数 な ど を パ ラ メ ー タとしている. しかし式(2-26)を用いるにはガラス転移温度の測定が必要な ため、Tg(P)の代わりに 10<sup>7</sup>Pa・s を 基 準 粘 度 と して h =h s に な る 温 度 を 基 準 温 度 Ts(P)とした式(2-29)を用いる.

$$\log \eta \langle T, P \rangle = \log \eta_s \frac{C_I \cdot (T - T_s(P)) \cdot F(P)}{C_2 + (T - T_s(P)) \cdot F(P)}$$
(2-29)

また、試料液体 SN50、KTF1、DOS、DOPにおいて、関係式に使われている係 数 A<sub>1</sub>, A<sub>2</sub>, B<sub>1</sub>, B<sub>2</sub>, C<sub>1</sub>, C<sub>2</sub>を表 2-1 に示す.

KTF1 に関して、WLF 式と Bair データの比較を図 2-3 に、DOS、DOPの WLF 式 と ASME データの比較を図 2-4, 2-5 に示す[15][16].

表 2-1 文献値による各試料液体の係数

| Liquid | Ts(0)        | Aι     | A2    | В      | B2    | C <sub>1</sub> | C2    |
|--------|--------------|--------|-------|--------|-------|----------------|-------|
| SN 50  | -54.7        | 76.77  | 3.348 | 0.282  | 17.47 | 10.96          | 26.59 |
| KTF1   | -68.6        | 160.5  | 1.816 | 0.3024 | 12.64 | 10.94          | 28.97 |
| DOS    | <b>-89.7</b> | 111.5_ | 0.558 | 0.217  | 20.3  | 11.17          | 31.69 |
| DOP    | <b>-55.7</b> | 246.4  | 0.32  | 0.212  | 25.43 | 11.03          | 27.21 |

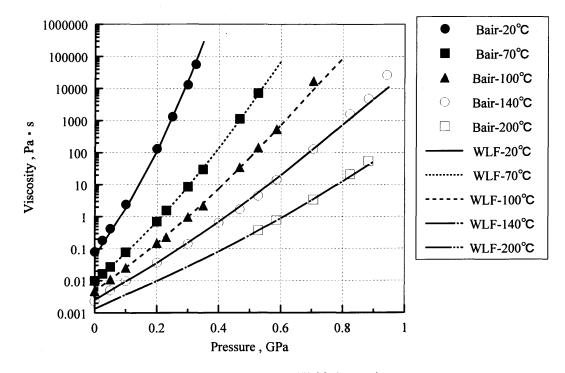



図 2-3 WLF-Bair 関係(KTF1)

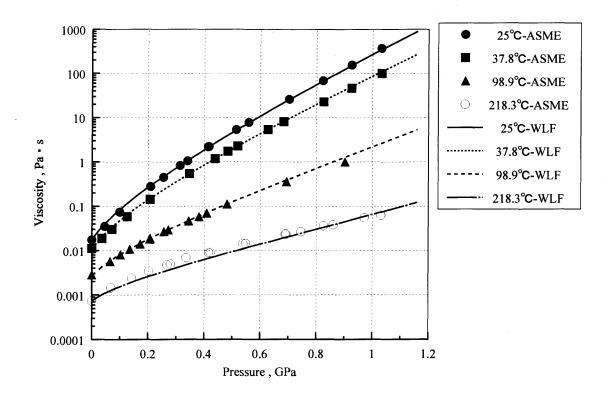



図 2-4 WLF-ASME 関係(DOS)

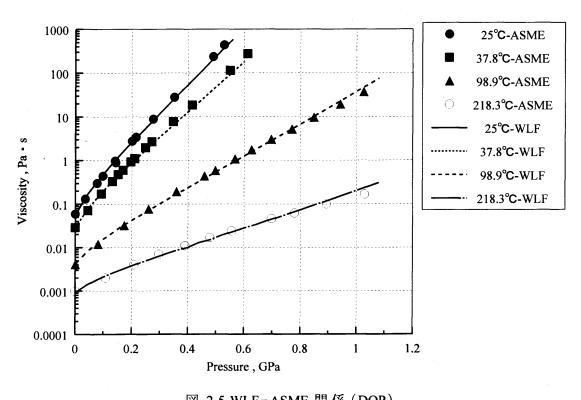



図 2-5 WLF-ASME 関係 (DOP)

- 13 -三重大学大学院 工学研究科

#### 第3章 実験装置及び実験方法

#### 3. 1 ダイヤモンドアンビルセル高圧装置(DAC)

試料油の圧力発生装置として、ステンレス製のダイヤモンドアンビルセル(Diamond-anvil-cell 以下 DAC)およびサファイアアンビルセル(sapphire-anvil-cell 以下 SAC)高圧装置(清水製作所、□ 50)を用いた。図 3-1 に DAC (No.2)の模式図を示す。また、DAC の表面と裏面の写真をそれぞれ図 3-2、3-3 に示す。同様に SAC (No.1)の模式図と表面、裏面の写真をそれぞれ図 3-4、3-5、3-6 に示す。この装置は加圧ねじによる加圧タイプのもので、圧縮前の加圧ねじ回転角度を 0 度とし、そこからの角度の増分を加圧ねじ回転角とする。円盤状加圧ねじ(M38X1)を回転させてピストンを前進させ、先端のダイヤモンドがガスケットとともに油を圧縮し高圧を発生させる。小さい圧力室のため、試料油が一滴ほどの少量でよいこと、ダイヤモンドが光学的に透明で、赤外線、可視光、X線などにより種々の計測ができることなどの特徴を持つ[17]。本研究では、低圧での圧力制御のため、皿ばねを一つ挿入した。圧力室内には、試料油と粘度測定用の落下球(銅球)を封入する。

以下に銅球選びの手順を示す.

- 1. 銅球をストックしておくためのスライドガラスを用意し、球を置いておく場所には球を見失わないようにペンで裏から数箇所丸印をつけておく.
- スライドガラスにつけられた印の中から、今回拾った球を置いておく 場所をあらかじめ選んでおく。
- 3. 銅球の入ったシャーレを軽く動かし、球を散乱させる.
- 4. 顕微鏡でシャーレの中を覗き、デジタルマイクロメーターを用いて 50 ~ 60 μ m 程度で真球度の高そうな球を捜す.
- 5. アルコールで洗浄した針を近づけ、球が針にはりついたら顕微鏡の台の上にあるシャーレをスライドガラスに置き換えて球を移動させる.
- 6. 2~5を繰り返し、実験で使うことのできる球が複数個ある状態にし

ておく.保管の際にはケースに入れ、ほこりや風の影響を受けないようにしておく.

7. 実験の際には、ストックしてある球の中からサイズと真球度のよいものを選んで使用する.ストックの中に条件から外れる球が見つかった場合は処分する.

金属ガスケットは厚さ 0.5mm 程度のリン青銅板を用いた (3.5参照). 回転ねじ角度の測定は、DAC専用の角度目盛り付き加圧装置 (3.2参照) により行う. これは、最小目盛り 0.144° で高精度に回転角を読める.

以下に DAC のセット手順と注意事項を示す. DAC をセットする前に作業場のゴミをブロワーで取り除き、手をよく洗う.

- 1. セットの前に DAC の平行度のチェックを行う.
- 2. DAC の下部締め付けねじ(以下,加圧ねじ)を減圧側に回しピストンを下げる.摩擦でピストンが下がっていないときもあるので,横穴からもピストンを指で押し下げる.上下のダイヤモンド同士が接触してないことを横穴から確認して上蓋をはずす.なお,保管時はダイヤモンド面が上になるように上蓋を DAC 本体に取り付けて置いておく.上下のダイヤモンドコレット面を一度綿棒で乾拭きし,その後,エタノール(アセトン厳禁)を綿棒に含ませる.エタノールを多く含んでいるときれいに掃除しにくいため,その場合ティッシュで少し拭き取りその後で掃除する.綿棒は 3,4 回使用したら交換するようにする.この時,顕微鏡で見ながら十分きれいになるまで行う.この作業を 2,3 回行った後,仕上げにもう一度拭き取る.側面や台座の周りも以前の実験での接着剤やゴミを爪楊枝,綿棒などを使って十分掃除しておく.
- 3. 選んだガスケットをアルコールの入った容器に入れ、超音波洗浄機で洗浄する. 位置調整用のセロハンテープを 4 つ作る. 長さは、DAC の側面の穴から出て後に調整しやすいものが好ましい(作り方は後の図 3-7 を参照). この時、セロハンテープはできるだけ粘着力の強いもの

- を使う.これらガスケットに貼り付ける(図 3-8 参照). 貼り付ける際は、手の油などがガスケットに付着するのを防ぐため、ピンセットを使用し、ガスケットに手が触れないよう注意する.
- 4. ガスケットが上のダイヤモンド面に当たらないように横穴から注意して見ながら、上蓋ねじをゆるみのないようきつく締める(上蓋ねじは以下同様). DAC の下の加圧ねじを上蓋のダイヤモンドに軽く接するまで加圧側にゆっくり回し、顕微鏡で確認しながら、ガスケットの穴の中心がダイヤモンドの中心に正確にくるようにセロハンテープを使って移動させる(図 3-9、3-10 参照). 中心にきたら、いったんガスケットを挟み込み、中心を再確認して加圧ねじを強く締め付る. ずれていれば再調整する. そして、ガスケットにダイヤモンドの圧痕をつけ、密封性を向上させる(圧力室の厚さが元の 90 %程度になるまでレーザーフォーカス変位計で確認しながら慎重に行う). セロハンテープを外し、その後、DAC の側面の穴から測定顕微鏡で確認しながら、ダイヤモンドアンビルの台座とガスケットの 4 隅に瞬間接着剤をつける(図 3-11 参照). 接着剤がしっかりついたのを確認した後、硬化剤を使い接着させる.
- 5. 試料油を圧力室の中に封入する前に加圧ねじをゆるめる. 再び加圧し、 ダイヤモンドコレット面とガスケットが軽くあたっている状態での圧 力室の油無しの時の厚さを、レーザーフォーカス変位計を用いて測定 しておく.
- 6. 加圧ねじを緩めてピストンを指で押し下げ、完全にガスケットとダイヤモンドコレット面が離れたことを十分確認してから上蓋を外す. ガスケットの表面の穴の横に、試料油を太針(アルコールなど粘度が低い場合はプラスドライバー)で一滴落とす. それを細針で誘導しながら穴の中に流し込む. 時間とともに気泡は浮いて出ていくが、それでも抜けない場合は先端の平らな針金で気泡を押しつぶすようにして、気泡を押し出す(図 3-12 参照). この時、穴にゴミなどが入らないように注意する.
- 7. あらかじめ選んでおいた金属球(銅球)を針でとり、ガスケット表面 上の試料油で十分なじませた後、穴の中に挿入する. 球が穴またはダ

イヤモンドのコレット面に付着せずに落下するのを顕微鏡で確認する. 上蓋のダイヤモンド面にも試料油をたらしておく.ダイヤモンドとガスケットが当たらないよう横から慎重に確認しながら上蓋を完全に締める.加圧ねじを圧力が加わらないように軽くしめて密封する.アルコール類は揮発性が高く、常圧では圧力室内に気泡が発生してしまうため、アルコール類で実験を行う際には気泡が発生しないように加圧ねじを強めに締める.最後に圧力室内に気泡などの問題が生じてないかを顕微鏡で確認し、DACのセットが完了する.屈折率 n=1 とおいた場合の常圧の圧力室厚さを測定し、それから常圧屈折率を決定する.保管するときは球が圧力室の中心付近にくるようにし、倒立させて保管する.DACのセットの際に何度も細針や太針を使用するが、一回使うごとにアルコールで洗浄する.DAC、針、加圧装置などは机から不意に落とさないように机の真ん中付近に置くようにする.

なお、実験中に球がガスケットやダイヤモンドにはりついて動かなくなる場合がある。それを避けるために、加圧の際には球が圧力室直径方向真ん中付近、高圧では厚さ方向でも真ん中付近にある状態になるよう気をつける。はりついてしまった場合には、DACを球が上にある状態にセットし、プラスチックハンマーで叩いて衝撃を与える。またはしばらく時間を置くことで解決する場合もあるが、動く見込みのない場合は DAC の減圧を行う。減圧角は実験条件にもよるが、本研究では9度ずつ減圧して球の様子を確かめた。

ちなみに、加圧の際にガスケットが圧縮されているため、減圧を行うと圧力室内の液体が漏れてしまって圧力低下の要因となる. はっきりとした差が見られない場合でも実験結果の信頼性は落ちてしまうので、減圧量が大きくなるような場合はセッティングからやり直す方がよい.

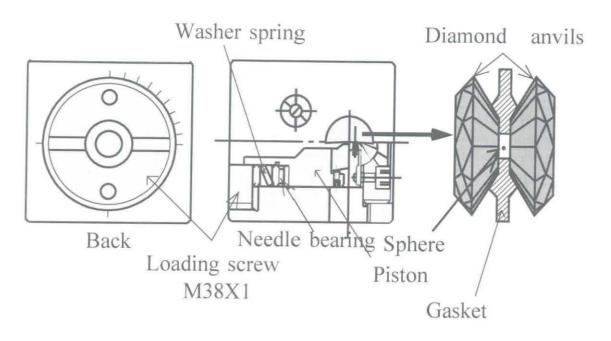



図 3-1 DAC の模式図 (No.2)




図 3-2 DAC の表面

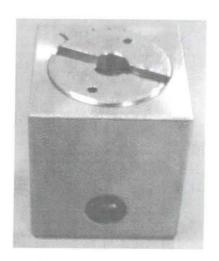



図 3-3 DAC の裏面

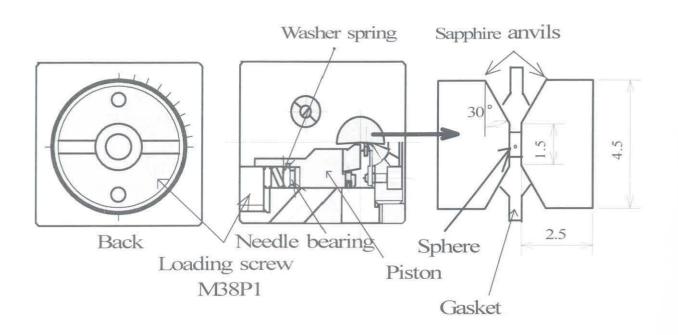



図 3-4 SAC の模式図 (No.1)

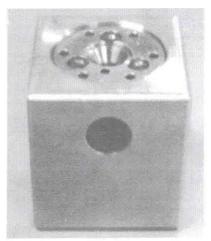



図 3-5 SAC の表面

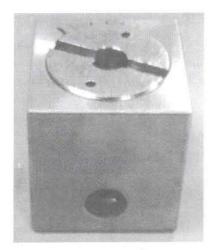
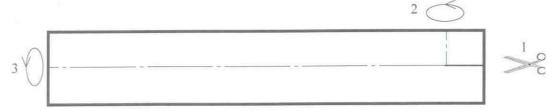




図 3-6 SAC の 裏面



- 1.セロハンテープに切り込みを入れる
- 2. 切り込みを入れた側の半分を折り曲げる
- 3.縦に半分に折る

図 3-7 ガスケット位置調整用セロハンテープ

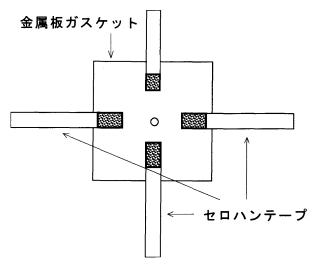



図 3-8 位置調整セロハンテープの取り付け

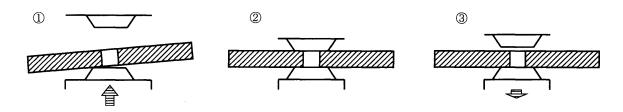
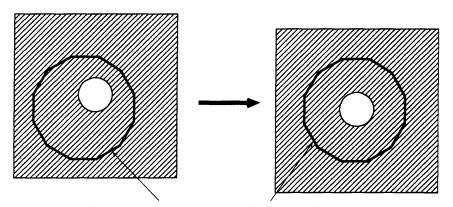
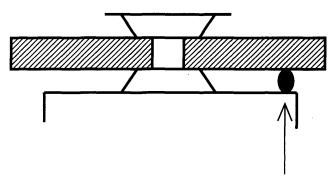





図 3-9 ガスケットの取り付け方



ダイヤモンドアンビル (顕微鏡ではこの範囲まで見える)

図 3-10 ガスケット穴の位置調整



DACの側面の穴から光学顕微鏡で見ながら接着 剤をたらしていく。

図 3-11 接着剤の付け方

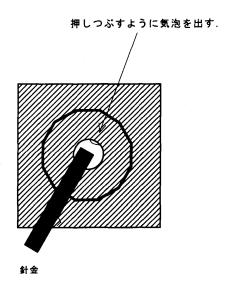



図 3-12 気泡の流入防止法

## 3. 2 DAC 加圧装置

DAC の加圧装置(協和製作所、WG - KY01 - 4型)を図 3-13 に示す. DAC をギア・ボックスにはめ込み、つまみを回して加圧を行う。カウンタの目盛りが細かくついており、最小 0.144° まで読みとることが可能であり、精度良く加圧ねじ回転角が測定できる. 50:1 に減速され加圧の際のつまみの回転力が小さく、発生圧力のコントロールも容易である. 以下に測定手順を示す.

1. ギア・ボックスの中に DAC をはめ込む. この時, あらかじめ溝の位

置を確認しておき、ゆっくり DAC を近づけ、つまみを回しながらはめ込む.

- 2. きっちりはまったことを確認したら、そのときのカウンタに表示されている目盛りを読みとる.
- 3. つまみを回して加圧を行う. この時, あまり早く回したり, 無理な加 圧は行わないように注意する. あらかじめ加圧する前に回したい角度 を決めておき, 目盛りに置き換え計算しておく.
- 4. 決めた目盛りまで加圧し終了したら、DACをボックスからゆっくりとはずす.

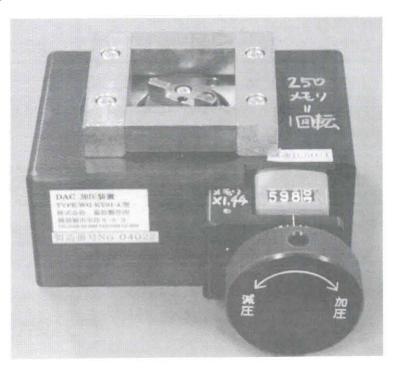



図 3-13 DAC 加圧装置

#### 3. 3 球落下法による粘度測定

本研究では、圧力室内に入れた落下球が一定距離を落下するのに要する時間から試料油の粘度を求める球落下法を用いた. 試料油が非圧縮性 Newton 流体で無限に広がっているとき、落下球が受ける抵抗 fi は次式により表される.

$$f_1 = 6\pi \eta_a av \tag{3-1}$$

ここで  $\eta_a$  は見かけの粘度、a および v は球の半径及び落下速度である. この関係を Stokes の粘性抵抗法則という. また、球が重力により下に引っ張られる力 $f_2$ は、浮力を考慮し次式で表される.

$$f_2 = \frac{4}{3} \pi a^3 \rho_5 g - \frac{4}{3} \pi a^3 \rho_L g \tag{3-2}$$

hos, hoL は球, 試料油の密度、gは重力加速度である. 球が一定速度で落下しているならば  $f_1=f_2$ となり、 $\eta_a$ は以下のようになる.

$$\eta_a = \frac{2ga^2(\rho_S - \rho_L)}{g_V} \tag{3-3}$$

(3-3) 式が成り立つのは、レイノルズ数が 1 に比べて非常に小さい場合である [18]. また、高圧下においては、液体の密度は常圧下のそれより上昇するので、ριの値は圧力により補正した次式を使用した [19].

$$\rho_L = \rho_0 \times \left[ 1 + \frac{0.00059 \times P}{1 + 0.00171 \times P} \right]$$
 (3-4)

ここで  $\rho_0$  は常圧下での試料油密度,P は高圧圧力 (MPa)を表す.しかし,本実験のように有限の大きさの圧力セル内では,球は両壁面の影響を受けて減速するため,壁効果の補正が必要になる.そこで Munro らの壁補正係数  $\gamma$  を用いる.壁補正係数  $\gamma$  を用いた粘度  $\eta$  は次式で与えられる [20].

$$\eta = \gamma \times \eta_a \quad (0 < \gamma < 1)$$
(3-5)

ここで ha は見かけの粘度である.壁補正係数 γは,ガスケット厚さやガスケット穴直径,落下球直径の関数であり本実験では 0.8 程度であった.

粘度測定装置の光学系の模式図および全体写真を図 3-11 および図 3-12 に示す、装置は接眼スケールつきベローズ接写装置、タイマーつきビデオカメラ (OLYMPUS VX-301)で構成されている、ベローズの DAC 側は X ステージ上に取り付けてある、録画には HDD ビデオレコーダー (Panasonic DMR-E90H)を、照明にはライトガイド (中央精機㈱ LGN-500W) およびライトガイド照明装置 (中央精機㈱ SPH-50N)を使用した、DAC を固定する回転ステージは Y - Z ステージにとりつけてある、Y - Z ステージおよび光学系はすべて H 型鋼材上に固定した、

粘度測定の全体の流れは、試料油を圧力室内に封入後は加圧せず常圧状態で圧力室寸法、粘度を測定し、その後加圧を行う.加圧するたびに粘度測定装置に取り付け、実際の球落下の速さを目安にして次の加圧を行う.

粘度測定の手順を以下に示す.

- 1. 加圧後,デジタル顕微鏡 (Nikon OPTIPHOT-2) でガスケット穴直径を測定する. 常圧,最高圧を測定する際にはガスケットの写真を撮っておく.
- 2. レーザフォーカス変位計で圧力室厚さ5箇所を測定する.
- 3. セットした DAC を、回転ステージ上に固定用の金具で固定する.
- 4. ビデオカメラ、HDD ビデオレコーダー、モニター用のテレビ、照明の電源を入れ、圧力室内の様子を映し出す. そして回転ステージを回転させたときにも圧力室がビデオカメラの撮影範囲から大きくはみ出さないよう、圧力室の中心と回転ステージの回転軸とがなるべく一致し、かつ光軸に来るように、回転ステージの位置を調節する.
- 5. 前述したように、球が落下する時には壁の影響を受けるため、落下球はコレット面間の中央に位置しなければならない。そのため、ベローズの下に取り付けられているマイクロメーターで、コレット面のふた側、加圧ねじ側、および球にピントを合わせ、それぞれの時のマイクロメーターの値を読み取り、球のピントと両コレット面のピントの距

#### 田中 2008年度 3章

離が等しくなるよう、球を移動させたい方向に装置全体を傾ける.

- 6. タイマーを作動させ、モニターにうつされた時間表示が動いているの を確認する.
- 7. HDD ビデオレコーダーの録画を開始し、回転ステージを回転させて球を持ち上げる. その際、球を圧力室の中心付近で落下するように調整する. 球が下まで落下したら回転ステージを回転させて、再び球を落下させる. これを低粘度時では 6 回程度、高粘度時では 3 回程度繰り返す.
- 8. 7を繰り返し、録画を停止してから録画ファイル名を入力する.
- 9. 録画したビデオを再生し、ひと目盛りの落下時間を測定する. 粘度算出には、落下時間がもっともはやい値を用いる.
- 10. パソコンの Mathcad 7による粘度算出プログラム(付録 1 参照)で粘度を求め、同ソフトの WLF 式による圧力算出プログラム(付録 2 参照)により圧力を求める.

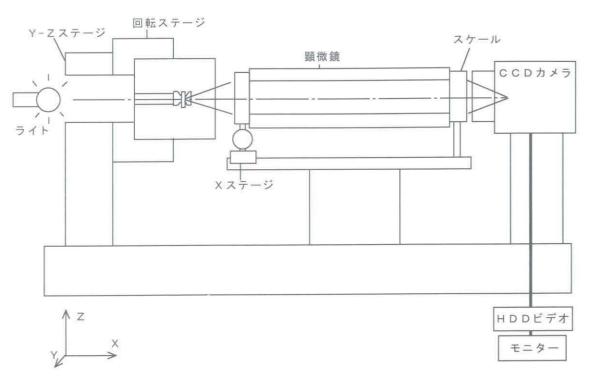



図 3-14 粘度測定装置の光学系模式図

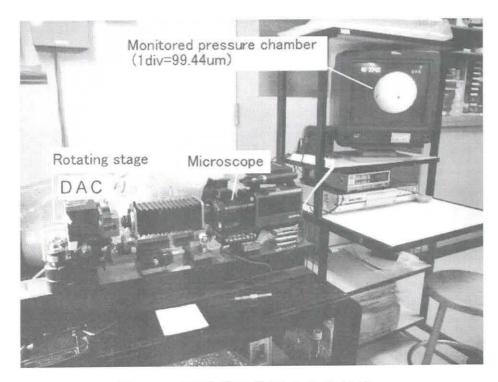



図 3-15 粘度測定装置の全体写真

#### 3. 4 圧力決定法および圧力較正図

中村らの DAC の加圧ねじ回転角による圧力決定法を以下に示す[21].

0.3 GPa までの低圧実験として測定粘度値を式 2-28 に代入して逆算した三つの独立した実験の圧力と加圧ねじ回転角 (見かけ)  $\theta$  との関係図 (以降「圧力変化図」と記述) を図 3-16 に示す.圧力が発生し始める角度は個々の実験で異なり,再現性はないが上昇後の曲線の形状に類似性が見られる.角度の差異はダイヤモンドと金属板 (ガスケット) の間の密封が完成する角度が個々の実験で異なるためと考えられる.そこで各曲線を圧力 0 (横軸) まで外挿してそこまでを空加圧ねじ回転角  $\theta$  dp, そこからを有効加圧ねじ回転角  $\theta$  eff (=  $\theta$  -  $\theta$  dp) と定義し,有効加圧ねじ回転角を横軸に書き直したものが図 3-17 である.三曲線はほぼ一致し, $\theta$  eff から圧力を決定することができるといえる.

IGPa までの加圧を目指し、ガスケット材料を銅から高強度のりん青銅に変更、圧力室を若干薄くした実験結果を図 3-18 に示す.図 3-17 が頭打ちの曲線となったのに比べ直線性が見られ、油種による差異はほとんどない.これはDAC 装置の圧力発生に関係する油の圧縮率(あるいは相対高圧密度)が Dowsonらの式で近似されるように油種にほとんど依存しないことによると考えられる.これを室温の圧力較正図とする.ばらつきは標準偏差で± 15MPa 程度と考えられる.なおこの較正図は装置係数と考えられ、DAC の構造,圧力室寸法,アンビル形状(図 3-1)など同一実験条件下で使用することができる.

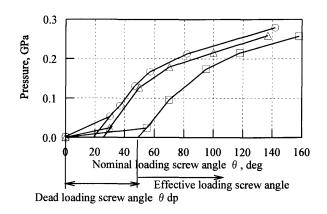



図 3-16 SN50 の三回の測定粘度値で調整された加圧ねじ回転角-圧力関係と, 有効加圧ねじ回転角  $\theta$  eff(= $\theta$ - $\theta$  dp)決定法

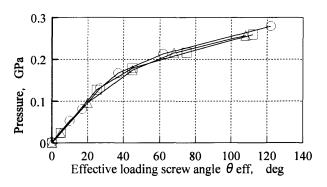



図 3-17 SN50 のデータ三つの有効加圧ねじ回転角 θ eff-圧力関係

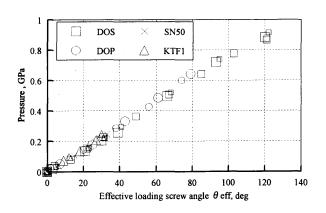



図 3-18 粘度測定値によって調整された有効加圧ねじ回転角-圧力関係(圧力較正図). 各油での再現性が確認された(記号サイズが違うのは,独立した実験).

油種が異なっても加圧ねじ回転角で圧力が決定できると考えられている理 由を以下に述べる.これまで報告されている固化油高圧密度式から求められ た高圧相対密度(常圧密度を基準)を図 3-19 に示す[22]. トラクション係数 が比較的高く 1GPa以下の低圧で固化するシクロヘキサン環あるいはベンゼン 環を持つ分子構造の#7149(トラクション試作油), DMP(トラクション油/ サントトラックの基油), 5P4E (ポリフェニルエーテル), TN68 (タール水添 油)の四種類の油である.固化圧力の差異により,その圧力以上では差異が 見られるが、 固化圧力 (0.2 ~ 0.5 GPa) まで全ての油は同一線上にのり Dowson らの式ともほぼ一致している. また, 高温下で DOS, DOP, G31(パラフィン 系鉱油, ASME データ), G36 (ナフテン系鉱油, ASME データ) と Dowson らの 式と比較したグラフを図 3-20, 3-21, 3-22, 3-23, 3-24 に示す. こちらは温度が 高くなるのつれ、Downson の式とずれている. このことから、室温では、圧力 上昇に関与する潤滑油の高圧下の圧縮率はほとんど影響を受けず、ガスケッ ト(材質、寸法)DACコレット径などの実験条件が同じなら、有効加圧ねじ 回転角-圧力の関係は、100 ℃程度で 1GPa 程度まで油種によりほとんど変わ らず、図 3-14 のような関係図となり 1 本の較正図から圧力が決定できると期 待される.

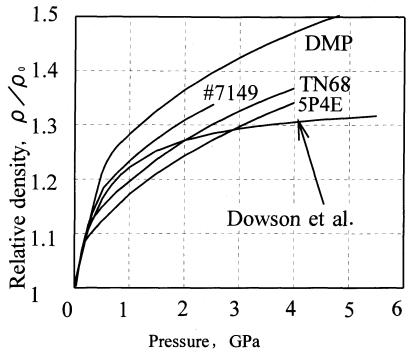



図 3-19 種々の油の圧力-相対密度関係

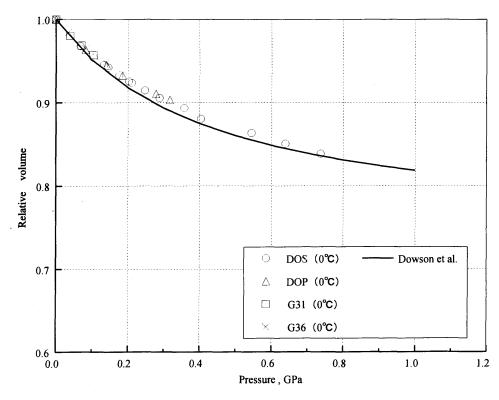



図 3-20 四つの油 (ASME の値)と Dowson らの値との比較 (0℃)

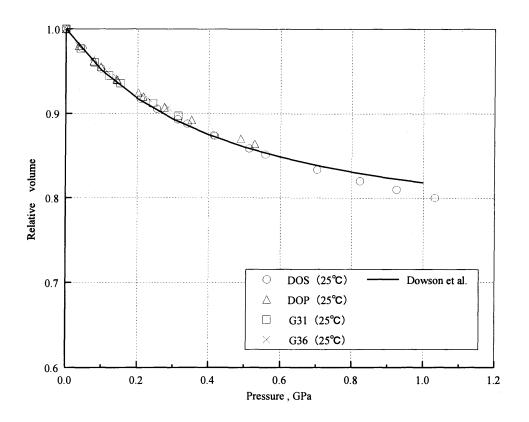



図 3-21 四つの油 (ASME の値)と Dowson らの値との比較 (25 ℃)

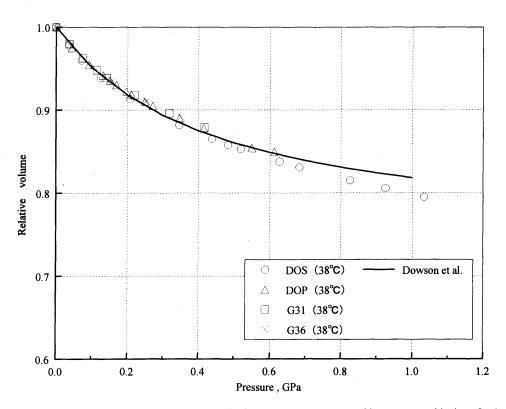



図 3-22 四つの油 (ASME の値)と Dowson らの値との比較(38 ℃)

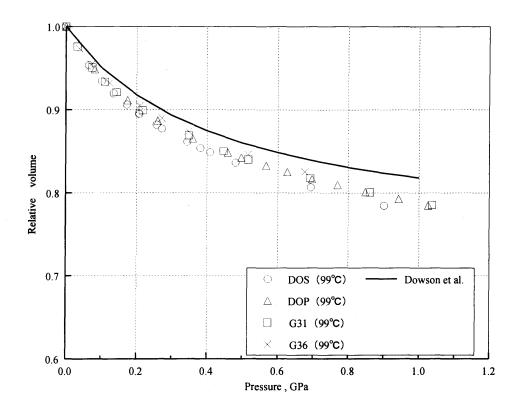



図 3-23 四つの油 (ASME の値)と Dowson らの値との比較 (99 ℃)

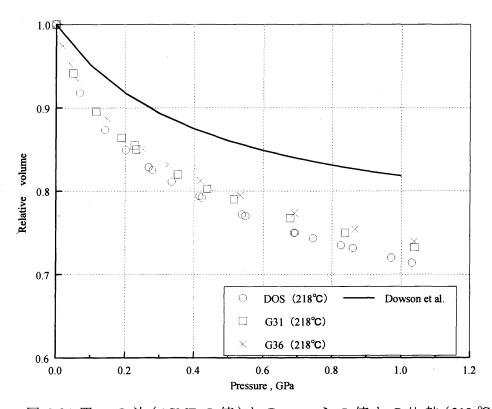



図 3-24 四つの油 (ASME の値)と Dowson らの値との比較 (218 ℃)

#### 3.5 高圧粘度未知油の圧力決定法

高圧粘度未知油で3.4で構築した圧力較正図から圧力を決定するには、 図 3-16 のように圧力変化図にて空加圧ねじ回転角 θ ωρを決定する必要がある. 決定手順をその構築過程とともに以下に示す.まず圧力未知のまま粘度測定 をおこない,対数粘度と加圧ねじ回転角の関係図(対数粘度変化図)を作成し, 常圧粘度に外挿して空加圧ねじ回転角θαηを求める. θαρとθαηの関係を 見るため、圧力較正標準油の実験からの圧力変化図、対数粘度変化図の一例 を そ れ ぞ れ 図 3-25, 3-26 に 示 す . 両 者 間 に 若 干 の 差 異 が 見 ら れ , 回 転 角 の 差  $\Delta$   $\theta$  d (=  $\theta$  dp-  $\theta$  d  $\eta$ ) は DOS で約 5 ° (=50-45), KTF1 で約 -2 ° (=50-52) と油種依 存となっている. 対数粘度変化図では勾配β(=log Δη/Δθ)も示してあるが, これが油種で異なることが Δ θ αの油種依存の原因と考えられる. そこで 4 つの試料油でβと空加圧ねじ回転角の間の差Δθaとの関係図を作成し図 3-30 に示す、各点はそれぞれの油での数回の実験の平均値である.  $\Delta$   $\theta$   $\alpha$   $\alpha$   $\alpha$ 対しほぼ直線的に低下しており相関があるといえ、この線図を用いて未知油 での対数粘度変化図の勾配βから圧力較正に必要なθ dp(=θ d n+Δθ d),θ eff  $(= \theta - \theta \text{ dp})$ を算出する. 得られた  $\theta$  effと室温の図 3-18 の圧力較正図より室温 圧力を決定する.

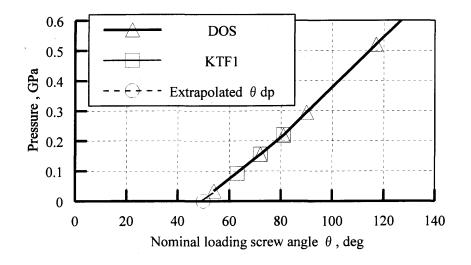



図 3-25 圧力から決定した空加圧ねじ回転角 θ dp

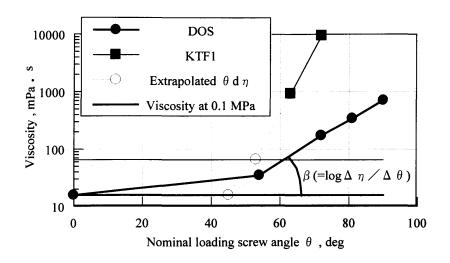



図 3-26 対数粘度から決定した空加圧ねじ回転角 θ d η

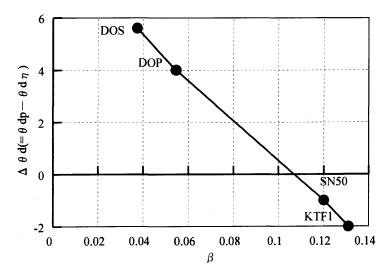



図 3-27 θ dp-θ d n間の空加圧ねじ回転角の差 Δ θ d と 対数粘度勾配勾配 β の依存

## 3.6 試料油および高圧粘度の WLF 式回帰

本研究では、本実験では、試料液体として直鎖状の分子構造を持つエステル油であるジオクチルセバケート(DOS)、合成鎖状油のポリアルファオレフィン(PAO4)、イソプロピルアルコール (iPA、別名 2 プロパノール)、n アミルアルコール (nAA、別名 1 ペンタノール)、n プロピルアルコール (nPA、別名 1 プロパノール)、エタノール、静水圧性に優れた Daphne7373、およびそれを改良した Daphne7474 を用いた. 試料油の物性を表 3-1 に、文献値による各試料油の係数を表 3-2 に PAO4 についてはローランズ式の係数を表 3-3 に、iPA、nAA、nPA、EOH、DOS、PAO4 における文献値と WLF 値の比較をそれぞれ図 3-28、3-29、3-30、3-31、3-32 に示す. また、アルコール類については分子構造を図 3-34、3-35、3-36、3-37 に示す. 以下に用いる実験番号は表 3-4、3-5 に基づくものである.

また試料液体を封入する圧力室を形成する金属板ガスケットとして,リン青銅 (PCu,  $\varphi$ 0.7, t0.5 または PCu,  $\varphi$ 1.0, t1.0)を使用した.実験温度は通常 23  $\sim$  25  $\sim$  . DAC はダイヤモンドのコレット面の大きさが  $\varphi$ 1.1 の No.2 を,SAC は No.1 を用いた.

高圧粘度実測値からの圧力決定法は、粘度測定から求めた粘度と測定温度  $(24\ ^{\circ})$  から WLF 式 (2-28) を用いて圧力 P を決定する. 具体的には、P の初期値を少しずつ変え測定粘度に収束した値をPとする.

Refractive index at Density, g/cm<sup>3</sup> Sample riquid Viscosity, mPa · s atmospheric pressure Dioctylsebacate(DOS) 0.912(25°C) 1.448 17.6(25°C) poly-α-olefin(PAO4) 0.814(25°C) 24(25°C) 1.425 i-Propyl alcohol(iPA) 0.7887(25°C) 2.14(25°C) 1.380 n-Amyl alcohol(nAA)  $0.804(24^{\circ}C)$ 3.654(25°C) 1.410 n-Propyl alcohohl(nPA) 0.805(24°C) 2.008(25°C) 1.384 0.800(24°C) 1.383 ethanol(EOH) 1.000(25°C) Daphne7373(7373) 0.800(24°C) 26.784(25°C) 1.475

表 3-1 試料液体の物性

5.279(25°C)

1.464

0.803(24°C)

Daphne7474(7474)

表 3-2 文献値による各試料油の係数

| Liquid | Ts (0)      | <b>A</b> 1 | A2       | B1       | B2       | C1      | C2      |
|--------|-------------|------------|----------|----------|----------|---------|---------|
| DOS    | -89. 7      | 111.5      | 0. 558   | 0. 217   | 20. 3    | 11. 17  | 31. 69  |
| iPA    | -165        | 134. 36    | 0. 899   | 0. 092   | 101. 743 | 11      | 26      |
| nAA    | -165        | 96. 08     | 1. 367   | 0. 071   | 6. 956   | 13. 27  | 74. 68  |
| nPA    | -165        | 118. 18    | 0. 729   | 0.043    | 164. 509 | 12. 48  | 54. 22  |
| EOH    | -243. 89571 | 327. 2     | 0. 05248 | 0. 17855 | 6. 335   | 75. 091 | 12. 749 |

表 3-3 文献値による各試料油の係数

|      | So     | z     | ηο     |  |  |
|------|--------|-------|--------|--|--|
| PA04 | 1. 047 | 0. 57 | 0. 019 |  |  |

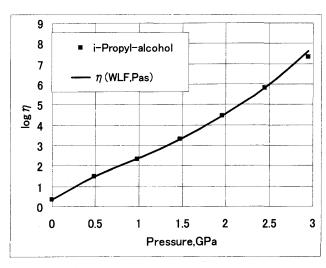



図 3-28 iPA における Bridgman 値と

図 3-29 nAA における Bridgman 値と

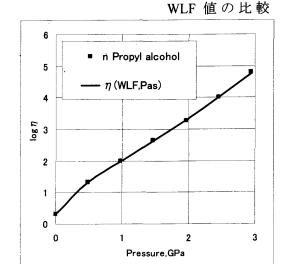



図 3-30 nPA における Bridgman 値と WLF 値の比較

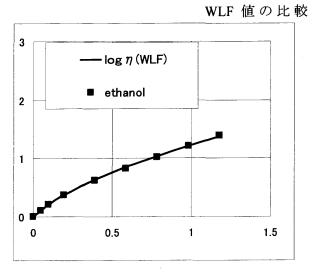
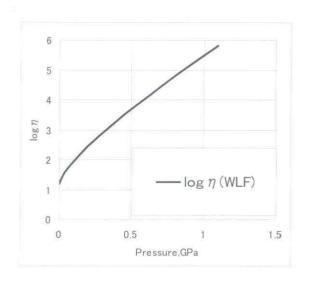




図 3-31 EOH における Bridgman 値と WLF 値の比較



6
5
4
Roalands式(村木)
2
---Extrapolation
0
0 0.2 0.4 0.6 0.8 1
Pressure,GPa

図 3-32 DOS の文献値

図 3-33 PAO4 の文献値

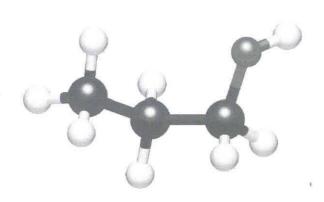



図 3-34 iPA の構造

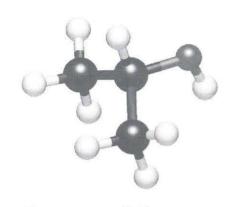



図 3-35 nPA の構造

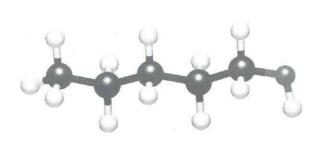



図 3-36 nAA の構造

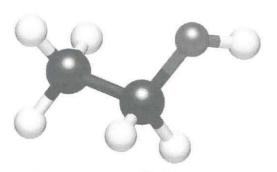



図 3-37 EOH の構造

( http://tenko.cc.osaka-kyoiku.ac.jp/tennoji/oka/2003/ko2-52.htm 参照 )

表 3-4 実験条件

| E             | DAC number      | 0.1.                | Sp       | Sphere        |  |  |
|---------------|-----------------|---------------------|----------|---------------|--|--|
| Exp. notation | Diamond size,mm | Gasket size         | Material | ¦ Diameter,μm |  |  |
| DOG(5)        | DAC No2         | φ 0.7               | 0        | C1            |  |  |
| DOS(5)        | φ 1.1           | t 0.5               | Copper   | 61            |  |  |
| D0.6(4)       | DAC No2         | <b>ф</b> 0.7        | 0        | 61            |  |  |
| DOS(6)        | φ 1.1           | t 0.5               | Copper   | 61            |  |  |
| DOC(7)        | DAC No2         | <b>Ø</b> 0.7        | C        | 62            |  |  |
| DOS(7)        | φ 1.1           | t 0.5               | Copper   | 02            |  |  |
| DOS(8)        | DAC No2         | <b>Ø</b> 0.7        | Copper   | 57            |  |  |
| DO2(9)        | φ 1.1           | t 0.5               | Copper   | 37            |  |  |
| iPA(1)        | DAC No2         | φ0.7                | Copper   | 56            |  |  |
| IFA(I)        | φ 1.1           | t 0.5               | Соррег   | 56            |  |  |
| iPA(2)        | DAC No2         | <b>ф</b> 0.7        | Copper   | 58            |  |  |
| IFA(2)        | φ 1.1           | t 0.5               | Соррег   | 36            |  |  |
| iPA(3)        | DAC No2         | <b>φ</b> 0.7        | Copper   | 62            |  |  |
| IFA(3)        | φ 1.1           | t 0.5               | Соррег   | 02            |  |  |
| (D.A.(4)      | DAC No2         | φ 0.7               | Connor   | 62            |  |  |
| iPA(4)        | φ 1.1           | t 0.5               | Copper   |               |  |  |
| iPA(5)        | DAC No2         | <b>ф</b> 0.7        | Copper   | 62            |  |  |
|               | φ 1.1           | t 0.5               | Соррег   | 02            |  |  |
| nAA(1)        | DAC No2         | <b>Ø</b> 0.7        | Copper   | 55            |  |  |
| IIAA(1)       | φ 1.1           | t 0.5               | Соррег   |               |  |  |
| nA A(2)       | DAC No2         | <b>Ø</b> 0.7        | Copper   | 60            |  |  |
| IIAA(2)       | φ 1.1           | t 0.5               | Соррег   | - 00          |  |  |
| nAA(3)        | DAC No2         | <b>Ø</b> 0.7        | Соррег   | 62            |  |  |
| IIAA(3)       | φ 1.1           | t 0.5               | Соррег   | 02            |  |  |
| nPA(1)        | DAC No2         | <b>Ø</b> 0.7        | Copper   | 59            |  |  |
| III A(I)      | φ 1.1           | t 0.5               | Соррег   | Ja            |  |  |
| nPA(2)        | DAC No2         | <b>\$\phi\$</b> 0.7 | Copper   | 66            |  |  |
| III A(2)      | φ 1.1           | t 0.5               | Соррег   |               |  |  |
| nPA(3)        | DAC No2         | <b>φ</b> 0.7        | Copper   | 68            |  |  |
| III A(3)      | φ 1.1           | t 0.5               | Соррег   |               |  |  |
| nPA(4)        | DAC No2         | <b>φ</b> 0.7        | Copper   | 53            |  |  |
| ш А(+)        | φ 1.1           | t 0.5               | Соррег   | - 00          |  |  |
| nPA(5)        | DAC No2         | <b>\$\phi\$</b> 0.7 | Copper   | 62            |  |  |
| IIFA(3)       | φ 1.1           | t 0.5               | Copper   |               |  |  |
| nDA (6.)      | DAC No2         | <b>Ø</b> 0.7        | Copper   | 62            |  |  |
| nPA(6)        | φ 1.1           | t 0.5               | Copper   | UZ            |  |  |

表 3-5 実験条件

|          | r       |               |                |      |  |
|----------|---------|---------------|----------------|------|--|
| PAO4(1)  | DAC No2 | <b>ф</b> 0.7  | Copper         | 54   |  |
| 17(0+(1) | φ 1.1   | t 0.5         | Соррег         |      |  |
| PAO4(2)  | DAC No2 | <b>Ø</b> 0.7  | Copper         | 65   |  |
| TAO4(2)  | φ 1.1   | t 0.5         | Соррег         | 00   |  |
| PA O4(3) | DAC No2 | <b>Ø</b> 0.7  | Copper         | 58   |  |
| 1704(3)  | φ 1.1   | t 0.5         | Соррег         | 30   |  |
| PAO4(4)  | DAC No2 | <b>Ø</b> 0.7  | Copper         | 53   |  |
| 11101(1) | φ 1.1   | t 0.5         | Соррег         |      |  |
| PAO4(5)  | DAC No2 | <b>\$</b> 0.7 | Copper         | 60   |  |
| 17104(3) | φ 1.1   | t 0.5         | Соррег         |      |  |
| PAO4(6)  | DAC No2 | <b>Ø</b> 0.7  | Copper         | 50   |  |
| 17(04(0) | φ 1.1   | t 0.5         | Соррег         |      |  |
| EOH(1)   | DAC No2 | <b>Ø</b> 0.7  | Copper         | 54   |  |
| LOII(I)  | φ 1.1   | t 0.5         | Соррег         |      |  |
| EOH(2)   | DAC No2 | <b>Ø</b> 0.7  | Copper         | 49   |  |
| EOH(2)   | φ 1.1   | t 0.5         | Соррег         | 49   |  |
| 7373(1)  | DAC No2 | <b>ф</b> 0.7  | Copper         | 61   |  |
| 7373(1)  | φ 1.1   | t 0.5         | Соррег         | 01   |  |
| 7474(1)  | DAC No2 | <b>Ø</b> 0.7  | Copper         | 59   |  |
|          | φ 1.1   | t 0.5         | Соррег         | 39   |  |
| iPA(1)   | SAC No1 | <b>ø</b> 1.0  | Copper         | 62   |  |
| IFA(1)   | φ 1.5   | t 1.0         | Соррег         | 02   |  |
| nPA(1)   | SAC No1 | <b>Ø</b> 1.0  | Copper         | 89   |  |
| IIFA(1)  | φ 1.5   | t 1.0         | Соррег         | 03   |  |
| nPA(2)   | SAC No1 | <b>ø</b> 1.0  | Copper         | 85   |  |
| IIFA(2)  | φ 1.5   | t 1.0         | Соррег         | - 00 |  |
| nPA(3)   | SAC No1 | <b>ø</b> 1.0  | Copper         | 85   |  |
| III A(3) | φ 1.5   | t 1.0         | Соррег         |      |  |
| EOH(1)   | SAC No1 | <b>Ø 1</b> .0 | Copper         | 61   |  |
|          | φ 1.5   | t 1.0         | Соррег         |      |  |
| EOH(2)   | SAC No1 | <b>¢</b> 1.0  | A lum inium    | 62   |  |
| LOH(2)   | φ 1.5   | t 1.0         | / Yourn Imulii |      |  |
| DOS(1)   | SAC No1 | <b>Ø</b> 1.0  | Copper         | 51   |  |
| DOS(1)   | φ 1.5   | t 1.0         | Copper         | 31   |  |
| 7272(1)  | SAC No1 | <b>Ø</b> 1.0  | Conner         | 53   |  |
| 7373(1)  | φ 1.5   | t 1.0         | Copper         | - 55 |  |
| 7.474(1) | SAC No1 | <b>Ø</b> 1.0  | Conner         | 54   |  |
| 7474(1)  | φ 1.5   | t 1.0         | Copper         | 34   |  |

## 第4章 実験結果および考察

- 4. 1 2GPa までの圧力較正図の構築
- 4.1.1 空加圧ねじ回転角と粘度勾配

DOS, iPA, nPA, EOH を用いた実験では DAC および SAC で, PAO4, nAA を用

いた実験では DAC のみでの、それぞれ見かけの加圧ねじ回転角-圧力関係、 見かけの加圧ねじ回転角-粘度関係を図 4-1 ~ 4-20 に示す.

空加圧ねじ回転角を粘度および圧力からものを表 4-1 ~ 4-3 に示す. どの液体においても圧力変化図より求めた値と対数粘度変化図から求めた値で若干の差があった. 圧力変化図から求めた空加圧ねじ回転角の方が大きくなる傾向が見られた.

本研究の簡易圧力評価法では、空加圧ねじ回転角を決定する必要がある. 実験により圧力と粘度の関係が明らかになっている既知液体については圧力変化図から空加圧角ねじ回転角を求めることができるが、粘度と圧力の関係がわからない未知液体については対数粘度の変化から空加圧ねじ回転角を求める必要がある.

しかし、表 4-1 のように、圧力から外挿した空加圧角 $\theta$  dp と対数粘度から外挿した空加圧角 $\theta$  d  $\eta$  の間には差があるため、その差 $\theta$  dp  $-\theta$  d  $\eta$  を補正することができれば圧力評価の精度を高めることができる.

本研究室のこれまでの実験により、各油の補正角  $\theta$  dp  $-\theta$  d  $\eta$  と対数粘度の 勾配  $\log \Delta \eta / \Delta \theta$  との間に相関関係のある可能性が報告されている.この相関関係が確認できれば、データの蓄積によって未知油の補正角を推測することができるようになる.

図 4-21, 4-22 に DAC, SAC の対数粘度勾配と補正角の関係を示す. DAC, SAC それぞれの実験で同種の油があるが、ガスケットの厚さの違いにより勾配が異なる結果となった. まだ精度において課題は残るが、圧力から外挿した空加圧角  $\theta$  dp と対数粘度から外挿した空加圧角  $\theta$  dn との差に一定の傾向があることを示唆している. まだ厳密な補正角が得られるものではないが、空加圧

角の決定においての精度向上には有効だと思われる. ただしこの結果を元に 角度の補正を行う際には、圧力室体積などの実験条件を同じにする必要がある.

## 4.1.2 各液体の圧力較正図の再現性

各試料油液体について、有効加圧ねじ回転角と逆算した圧力の関係(圧力較正図)を図 4-23 ~ 4-31 に示す。同液体で複数回行った実験で、ほぼ同一の傾向を示し一本の圧力較正図を構築できたと言える. iPA の実験で圧力較正図を 2GPa 程度まで求めた結果、除荷過程を含む四つの実験でほぼ再現性が見られた. iPA(3)の実験では 1.5GPa あたりから圧力が低下しているが、これはガスケットの変形が進み、ダイヤモンド面と圧力室の間に隙間ができそこから圧力がもれたと考えられる.一方 iPA(4)の圧力が若干高めになっているのは、表 4-1 にあるように実験時期が他の三つと異なり、種々の実験条件が異なるためと考えられる.

DOS (7) と nPA (3) SAC では他の実験と明らかに異なる傾向となったが、これは誤って異なった条件のもと実験を行った可能性が高い. また EOH(1)もグラフの勾配が他と違うが、2 点目を無視すれば EOH(2)との再現性が見られる結果となった.

全体的に従来のデータに比べばらつきが大きかったが、これが本装置では アルコール類の低圧、低粘度のデータ測定が不可能なことによると考えられる.

## 4.1.3 全試料油の圧力較正図

DAC, SAC において、それぞれの試料液体から 1 本ずつ代表の実験を選んで表示したものが図 4-32、4-33 である、代表の実験を選ぶ基準は、圧力の不自然な上下がなく高圧まで測定できたことである。

図 4-32 を見ると、nPA の圧力が 0.1GPa 程度高いが、四本とも同様の勾配を示している. 最高圧の値には差があるが、それはこれらの実験で、最高圧(2GPa)が近づいてくるとガスケットが変形に耐えられなくなって圧力がもれ

てしまったり、液体が固化してしまったりする場合があるためである. また図 4-33 では、DOS(13)岩崎の実験を除きほぼ同じ傾向を示し、圧力較正図は油種に依存しないことが確認できたと言える. DOS(13)岩崎が 0.6GPa 付近から勾配が異なるのは、実験で使用したガスケットの条件が他と異なるからと考えられる.

### 4. 2 簡易高圧粘度評価

#### 4. 2. 1 DOS および PAO4

空加圧ねじ回転角から有効加圧ねじ回転角を求め、図 4-32 の圧力較正図から DOS、PAO4 の圧力を推定した.圧力較正図から推定した DOS、PAO4 の圧力と粘度の関係をそれぞれ図 4-34、4-35 に示す. DOS、PAO4 ともに文献値の外装線と異なり下に凸の特性であることがわかった.

## 4. 2. 2 エタノール

DOS, PAO4 と同様に図 4-32 の圧力較正図から推定した圧力と粘度の関係を図 4-36 に示す. ほぼ文献値と一致しているが, 文献値の外挿線よりも若干高い値となった.

#### 4. 2. 3 Daphne7373 および 7474

Daphne7373 について DAC, SAC においての見かけの加圧ねじ回転角-対数粘度関係を図 4-37、4-38 に示す.それぞれ DOS と勾配がほぼ同じになった.対数粘度から求めた空加圧ねじ回転角 d  $\eta$  と対数粘度勾配を定め,さらに図4-21、4-22 から補正角を求め,空加圧ねじ回転角を決定した.決定した空加圧ねじ回転角と圧力較正図により推定した圧力と粘度の関係を図 4-39 に示す.図中の WLF 式の線はデータ点の多いことから,SAC のほうで求めた.DAC とSAC では近い値となり再現性が見られた.また DOS と比べるとやや粘度が高く,平行になった.

Daphne7474 についても同様に DAC, SAC において見かけの加圧ねじ回転角-対数粘度関係を図 4-40, 4-41 に示す. また 7373 と同様に推定した圧力と粘度関係を図 4-42 に示す. 図中の WLF 式の線はデータ範囲が広い DAC のほうで求めた. DAC と SAC の間には再現性が見られた. また DOS に比べ勾配が 3 分の 2ほど小さい結果となった. これは静水圧圧力が高いことに寄与すると考えられる. また 7373, 7474 について, 圧力と粘度圧力係数 α の関係図を図 4-43 に, データの詳細を表 4-5 に示す. 圧力上昇とともに α は減少していることがわかる. DOS と比較すると 7373 は DOS とほぼ同じ傾向となり, 7474 はやや低い値となっている.

球が落下する際に壁からうける影響を表す壁係数の変化をまとめたものが図 4-44 である. 同液体での実験数が多く, 圧力も 2GPa 付近まで上昇していることから nPA の結果を示す. 加圧によって圧力室が小さくなるほど, 壁係数が, 0.8 から徐々に減少している. 最高圧付近で圧力漏れが発生しない限りは, 実験の最初から最後まで同じ傾向で壁係数が変化しているのがわかる.

また、圧力-ガスケット厚さ(圧力室の厚さ)の関係を図 4-45 に、圧力-ガスケット穴直径(圧力室の直径)の関係を図 4-46 に示す. これらを見ると、圧力 1.2GPa 付近からグラフの勾配が変わっていることがわかる. これは上で述べた、圧力室の急激な変形によって 1.2GPa 付近から圧力上昇の勾配がゆるくなるという考えを裏付けるものである.

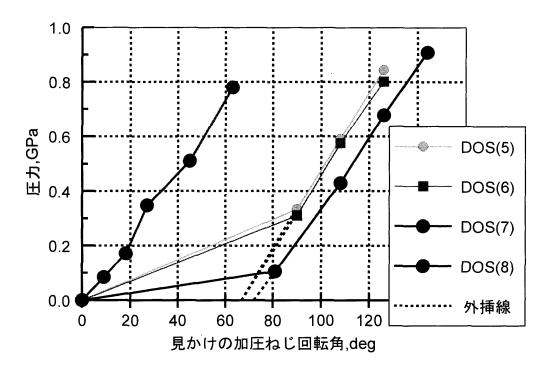



図 4-1 DOS の見かけの加圧ねじ回転角-圧力関係

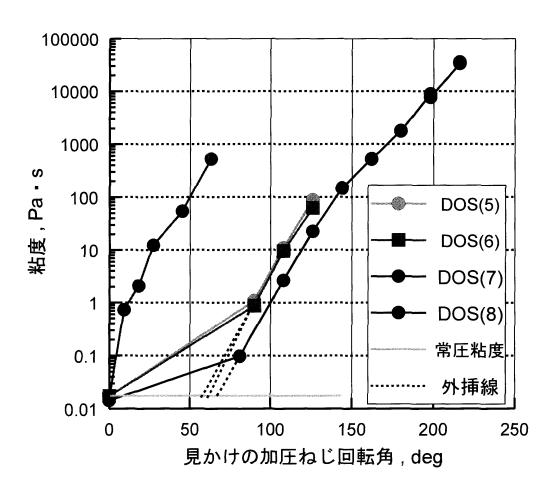



図 4-2 DOS の見かけの加圧ねじ回転角-粘度関係

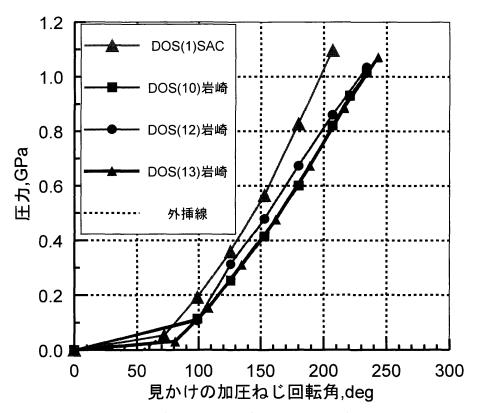



図 4-3 DOS の見かけの加圧ねじ回転角-圧力関係(SAC)

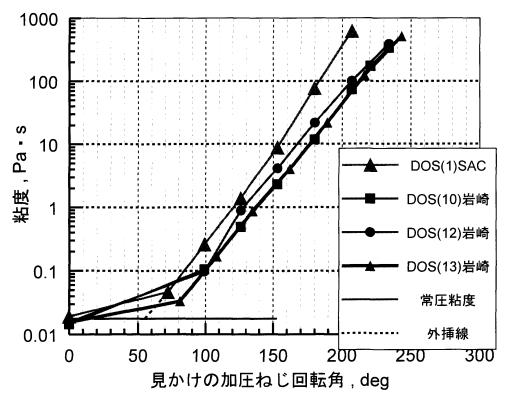



図 4-4 DOS の見かけの加圧ねじ回転角-粘度関係(SAC)

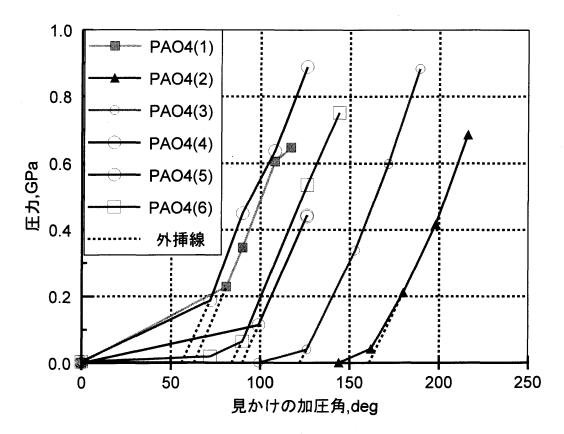



図 4-5 PAO4 の見かけの加圧ねじ回転角-圧力関係

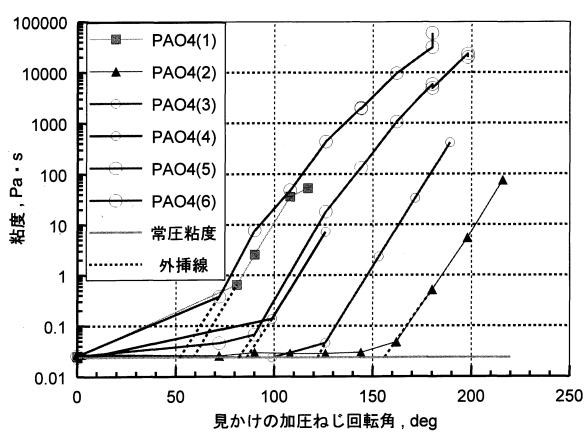



図 4-6 PAO4 の見かけの加圧ねじ回転角-粘度関係

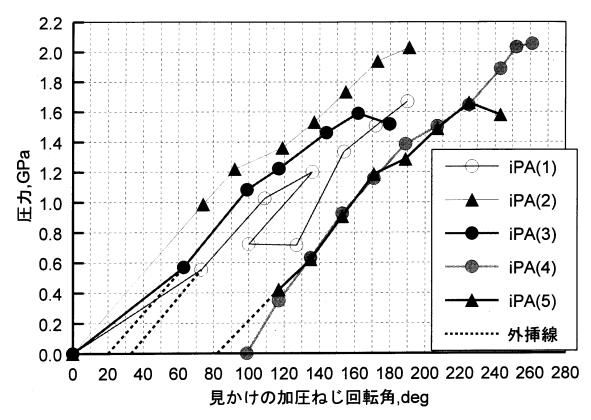



図 4-7 iPA の見かけの加圧ねじ回転角-圧力関係

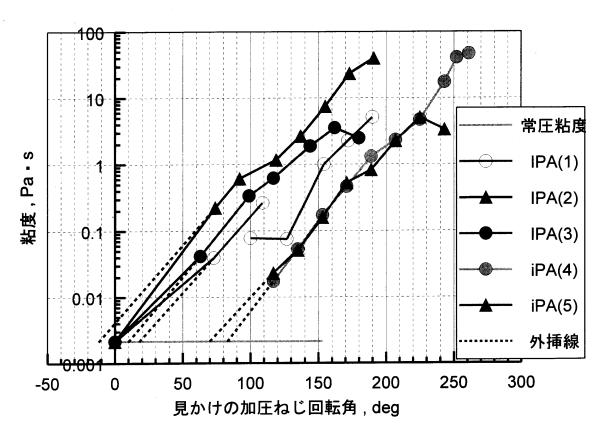



図 4-8 iPA の見かけの加圧ねじ回転角-粘度関係

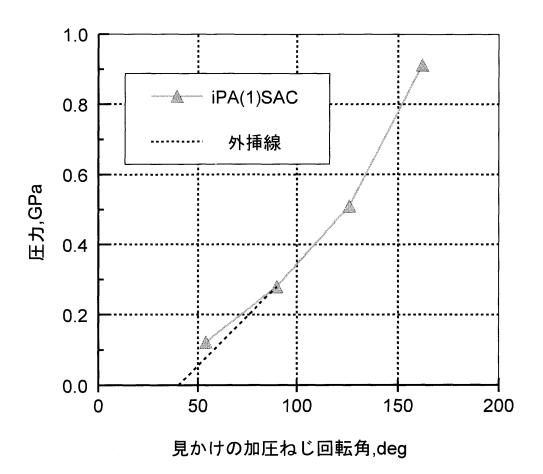



図 4-9 iPA の見かけの加圧ねじ回転角-圧力関係(SAC)

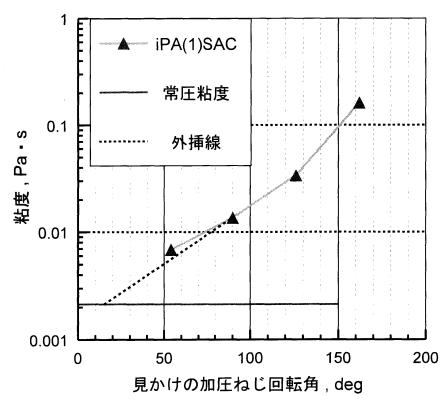



図 4-10 iPA の見かけの加圧ねじ回転角-粘度関係(SAC)

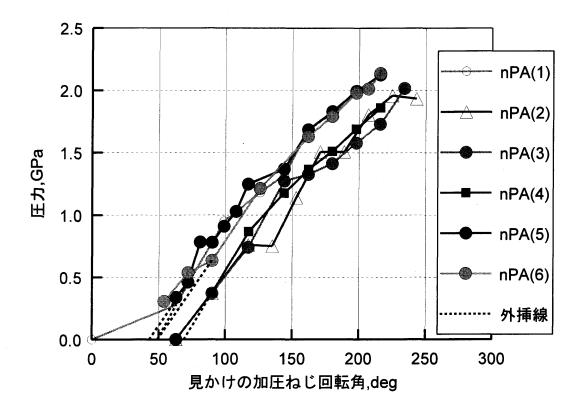



図 4-11 nPA の見かけの加圧ねじ回転角-圧力関係

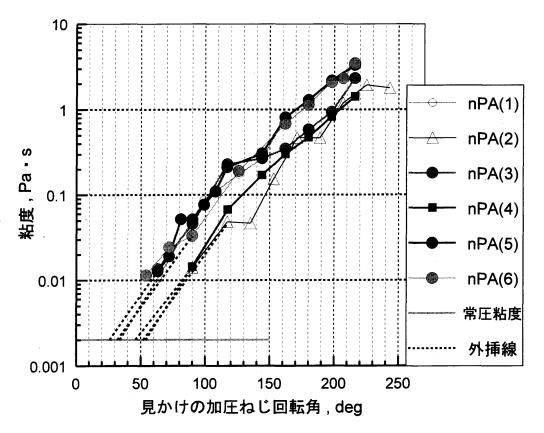



図 4-12 nPA の見かけの加圧ねじ回転角-粘度関係

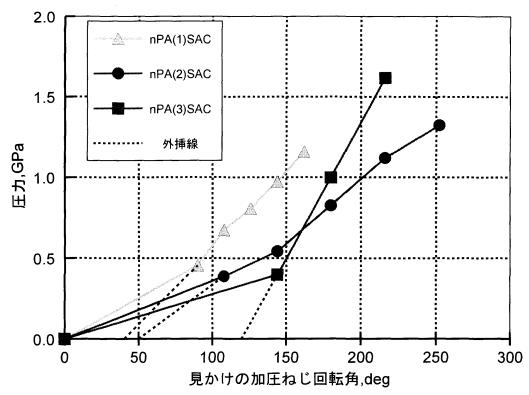



図 4-13 nPA の見かけの加圧ねじ回転角-圧力関係(SAC)

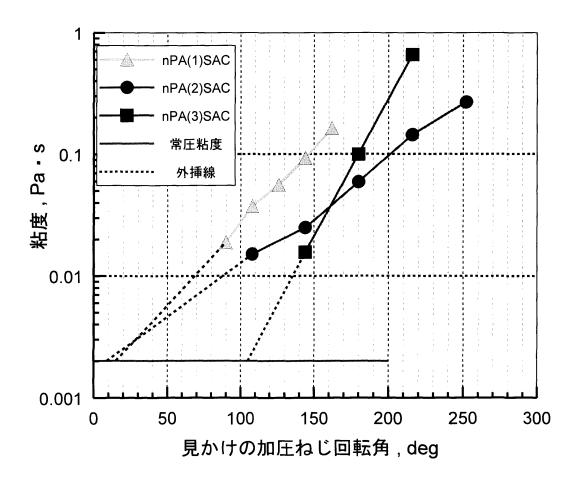



図 4-14 nPA の見かけの加圧ねじ回転角-粘度関係(SAC)

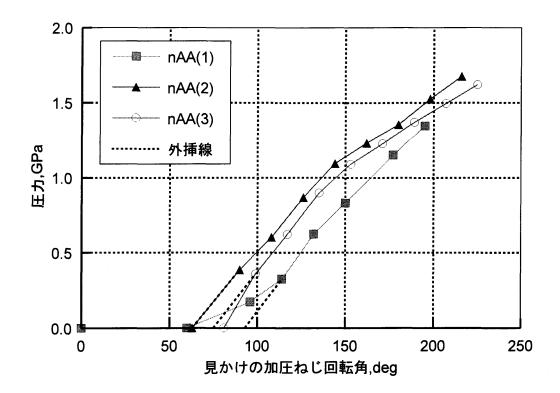



図 4-15 nAA の見かけの加圧ねじ回転角-圧力関係

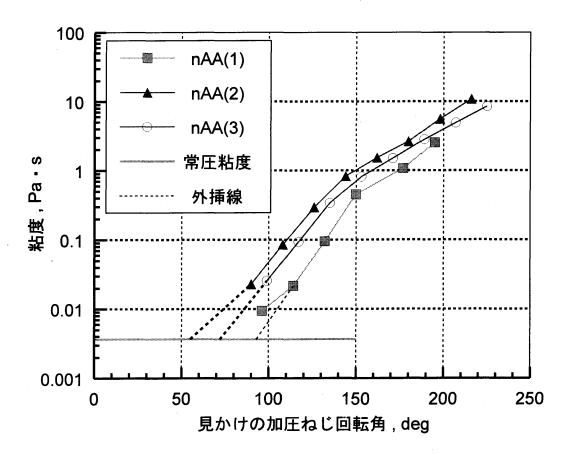



図 4-16 nAA の見かけの加圧ねじ回転角-粘度関係

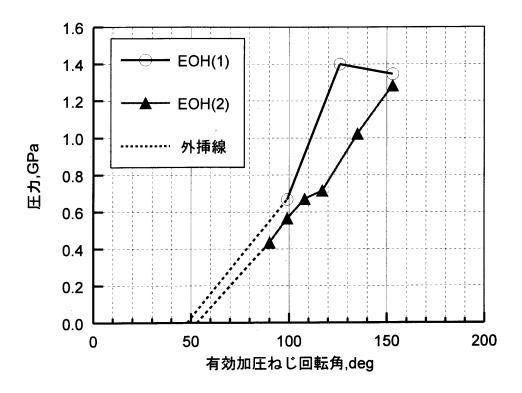



図 4-17 EOH の見かけの加圧ねじ回転角-圧力関係

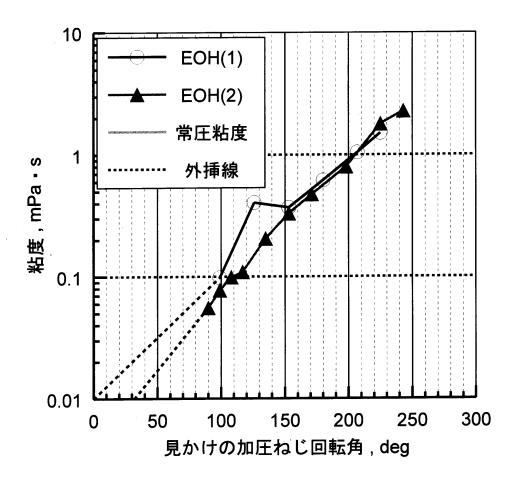



図 4-18 EOH の見かけの加圧ねじ回転角-粘度関係

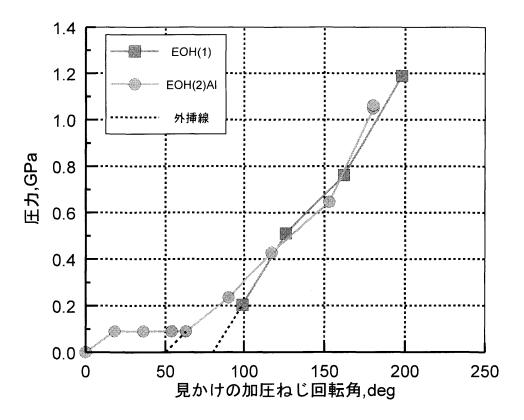



図 4-19 EOH の見かけの加圧ねじ回転角-圧力関係(SAC)

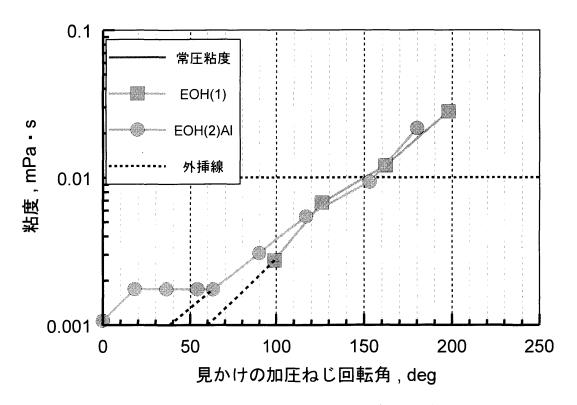



図 4-20 EOH の見かけの加圧ねじ回転角-粘度関係(SAC)

表 4-1 それぞれの実験における空加圧ねじ回転角

|          |            |        | 空加圧回転角                     | 角 θ d , deg         | 差Δθ deg                        |
|----------|------------|--------|----------------------------|---------------------|--------------------------------|
| 実験番号     | 実験最終日      | 対数粘度勾配 | 対数粘度か<br>らの                | 圧力からの               | $\theta$ dp- $\theta$ d $\eta$ |
|          |            |        | 外挿値 <i>θ</i><br>d <i>η</i> | 外挿値 <i>θ</i><br> dp |                                |
| DOS (5)  | 2006/9/21  | 0. 053 | 57                         | 67                  | 10                             |
| DOS (6)  | 2006/10/16 | 0. 056 | 61                         | 67                  | 6                              |
| DOS (7)  | 2007/12/7  | 0. 053 | 0                          | 4                   | 4                              |
| DOS (8)  | 2007/12/17 | 0. 053 | 67                         | 72                  | 5                              |
| 抜粋データ    |            | 0. 053 |                            |                     | 5. 0                           |
| PA04(1)  | 2006/11/21 | 0. 065 | 59                         | 63                  | 4                              |
| PA04(2)  | 2006/12/6  | 0. 056 | 156                        | 161                 | 5                              |
| PA04(3)  | 2007/7/10  | 0. 065 | 122                        | 122                 | 0                              |
| PA04 (4) | 2007/8/4   | 0. 065 | 86                         | 90                  | 4                              |
| PA04 (5) | 2008/1/23  | 0. 059 | 52                         | 56                  | 4                              |
| PA04(6)  | 2008/2/21  | 0. 067 | 82                         | 84                  | 2                              |
| 抜粋データ    |            | 0. 065 |                            |                     | 4. 0                           |
| iPA(1)   | 2006/12/21 | 0. 023 | 18                         | 33                  | 15                             |
| iPA(2)   | 2007/1/17  | 0. 024 | -12                        | 0                   | 12                             |
| iPA(3)   | 2007/1/25  | 0. 024 | 10                         | 20                  | 10                             |
| iPA (4)  | 2007/11/8  | 0. 027 | 83                         | 89                  | 6                              |
| iPA (5)  | 2007/11/16 | 0. 022 | 70                         | 82                  | 12                             |
| 抜粋データ    |            | 0. 024 |                            |                     | 10. 0                          |
| nAA(1)   | 2007/3/28  | 0. 036 | 93                         | 93                  | 0                              |
| nAA (2)  | 2007/10/2  | 0. 027 | 55                         | 63                  | 8                              |
| nAA (3)  | 2007/10/23 | 0. 031 | 72                         | 75                  | 3                              |
| 抜粋データ    |            | 0. 031 |                            |                     | 3. 0                           |

表 4-2 それぞれの実験における空加圧ねじ回転角

|         |           |        | 空加圧回転角       | 角 $	heta$ d , $\deg$ | 差Δθ deg                      |
|---------|-----------|--------|--------------|----------------------|------------------------------|
| 実験番号    | 実験最終日     | 対数粘度勾配 | 対数粘度か<br>らの  | 圧力からの                | $	heta$ dp– $	heta$ d $\eta$ |
| 1       |           |        | 外挿値 $\theta$ | 外挿値 $\theta$         |                              |
|         |           |        | d $\eta$     | dp                   |                              |
| nPA (1) | 2007/4/6  | 0. 026 | 34           | 39                   | 5                            |
| nPA (2) | 2007/4/23 | 0. 021 | 46           | 62                   | 16                           |
| nPA (3) | 2007/5/22 | 0. 023 | 52           | 62                   | 10                           |
| nPA (4) | 2007/6/15 | 0. 022 | 52           | 63                   | 11                           |
| nPA (5) | 2008/4/14 | 0. 021 | 26           | 43                   | 17                           |
| nPA (6) | 2008/6/9  | 0. 021 | 32           | 49                   | 17.                          |
| 抜粋データ   |           | 0. 021 |              |                      | 17                           |
| EOH(1)  | 2008/7/22 | 0. 01  | 0            | 48                   | 48                           |
| E0H(2)  | 2008/9/2  | 0. 011 | 53           | 99                   | 46                           |
| 抜粋データ   |           | 0. 011 |              |                      | 46                           |

| 表 4-3 それぞれの実験における空加圧ねじ回転角(SAC | 表 4-3 | それ | ぞれの | の実験 | における | 5 空加圧ね | じ回転角 | (SAC) |
|-------------------------------|-------|----|-----|-----|------|--------|------|-------|
|-------------------------------|-------|----|-----|-----|------|--------|------|-------|

| 実験番号    | 実験最終日     | 対数粘度勾配 | 対数粘度か<br>らの  | 圧力からの       | $\theta$ dp– $\theta$ d $\eta$ |
|---------|-----------|--------|--------------|-------------|--------------------------------|
|         |           |        | 外挿値 $\theta$ | 外挿値 $	heta$ |                                |
|         |           |        | d $\eta$     | dp          |                                |
| nPA (1) | 2008/5/19 | 0. 013 | -5           | 10          | 25                             |
| nPA (2) | 2008/5/29 | 0. 011 | 9            | 50          | 41                             |
| nPA (3) | 2008/6/3  | 0. 022 | 105          | 120         | 15                             |
| 抜粋データ   |           | 0. 013 |              |             | 25                             |
| iPA(1)  | 2008/6/23 | 0. 016 | 15           | 40          | 25                             |
| 抜粋データ   |           | 0. 016 |              |             | 25                             |
| E0H(1)  | 2008/7/7  | 0. 01  | 60           | 80          | 20                             |
| E0H(2)  | 2008/9/30 | 0. 009 | 38           | 50          | 12                             |
| 抜粋データ   |           | 0. 01  |              |             | 20                             |
| DOS (1) | 2008/12/3 | 0. 025 | 55           | 65          | 10                             |
| 抜粋データ   |           | 0. 025 |              |             | 10                             |

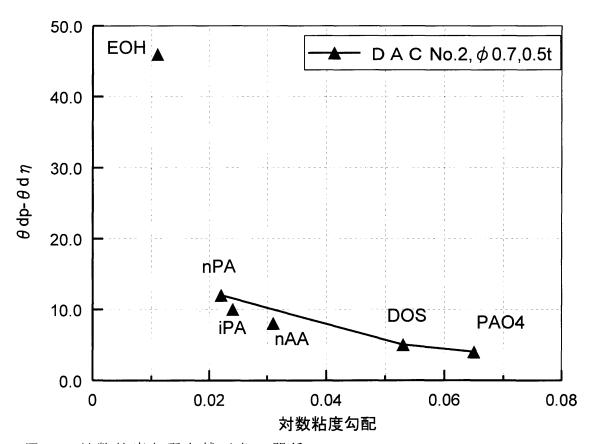



図 4-21 対数粘度勾配と補正角の関係

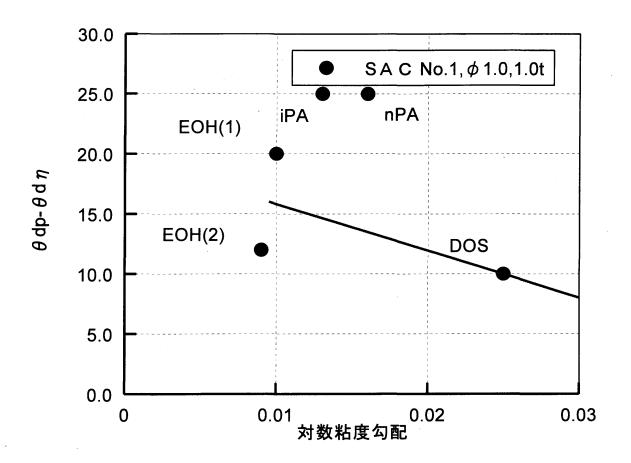



図 4-22 対数粘度勾配と補正角の関係

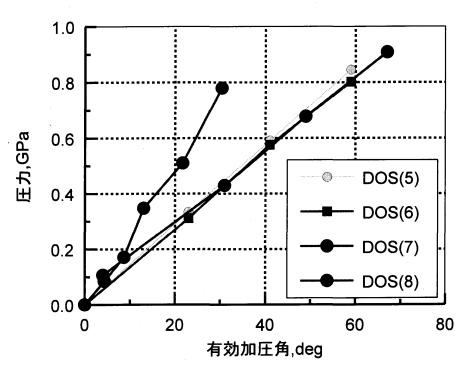



図 4-23 DOS の有効加圧ねじ回転角-圧力関係

- 56 -

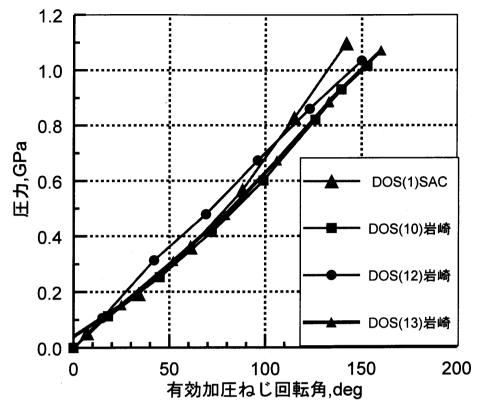



図 4-24 DOS の有効加圧ねじ回転角-圧力関係 (SAC)

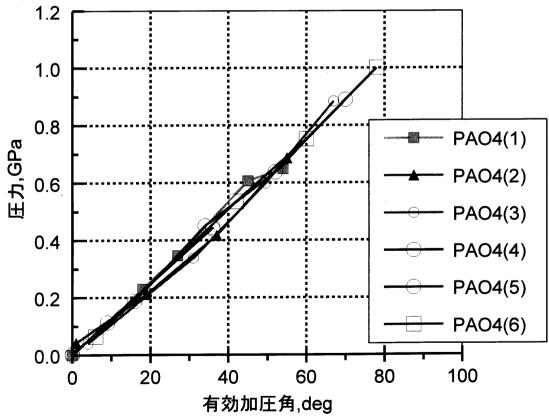



図 4-25 PAO4 の有効加圧ねじ回転角-圧力関係

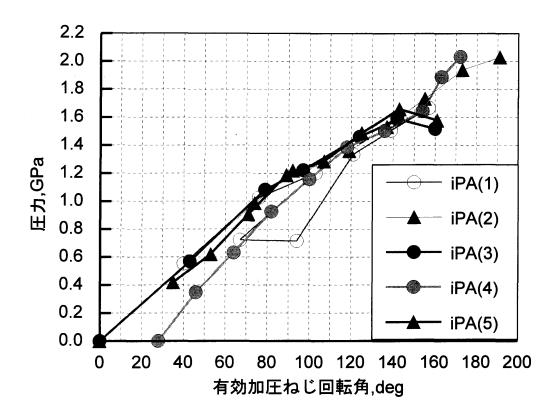



図 4-26 iPA の有効加圧ねじ回転角-圧力関係

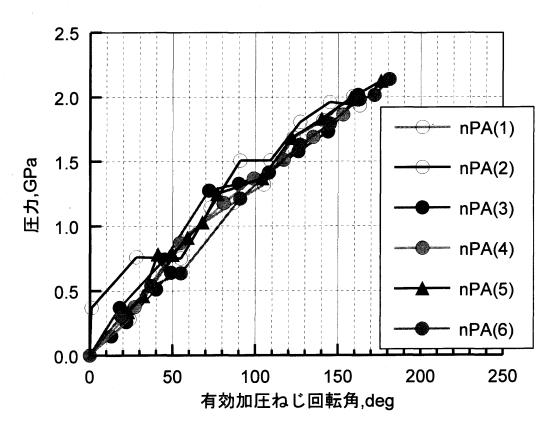



図 4-27 nPA の有効加圧ねじ回転角-圧力関係

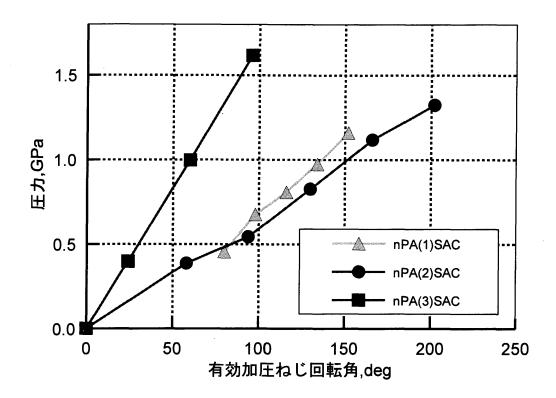



図 4-28 nPA の有効加圧ねじ回転角-圧力関係 (SAC)

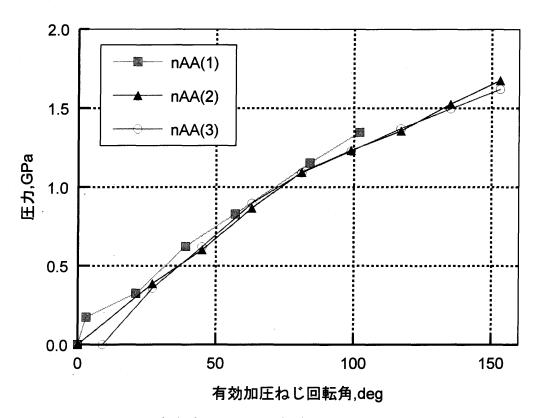



図 4-29 nAA の有効加圧ねじ回転角-圧力関係

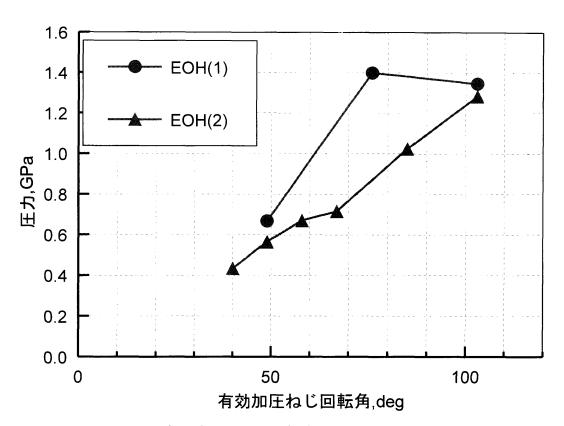



図 4-30 EOH の有効加圧ねじ回転角-圧力関係

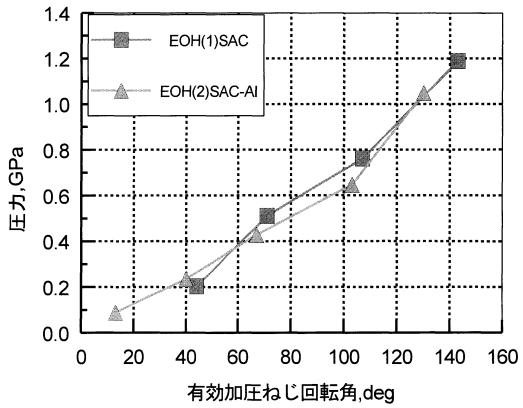



図 4-31 EOH の有効加圧ねじ回転角-圧力関係 (SAC)

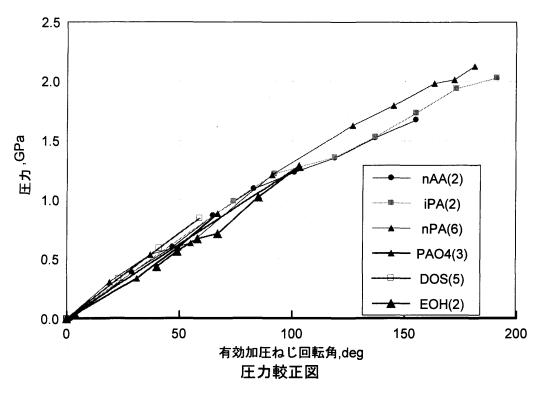



図 4-32 全試料油の圧力較正図 (抜粋) (DAC)

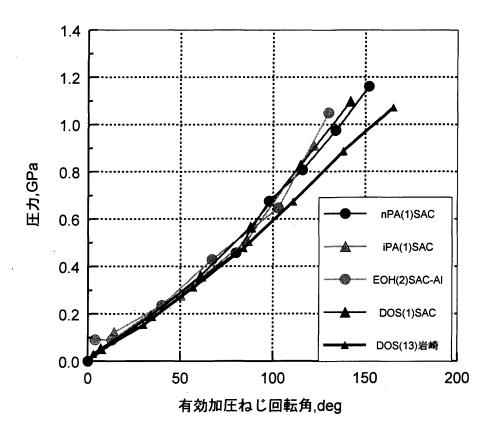



図 4-33 全試料油の圧力較正図 (抜粋) (SAC)

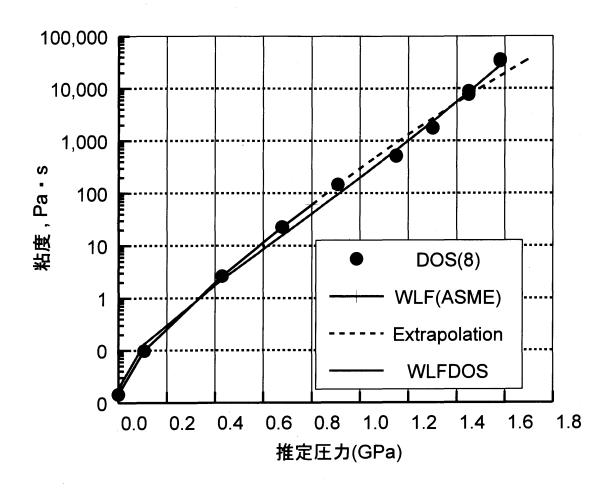



図 4-34 DOS の圧力-粘度関係

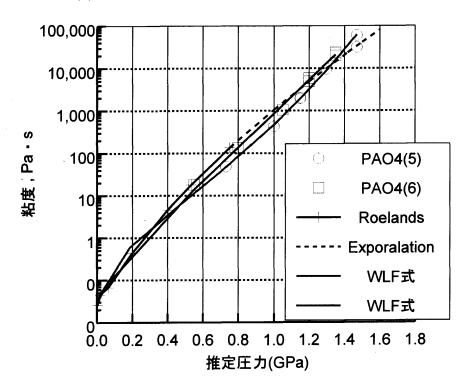



図 4-35 PAO4 の圧力粘度関係

- 62 -三重大学大学院 工学研究科

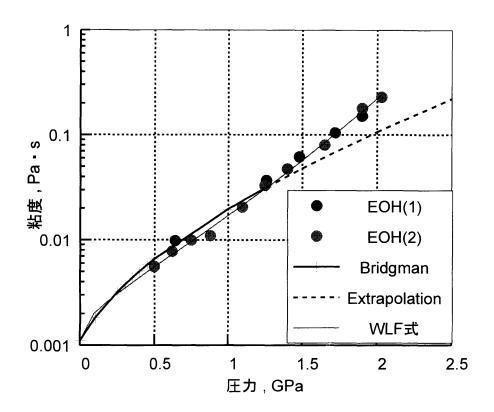



図 4-36 EOH の圧力-粘度関係

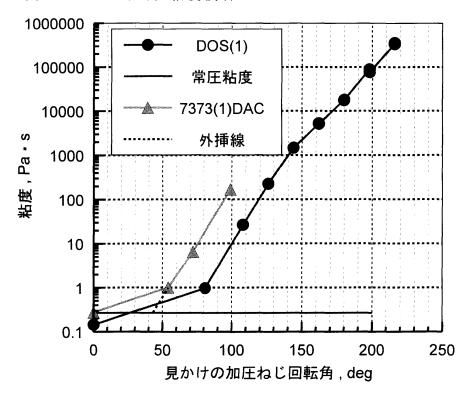



図 4-37 Daphne7373 の見かけの加圧ねじ回転角-粘度関係(DAC)  $(d \eta = 43 \circ ,補正角 11.2 \circ 対数粘度勾配 0.048)$ 

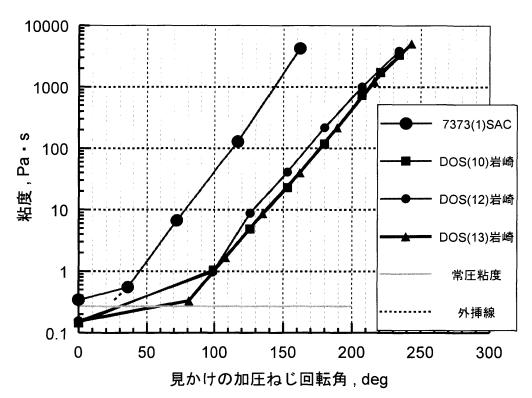



図 4-38 Daphne7373 の見かけの加圧ねじ回転角-粘度関係(SAC)  $(d~\eta~=26~^\circ~,補正角~8.4~^\circ~対数粘度勾配~0.029)$ 

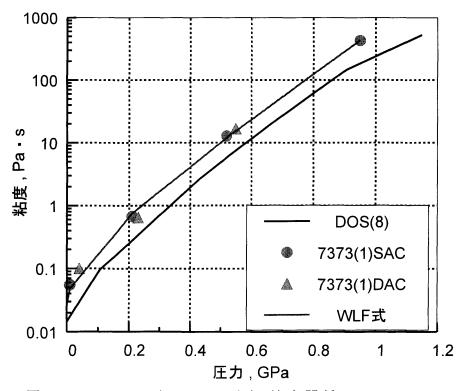



図 4-39 Daphne7373 と DOS の圧力 -粘度関係

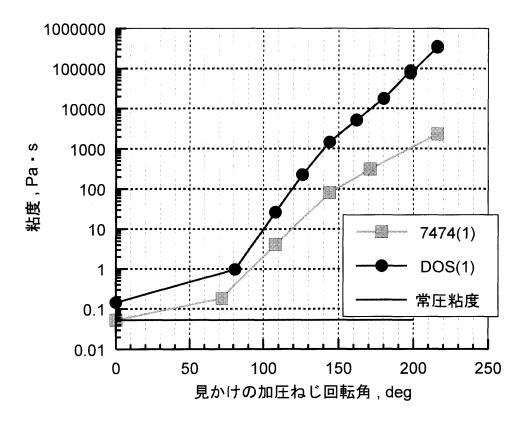



図 4-40 Daphne7474 の見かけの加圧ねじ回転角-粘度関係(DAC)  $(d~\eta~=60~^\circ~,補正角~9.6~^\circ~対数粘度勾配~0.038)$ 

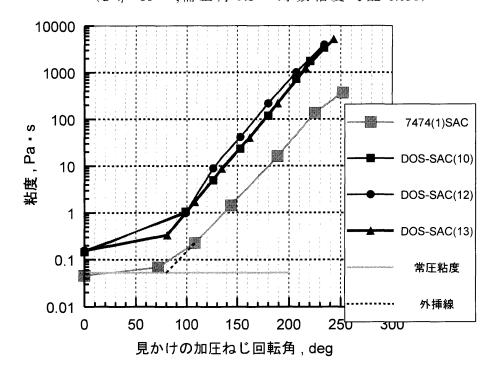



図 4-41 Daphne7474 の見かけの加圧ねじ回転角-粘度関係(SAC)  $(d~\eta~=80~^\circ~,補正角~10.8~^\circ~対数粘度勾配~0.023)$ 

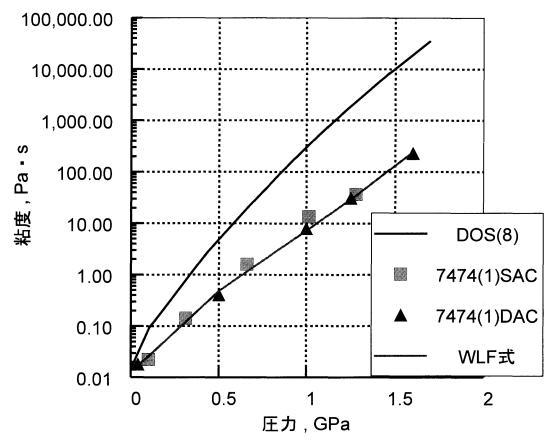



図 4-42 Daphne7474 の圧力-粘度関係

表 4-4 各液体の WLF 定数

|      | Ts (0)      | <b>A</b> 1 | A2       | B1       | B2       | C1     | C2     |
|------|-------------|------------|----------|----------|----------|--------|--------|
| DOS  | -89. 7      | 113. 44    | 0. 788   | 0. 113   | 95. 025  | 11. 17 | 31. 69 |
| PA04 | -80. 522683 | 346. 37    | 0. 19418 | 0. 09821 | 247. 013 | 11. 05 | 33. 08 |
| EOH  | -243. 896   | 329. 78    | 0. 24337 | 0. 03115 | 147. 919 | 12. 75 | 75. 09 |
| 7373 | -61. 585769 | 49. 59     | 2. 2468  | 0. 08252 | 264      | 10. 94 | 23. 68 |
| 7474 | -105. 26766 | 326. 31    | 0. 16617 | 0. 11312 | 175. 939 | 11. 22 | 27. 12 |

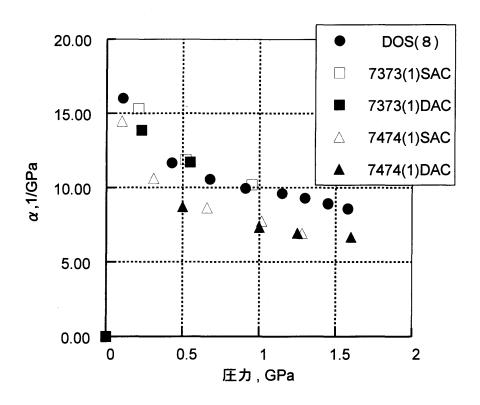



図 4-43 7373 および 7474 の圧力と粘度圧力係数 α の関係

表 4-5 圧力と圧力-粘度係数 α

|               | 推定圧力(GPa)      | 0. 000 | 0. 107  | 0. 430   | 0. 678    | 0. 908    | 1. 150 | 1. 150     |
|---------------|----------------|--------|---------|----------|-----------|-----------|--------|------------|
| 200 (0)       | 圧力-粘度係数(1/GPa) |        | 16. 019 | 11. 653  | 10. 559   | 9. 94     | 9. 592 | 9. 599     |
| DOS (8)       | 推定圧力(GPa)      | 1. 300 | 1. 300  | 1. 450   | 1. 450    | 1. 580    | 1. 580 |            |
|               | 圧力-粘度係数(1/GPa) | 9. 281 | 9. 286  | 8. 901   | 8. 934    | 8. 575    | 8. 557 |            |
| 7272 (1) \$40 | 推定圧力PP(GPa)    | 0.000  | 0. 010  | 0. 210   | 0. 520    | 0. 950    |        |            |
| 7373 (1) SAC  | 圧力-粘度係数(1/GPa) |        | 71. 682 | 15. 3371 | 11. 86572 | 10. 18109 |        | . <u> </u> |
| 7373 (1) DAC  | 推定圧力PP(GPa)    | 0.000  | 0. 04   | 0. 23    | 0. 550    |           |        |            |
|               | 圧力-粘度係数(1/GPa) |        | 33. 085 | 13. 855  | 11. 703   |           |        |            |
| 7474 (1) SAC  | 推定圧力PP(GPa)    | 0.000  | 0. 100  | 0. 310   | 0. 660    | 1. 015    | 1. 280 |            |
|               | 圧力-粘度係数(1/GPa) |        | 14. 476 | 10. 628  | 8. 651    | 7. 737    | 6. 913 |            |
| 7474 (1) DAC  | 推定圧力PP(GPa)    | 0. 000 | 0. 040  | 0. 500   | 1. 000    | 1. 250    | 1. 600 |            |
| 7474 (1) DAC  | 圧力-粘度係数(1/GPa) |        | 30. 855 | 8. 712   | 7. 323    | 6. 944    | 6. 677 |            |

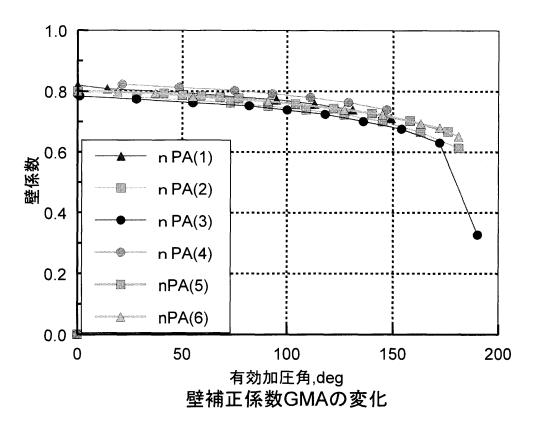
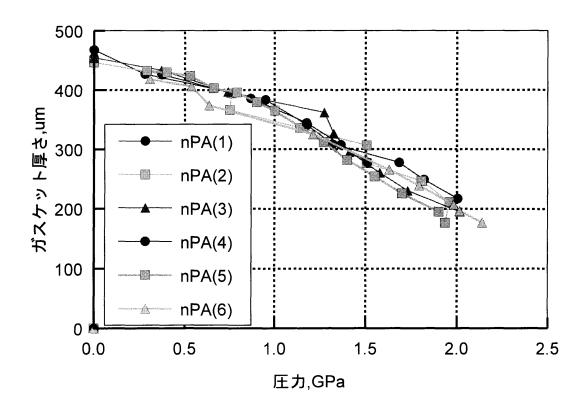




図 4-44 有効加圧ねじ回転角-壁係数関係



- 68 - 重大学大学院 工学研究科

# 図 4-45 圧力-ガスケット厚さ関係

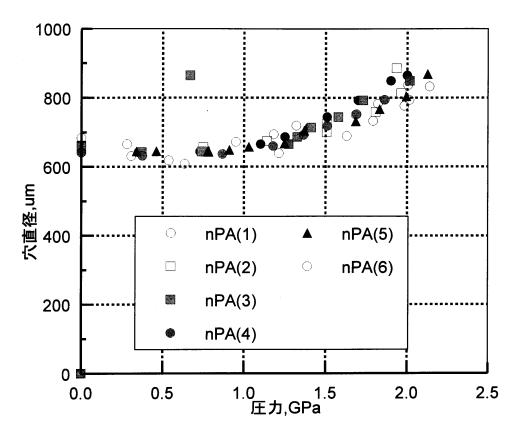



図 4-46 圧力-ガスケット穴直径関係

#### 第5章 結論

すでに確立されている 0.8GPa までの潤滑油の簡便な高圧粘度測定法を 2GPa まで拡張するため、Bridgman による高圧粘度データのあるアルコール類などを用いて圧力較正図を作成し、それらを用いてエステル油、エタノール、静水圧媒体油の高圧粘度を評価した、結果を以下にまとめる.

- (1) 空加圧ねじ回転角の再現実験において、従来のデータに比べばらつきが大きかった.これは本装置ではアルコール類の低圧、低粘度のデータ測定が不可能なことによると考えられる.
- (2) エステル油の DOS, イソプロピルアルコールなど 6 種類の既知液体で求めた 2GPa までの圧力較正図は液体間でほぼ一致し, 再現性も確認することができた.
- (3) 上記の圧力較正図を用いてエステル油,エタノールの既知データのない 1GPa ~ 2GPa までの高圧粘度を評価した結果、高圧粘度の片対数グラフにおいて 1GPa までの既知データの外挿線とことなり下に凸の特性であることがわかった.静水圧媒体油の高圧粘度特性はグラフの勾配が DOS に比べ 3 分の 2 ほどと小さく,これは静水圧圧力が高いことに寄与すると考えられる.

#### 謝辞

最後に、本研究を遂行するにあたり始終懇切丁寧なご指導を賜った中村裕一准教授、松井正仁准教授に深く感謝いたします。そして、数多くの御協力をいただいたナノプロセッシング研究室・村井健一技術専門員に心からお礼申し上げます。さらに、実験に際し数多くのご協力をいただいた、岩崎辰哉氏、森田和茂氏ならびにナノプロセッシング研究室諸氏に心からお礼申し上げます。

- (1) Y.Okamoto: Numerical Analysis of Lubrication in a Jounal Bearing by a Theromelastohydrodynamic Lubrication (TEHL) Model, Int. J. Engine Res., 6 (2005) 95.
- (2) C. R. Evans & K. L. Johnson: Regimes of Traction in Elastohydrodynamic Lubrication, Proc. Instn. Mech. Eng., 200, C5 (1986) 313.
- (3) 大野信義・服部信祐・桑野則行・平野富士夫: 高圧下の限界せん断とトラクション特性(第1報), 潤滑, 33, 12 (1988) 922.
- (4) Y. Nakamura, M. Tsunoda, T. Matsui & I. Fujishiro: Evaluation of High Viscosity of Solidified Lubricants at High Pressure by Rayleigh Light Scattering and Photon Correlation Technique, JSME Int. J., C, 44, 1 (2001) 237.
- (5)中村裕一・三田和之・松保英紀: 2GPa, 200 ℃までのトラクション油の高 圧粘度測定,トライボロジスト,50,4 (2005) 354.
- (6) Y. Nakamura, I. Fujishiro & Y. Masui : High-Pressure Viscoelastic Measurement of Lubricants by Stress Relaxation, JSME Int. J., III, 33, 2 (1990) 206.
- (7) Y.Nakamura, I. Fujishiro, K. Nishibe & H. Kawakami: Measurement of Physical Properties of Lubricants under High Pressure by Brillouin Scattering in a Diamond Anvil Cell, ASME J. Trib. 117 (1995) 519.
- (8)中村裕一・伊藤貴司・松井正仁:ダイヤモンドアンビルセル高圧装置の簡易圧力評価法確立と潤滑油の高圧粘度測定、トライボロジスト投稿中.
- (9) P.W.Bridgman, VISCOSITIES TO 30,000 kg/cm<sup>2</sup>, Proc. Am. Acad. Arts. Sci.,77 (1949) p.124.
- (10) P.W.Bridgman, The Effect of Pressure on the Viscosity of Forty-Three Pure Liquids, Proc.Am.Acad.Arts.Sci., Vol.61 (1926), p.57-99.
- (11)アイリング:絶対反応速度論(下),吉岡書店,(1964), p.496.
- (12) 中村 健太, 村木 正芳: 低粘性 EHL 油膜の熱的分析, トライボロジー会議予稿集, (2004-5), 181-182.
- (13)通商産業省工業技術院編,特別研究報告集,日本産業技術振興協会, (1983),p.177.
- (14) S.Yasutomi, 他 2 名, Trans.ASME, J.Trib, 106 (1984) 291.
- (15)安富 清治郎:潤滑油のレオロジー,潤滑,32,6,(1987),p.394.
- (16) Scott Bair · Jacek Jarzynski · Ward O. Winer : The temperature, pressure and time dependence

- of lubricant viscosity, Tribology International 34 (2001) 461-468.
- (17) 中村裕一・三田 和之・松保 英紀: 2GPa,200 ℃までのトラクション油の 高圧粘度測定,トライボロジスト,50,4(2005),354-359.
- (18) 中村 裕一: 高圧粘度とトラクション特性, トライボロジスト, 46, 5, (2001), p.369.
- (19) 松弘 智:昭和59年度修士論文(三重大学工学部)(1985).
- (20)藤城ら:機械学会論文集, 53-494, (1987), p.2121.
- (21) R.G.Munro · S.Block · G.J.Piermarini, "Wall Effects in a Diamond-Anvil Pressure-Cell Falling-Sphere Viscometer," J.Appl. Phys., Vol.50, No.5, (1979), p.3180.
- (22) 奈良 俊樹:平成17年度修士論文(三重大学工学部)(2005).
- (23)中村・黒﨑・大野:潤滑油の高圧力レーザ光散乱測定と力学特性評価 (第5報),日本機械学会論文集(C編),68,673(2002).
- (24) 伊藤 貴司:平成 18 年度修士論文 (三重大学工学部) (2006).
- (25)池田 崇:平成19年度修士論文(三重大学工学部)(2007).
- (26) 村木 正芳:後年度指数鉱油の粘度-圧力-温度特性と EHL トラクション (2007).
- (27)村田 恵三・有本 太郎・吉野 治一・青山 昌二・岡田 太平:室温高圧固化媒体の開発〈Daphne 7474〉,高圧力の科学と技術 Vol.17 特別号 (2007), p.11
- (28) Keizo Murata · Keiichi Yokogawa · Harukazu YOshino · Stefan Klotz · Pascal Munsch · Akinori Irizawa · Mototsugu Nishiyama · Kenzo Iizuka · Takao Nanba。 Tahei Okada · Yoshitaka Shiraga · Shoji Aoyama : Pressure transmitting medium Daphne 7474 solidifying at 3.7GPaat room temperature, REVIW OF SCIENTIFIC INSTRUMENTS 79, 085101 (2008), p.79-85

付録 1 粘度算出プログラム (yn.n 粘度計算(nPA)常圧.mcd)

```
球落下法 黄緑色:各実験で変更 ピンク:各セッティングで変更 黄色:油で変更
 実験番号(油名など)=PA04(2)
 PMA:=0
                         圧力(MPa)
                                                           n_0 := 1.43
                         球半径(μm)
                                                         REF1:= \frac{{{{{\left( {{n_0}} \right)}^2} - 1}}}{{{{{\left( {{n_0}} \right)}^2} + 2}}} + \frac{{0.00059PMA}}{{1 + 0.00174PMA}}\frac{{{{\left( {{n_0}} \right)}^2} - 1}}{{{{\left( {{n_0}} \right)}^2} + 2}}
                         圧力室厚さ/2(μm)
                         屈折率1の時
                                                         REF := \frac{\sqrt{2 \cdot REF + 1}}{\sqrt{1 - REF 1}}
                         ガスケット穴半径 (μm)
 T := 273 + 24
                         温度(K)
                                                         L := REFL1 REF = 1.43
                                                                                              高圧屈折
 V0 = 2.008
                      常圧粘度 (mPas)
                     常温試料油密度 (g/cm3)
KTF1のみ0.96
ROLO1=0.8053
                                                         L = 236.865 圧力室厚さ/2 (\mum)
                                                         AL := \frac{A}{\tau} \qquad AL = 0.112
                          球密度(g/cm3)
ROS:= 8.471534
ROLO:=ROLO!----
                  1 + 6.61210^{-4} \cdot (T - 297)
ROL := ROLO / 1 + 0.00059 -
                                                                    高圧試料油密度
                                                                        ROL = 0.805
                                                                                                 (g/cm3)
ROLO = 0.805
 SEC:= 0.03
                      (s)
                                  落下時間
                                                V := \frac{DIV}{SEC}
 DIV:=99.44
                    (\mu m)
                                                                                           (\mu \, \text{m/s})
                                                                        V = 3.31510^3
GAL1:= (1 - 1.695AL + 2.719AL^2 - 4.359AL^3 + 2.195AL^4 + 0.140AL^5)
GAL2:= exp(-2.719AL^2)
GAL:=GAL1GAL2
AAL := 1.197 - 1.344AL + 0.313AL^{2}
LGAL:=1-AL-GAL
GMA := LGAL \left[ 1 - exp \left[ -AAL \left( \frac{R}{L} - 1 \right) \right] \right] + GAL
                                                                            GMA = 0.837
VISa := \frac{(ROS - ROI) \cdot 9.81 \cdot 2 \cdot A^2}{9 \cdot V}
                          見かけの粘度
VISa = 3.562
VIS:=GM A·VISa
VIS=2.981
                      (mPas)
                                ALPHA = \frac{\ln \left| \frac{VIS}{V0} \right|}{R^{2}}
                                                                                                 1/GPa
                                                                    ALPHA=
```

## 付録2 WLF式による圧力算出プログラム

#### (WLF-DOS-室温.mcd)

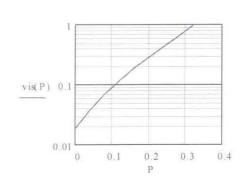
T0:=-89.7 A1:=111.5 A2:=0.558

B1:=0.217 B2:=20.32



温度 (℃)

 $\eta REF := 10^7 Pa \cdot s$ 


$$TP(P) := T0 + A1 \cdot ln(1 + A2 \cdot P)$$
  $FP(P) := 1 - B1 \cdot ln(1 + B2 \cdot P)$ 

$$FP(P) := 1 - B1 \cdot \ln(1 + B2 \cdot P)$$

$$\log \eta(P) := \log (\eta REF) - \frac{C1 \cdot (T - TP(P)) \cdot FP(P)}{C2 + (T - TP(P)) \cdot FP(P)}$$

$$\begin{array}{c|ccccc} vis(P) := 10^{log\eta(P)} \\ pp := 0.721 & (GPa) & P & vis(P) \\ \hline vis(pp) = 32.305 & (Pa. s) & 0 & 0.018 \\ & & 0.04 & 0.038 \\ \hline 0.08 & 0.069 & 0.069 \\ \hline 0.12 & 0.115 & 0.16 \\ \hline 0.18 & 0.069 & 0.02 \\ \hline ALPHA := & & 0.28 & 0.28 \\ \hline ALPHA = 10.362 & 0.28 & 0.642 \\ \hline 1/GPa & 0.32 & 0.948 \\ \hline \end{array}$$

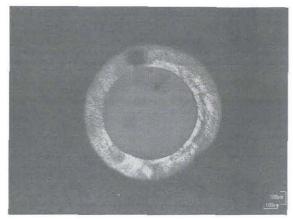
### 粘度 (Pa·s)



## iPA BridgmanWLF圧力逆算プログラム

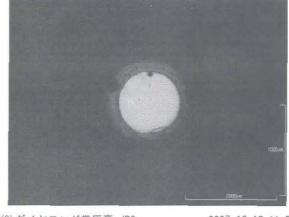
|               | Mug/Pas       | Tgo/C           | <u>A1/C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A2/1/GPa    | <u>B1</u>   | B2/1/GPa     | <u>C1</u> | C2/C             |            |               |         |          |   |
|---------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|-----------|------------------|------------|---------------|---------|----------|---|
|               |               |                 | 114.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.292       | 0.117       | 31.630       | 11.47     | 14.69            | 9          | <b>■</b> i~pı | o~alcoh | ol       |   |
| DOS           | 10^7          | -89.7           | 111.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.558       | 0.217       | 25.300       | 11.17     | 31.69            | 7 🕹        |               |         |          |   |
| SN50          | 10^7          | -54.7           | 76.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.348       | 0.282       | 17.47        | 10.96     | 26.59            | ,          | WL            | F式      | 1        |   |
| i-pro-alcohol | 10^7          | -165            | 134.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.899       | 0.092       | 101.743      | 11.00     | 26.00            | 88 €       |               |         |          |   |
|               | i-pro-alcohol |                 | 156.5249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.29036956  | 0.781255    | 10.9634581   |           | 5.25752299       | GE 5       |               |         |          |   |
| η (exp)/η(Wi  |               |                 | in Pa.s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | log η (exp) | log η (WLF  |              |           | η (WLF,Pas)      | 1 80 3     |               | بر 📗    |          |   |
| error         | T, C          | p/GPa           | η (exp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mPas        | mPas        | square error | 重み        | [                |            |               |         | i        |   |
|               | 24            | 0               | }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |             |              |           | <u>'</u>         | 2          | /             | 7       | !        |   |
|               | 24            | 0.4905          | the contract of the contract o | L           | 1           |              |           | j                | 1          |               |         |          |   |
| 0.99948238    | <del></del>   | <u>0</u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | <del></del> | 5.0561E-08   |           | 0.00213911       | ' <b>-</b> |               | 1       | \$       |   |
| 1.0282261     | 24            | <u>0.4905</u>   | 0.031478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.49800768  | <del></del> | 0.00014613   | 1         | 0.03061393       | 0 -        |               |         |          |   |
| 0.95580154    |               | 0.981           | 0.208933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | <del></del> | 0.00038543   | 1         | 0.21859488       | 0          |               | 1       | 2        |   |
| 0.99070678    |               | 1.4715          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 3.294063    | 1.6442E-05   | 1         | 1.96816981       |            |               | Droom   | ure,GPa  |   |
| 1.044171      | 24            | 1.962           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4460077   | 4.427236    | <u></u>      |           | 26.744598        |            |               | Fressi  | и е, ага |   |
| 0.98413306    | <del></del>   | 2.4525          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 5.826954    | 4.8249E-05   |           | 671.357553       |            |               |         |          |   |
| 0.49286348    | 24            | 2.943           | 20701.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3160077   | 7.623281    |              |           | 42003.0724       | 15.17356   | 0.472271      |         |          |   |
|               |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | <u></u>     | 0.00094868   |           |                  |            |               |         |          |   |
| ·             |               | 逆算压力<br>入力(Gpa) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>!      |             |              |           | 比較する粘<br>度(mPas) |            |               |         |          | [ |
|               | 24            | 0.981           | 0.208933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.32000771  | 2.33964     | 0.00038543   | 1         | <u>218.595</u>   | 104.0297   | 0.573278      |         |          |   |

nAA BridgmanWLF圧力逆算プログラム


| <br>1            | Mug/Pas                                                             | Tgo/C                  | <u>A1/C</u>  | A2/1/GPa         | <u>B1</u>       | B2/1/GPa   | <u>C1</u> | <u>C2/C</u>   |            |                                       |             |       |   |
|------------------|---------------------------------------------------------------------|------------------------|--------------|------------------|-----------------|------------|-----------|---------------|------------|---------------------------------------|-------------|-------|---|
|                  |                                                                     |                        |              |                  |                 |            |           |               | 7 /        |                                       |             | - } { |   |
| <u>.</u>         |                                                                     |                        | 114.52       | 0.292            | 0.117           | 31.630     | 11.47     | 14.69         |            | WLF                                   | 式           |       |   |
| i-pro-alcohol    | 0                                                                   | -165                   | 134.36       | 0.899            | 0.092           | 101.743    | 11.00     | 26.00         | 6          |                                       |             | _     |   |
| DOS              | 10^7                                                                | -89.7                  | 111.50       | 0.558            | 0.217           | 25.300     | 11.17     | 31.69         |            | a nam                                 | yl Alcohol  |       | r |
| SN50             | 10^7                                                                | -54.7                  | 76.77        | 3.348            | 0.282           | 17.47      | 10.96     | 26.59         | 5          | <b>45</b> 11 C111                     | iyi Alconoi |       |   |
| n-amyl Alcoh     | 10^7                                                                | -165                   | 96.08        | 1.367            | 0.071           | 6.956      | 13.27     | 74.68         | as         |                                       |             |       |   |
| n-amyl Alcoh     | nol (10°°                                                           | , <i>b</i> , 1 — II.   | 156 525      | 2 20037          | 0.78125         | 10 0635    |           | 5.25752       | <u>d</u> 4 |                                       |             |       |   |
| n-amy Alcoi      | ر د ر ر ا رانانا الانانانا الاناناناتاناتاناناتاناتاناتاناتاناتانات | / / / //               | 130.323      | 2.29031          | 0.70123         | 10.9033    |           | 3.23732       | 0g J       |                                       |             |       |   |
| <br>η (exp)/η(WL | .F)                                                                 |                        | in Pa.s      | $\log \eta$ (exp | $\log \eta$ (WL | F)         |           | $\eta$ (WLF,P |            |                                       |             |       |   |
| <br>error        | T, C                                                                | p/GPa                  | $\eta$ (exp) | mPas             | mPas            | square err | 重み        | <u> </u>      | 2          |                                       |             |       |   |
| <br>)<br>        | 24<br>24                                                            | 0.4005                 | ļ- ···       | <u> </u>         | ļ               | ļl         |           |               | 1          |                                       |             |       |   |
| 0.94338313       | 24                                                                  | 0.4905                 | 0.00291      | 0.4633           | 0.48861         | 0.00064    |           | 0.00308       | ' 🚽        |                                       |             |       |   |
| 1.1410052        | 24                                                                  | 0.4005                 |              |                  | ļ · · · · · ·   | 0.00004    |           | 0.00308       | o T        |                                       |             |       |   |
| 0.98631186       | 24<br>24                                                            | <u>0.4905</u><br>0.981 |              |                  |                 | ·          |           | 0.04900       | 0          |                                       | 4           | 0     |   |
| 0.93811417       | 24                                                                  | 1.4715                 |              |                  |                 |            |           | 1 4.37562     | U          |                                       | ı           | Z     |   |
| 0.94904671       | 24<br>24                                                            |                        |              |                  | +               | 0.00077    |           | 38.1951       |            |                                       | Pressure    | ,GPa  |   |
| 1.05871035       | 24                                                                  |                        |              |                  |                 |            |           | 345.556       |            |                                       |             |       |   |
| <br>             |                                                                     |                        |              |                  |                 |            |           | 3356.75       | 33.9133    | 0.79307                               |             |       |   |
| <br>1.34702758   | 24                                                                  | 2.943                  | 4521.64      | 6.6553           | 0.52592         | 0.00586    |           | 3356.75       | 33.8133    | 0.76102                               |             |       | - |
| -                |                                                                     | 逆算压力                   | i            | !<br>            |                 | 0.00300    |           | 比較する          |            | · · · · · · · · · · · · · · · · · · · |             |       |   |
|                  |                                                                     | と井に刀<br>入力(Gpa)        |              | :                |                 | 1          |           | 比較する<br>粘度    |            |                                       | , .         |       |   |
|                  |                                                                     |                        |              | ·                |                 |            |           |               |            |                                       |             |       |   |
|                  | 24                                                                  | 1.347                  | 0.20893      | 2.32001          | 3.40227         | 1.1713     |           | 2525          | 88.6582    | n 83299                               |             | 1     |   |

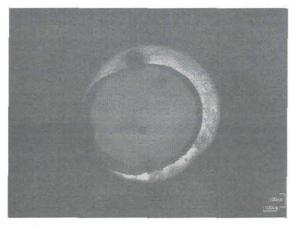
nPA BridgmanWLF圧力逆算プログラム

|                                               | Mug/Pas                   | Tgo/C                          | <u>A1/C</u>                                   | A2/1/GPa                                  | <u>B1</u>                                 | <u>B2/1/GPa</u>                                 | <u>C1</u>                                 | <u>C2/C</u>                               |          |                |                    |              |
|-----------------------------------------------|---------------------------|--------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------|-------------------------------------------|-------------------------------------------|----------|----------------|--------------------|--------------|
| i-pro-alcohol<br>DOS<br>SN50<br>n-propyl alco | 0<br>10^7<br>10^7<br>10^7 | -165<br>-89.7<br>-54.7<br>-165 | 114.52<br>134.36<br>111.50<br>76.77<br>118.18 | 0.292<br>0.899<br>0.558<br>3.348<br>0.729 | 0.117<br>0.092<br>0.217<br>0.282<br>0.043 | 31.630<br>101.743<br>25.300<br>17.47<br>164.509 | 11.47<br>11.00<br>11.17<br>10.96<br>12.48 | 14.69<br>26.00<br>31.69<br>26.59<br>54.22 | 6 5 4 3  | ■ n prop  WLF式 |                    |              |
| n-propyl al                                   | cohol(1プ                  | ロパノール)                         | 156.5249                                      | 2.29036956                                | 0.781255                                  | 10.9634581                                      | i                                         | 5.25752299                                | E. 3     | 118 See        |                    |              |
| η (exp)/η(WL                                  | .F)                       |                                | in Pa.s                                       | $\log \eta$ (exp)                         | $\log\eta$ (WLF                           | )                                               | !<br>!                                    | η (WLF,Pas)                               | log 17   |                |                    |              |
|                                               | T, C                      | p/GPa                          | η (exp)                                       | mPas                                      | mPas                                      | square error                                    | 重み                                        |                                           | <u> </u> |                | Name of the second |              |
| · ·· · · ·                                    |                           |                                | <u> </u>                                      | L                                         | ·<br>                                     | <u></u>                                         |                                           |                                           | 1        |                |                    |              |
| 0.99836906                                    | 2                         | 4 <u>0</u>                     | 0.002008                                      | 0.30276371                                | 0.303473                                  | 5.0252E-07                                      | ļ                                         | 0.00201128                                |          |                |                    |              |
| 0.98672854                                    | 2                         | 4 <u>0.4905</u>                | 0.020738                                      | 1.31676373                                | 1.322566                                  | 3.3667E-05                                      | 1                                         | 0.02101677                                | 0        |                |                    |              |
| 1.02646794                                    | 2                         |                                |                                               |                                           |                                           |                                                 | 1                                         | 0.09449707                                | 0        |                | 1 2                |              |
| 1.02104884                                    | 2                         |                                |                                               |                                           | 2.621717                                  | 8.1839E-05                                      | 1                                         | 0.41852094                                | U        |                | _                  |              |
| 0.95051534                                    | 2                         |                                | 1.856794                                      |                                           | 3.290805                                  | 0.0004858                                       |                                           | 1.95346024                                |          |                | Pressure,GPa       |              |
| 1.02731995                                    | 2                         | 4 2.4525                       | 10.25094                                      | 4.01076371                                | 3.999058                                  | 0.00013702                                      | l                                         | 9.97833287                                |          |                |                    | mograno - mo |
| 1.10281846                                    | 2                         | 2.943                          | 63.49854                                      | 4.80276371                                | 4.76026                                   |                                                 | į                                         | 57.5784118                                | 53.56144 | 0.732799       |                    |              |
|                                               |                           |                                |                                               |                                           | <u>.</u>                                  | 0.00086755                                      |                                           |                                           |          |                |                    | i            |
|                                               |                           | 逆算圧力<br>入力(Gpa)                |                                               | ·<br>                                     | :<br><del> </del>                         |                                                 | <u> </u>                                  | 比較する粘<br>度(mPas)                          |          |                |                    |              |
|                                               | 2                         | 1.934                          | 0.208933                                      | 2.32000771                                | 3.251691                                  | 0.8680344                                       | 1                                         | 1785.22                                   | 85.04349 | 0.750892       |                    |              |


# EOH WLF圧力逆算プログラム

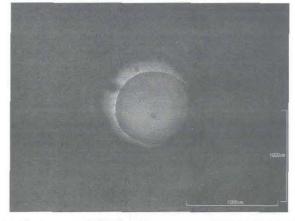
|                            |    |                                                         |              |                   |          |              | 11       | 23.27897       | _                | —log η (WLF)  |      |   |
|----------------------------|----|---------------------------------------------------------|--------------|-------------------|----------|--------------|----------|----------------|------------------|---------------|------|---|
| ethanol                    |    |                                                         | 69.02669     | 6.591238          | 0.070797 | 94.18017     | 23.27897 | 11             |                  | log // (WLI / | İ    |   |
| i-pro-alco                 | 0  | -165                                                    | 134.3574     | 0.899245          | 0.092499 | 101.743      | 26       | 11             |                  | ethanol       |      |   |
| DOS 10 <sup>7</sup>        |    | -89.7                                                   | 111.5        | 0.558             | 0.217    | 25.3         | 31.69    | 11.17          | ļ                |               |      |   |
| SN50 10 <sup>7</sup>       |    | -54.7                                                   | 76.77        | 3.348             | 0.282    | 17.47        | 26.59    | 10.96          | က္               |               |      |   |
| ethanol 10 <sup>^</sup> 7  |    | -243.896                                                | 327.2046     | 0.052479          | 0.178545 | 6.335382     | 75.09089 | 12.74912       | Q,               |               |      |   |
|                            |    |                                                         |              |                   |          |              | 12.74912 | 75.09089       | E 1              |               |      |   |
| ethano                     | d  | i                                                       | 156.5249     | 2.29037           | 0.781255 | 10.96346     |          | 5.257523       | log $\eta$ m,Pas |               |      |   |
|                            |    |                                                         | Bridgman     |                   |          |              |          |                |                  |               |      |   |
| $\eta$ (exp)/ $\eta$ (WLF) |    |                                                         | in Pa.s      | $\log \eta$ (exp) |          |              |          | $\eta$ (WLF,Pa |                  |               |      |   |
| error T, C                 |    | p/GPa                                                   | $\eta$ (exp) |                   |          | square err   | 重み       |                |                  | <b>F</b>      |      |   |
| 1.016753                   | 30 | ***************************************                 |              | 0.001301          |          | 5.21E-05     | 1        | 0.000986       | 1                |               |      |   |
| 0.998581                   | 30 | Marie Co., Co., San |              |                   |          |              | 1        | 0.001285       | 0                |               |      | _ |
| 0.986598                   | 30 |                                                         |              |                   | 0.207148 | <del> </del> | 1        | 0.001611       | 0                | 0.5           | 1    | 1 |
| 0.979764                   | 30 | ,                                                       |              |                   |          | 7.88E-05     | 1        | 0.002361       | Ì                | Pressure      | ,GPa |   |
| 0.958144                   | 30 | 1                                                       | -            |                   | 0.636868 |              | 1        | 0.004334       |                  |               |      |   |
| 0.950288                   | 30 |                                                         | -            |                   |          |              | 1        | 0.007119       | 263.9415         | 0.722592      |      |   |
| 0.962681                   | 30 |                                                         |              |                   | 1.040819 |              | 1        | 0.010985       | 260.6896         |               |      |   |
| 1.001895                   | 30 |                                                         | -            |                   | 1.21148  |              | 1        | 0.016273       |                  |               |      |   |
| 1.051222                   | 30 | 1.1772                                                  | 1 _          |                   | 1.369606 | 0.000471     | 1        | 0.023421       | 254.2812         | 0.618786      |      |   |
| ·                          |    | +                                                       | 0            | L                 |          |              |          |                |                  |               |      |   |
|                            |    |                                                         |              |                   |          | 0.00171      |          |                |                  |               |      |   |
|                            |    | 逆算圧力<br>入力(Gpa)                                         |              |                   |          |              |          | 粘度<br>(mPas)   |                  |               |      |   |
|                            |    |                                                         |              |                   |          | #NUM!        |          | 228.6147       | 227.2158         |               |      |   |




DOS (8) ダイヤモンド常圧表. JPG

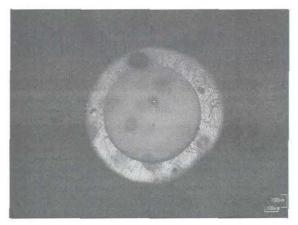
2007. 12. 17 11:54:00




DOS(8)ダイヤモンド常圧裏. JPG

2007. 12. 17 11:55:00




DOS(8) ダイヤモンド最高圧表. JPG

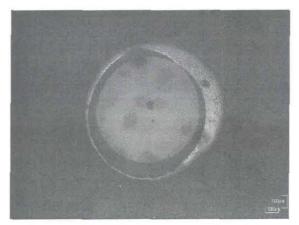
2008.01.22 14:36:00



DOS(8) ダイヤモンド最高圧裏. JPG

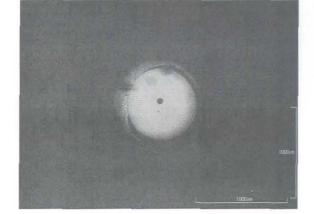
2008.01.22 14:37:00




PA04(5) ダイヤモンド常圧表. JPG

2008.01.25 13:27:00

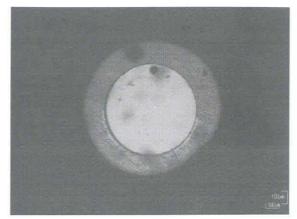



PA04(5) ダイヤモンド常圧裏、JPG

2008.01.25 13:28:00



PA04(5) ダイヤモンド最高圧表. JPG


2008. 02. 14 14: 47: 00

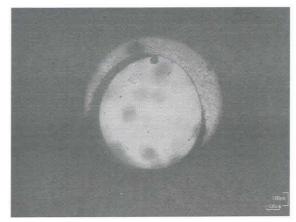


PA04(5)ダイヤモンド最高圧裏, JPG


2008.02.14 14:48:00

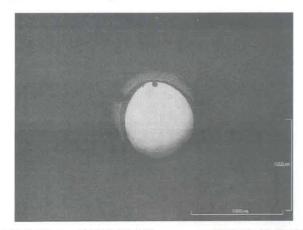
三重大学大学院 工学研究科




iPA(5)ダイヤモンド常圧表. JPG

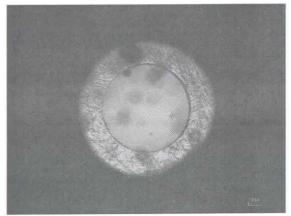
2007.11.19 11:21:00




iPA(5)ダイヤモンド常圧裏. JPG

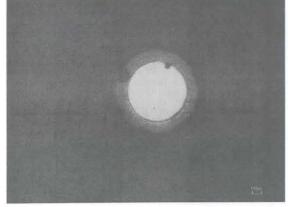
2007.11.19 11:22:00




iPA(5)ダイヤモンド最高圧表. JPG

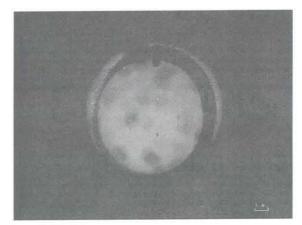
2007. 11. 27 02:46:00




iPA(5)ダイヤモンド最高圧裏. JPG

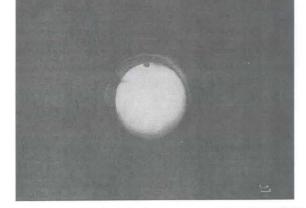
2007.11.27 02:46:00




nPA(5)ダイヤモンド常圧表. JPG

2008, 04, 14 14:47:49

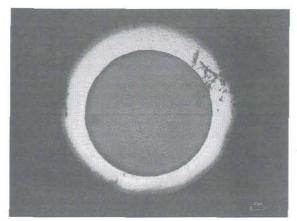



nPA(5)ダイヤモンド常圧裏. JPG

2008.04.14 14:49:01

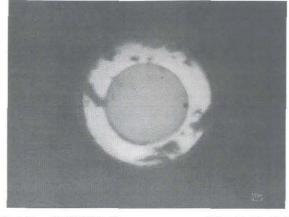


nPA(5)ダイヤモンド最高圧表. JPG


2008.05.01 15:55:46

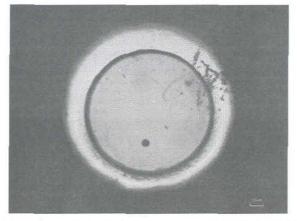


nPA(5)ダイヤモンド最高圧裏. JPG


2008.05.01 15:56:42

三重大学大学院 工学研究科




DOS(1)サファイア常圧表. JPG

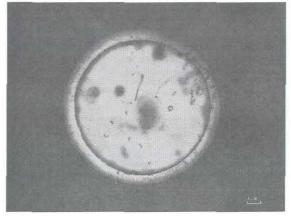
2008. 12. 03 14:16:46




DOS(1)サファイア常圧裏. JPG

2008. 12. 03 14:18:18




DOS(1)サファイア最高圧表. JPG

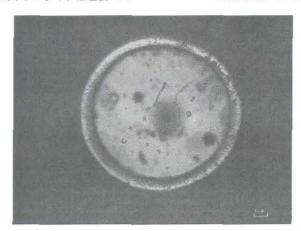
2008. 12. 08 18:37:32



DOS (1) サファイア最高圧裏. JPG

2008.12.08 18:39:02




nPA(1)サファイア常圧表. JPG

2008. 05. 21 11:25:00

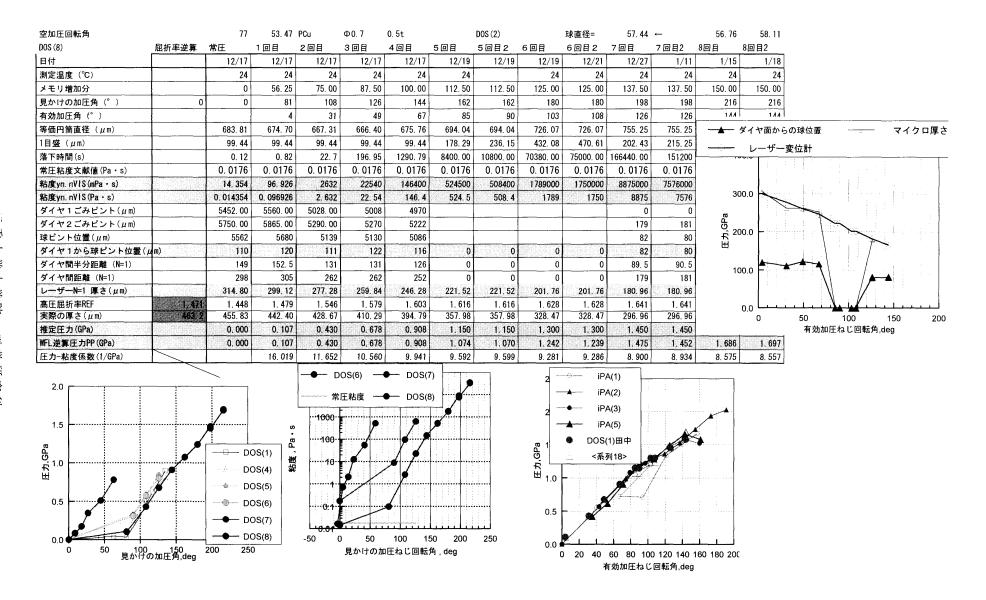


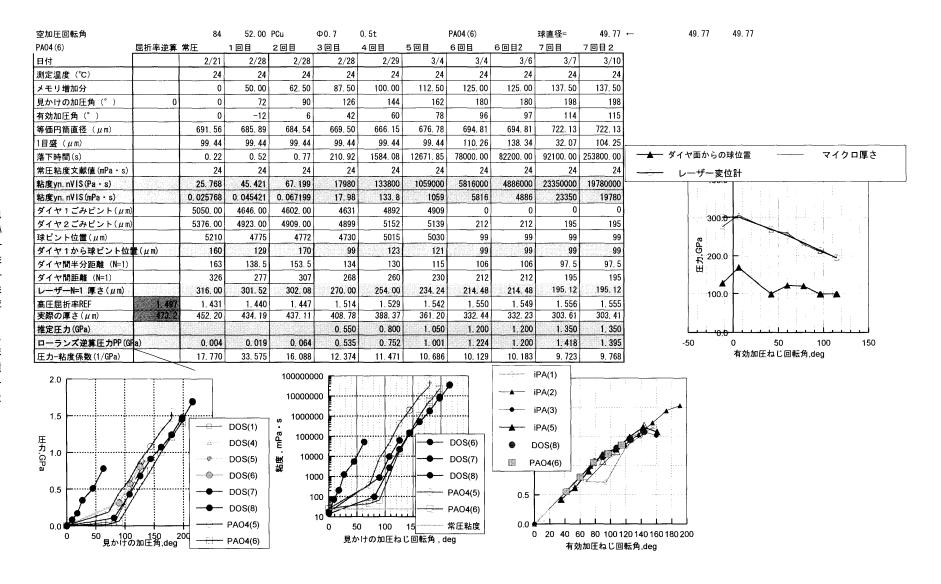
nPA(1)サファイア常圧裏. JPG

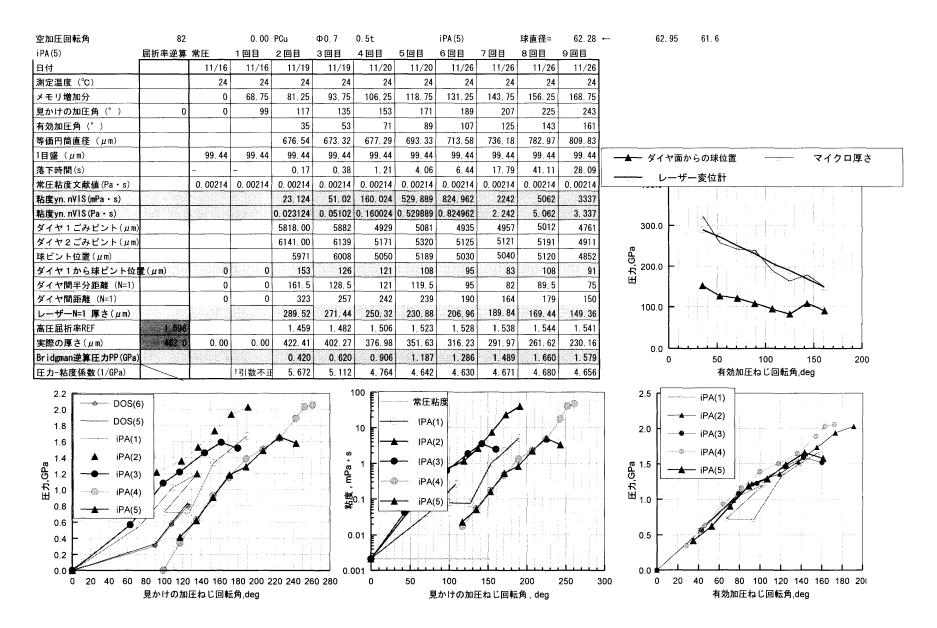
2008. 05. 21 11:25:47



nPA(1)サファイア最高圧表. JPG


2008. 05. 27 14:14:17





nPA(1)サファイア最高圧裹. JPG

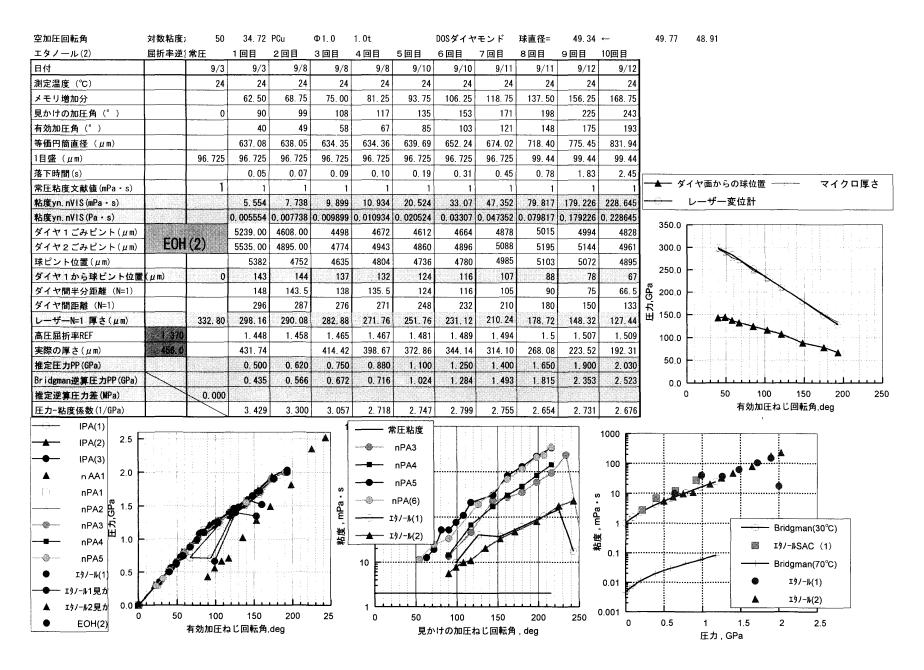
2008.05.27 14:13:26

三重大学大学院 工学研究科



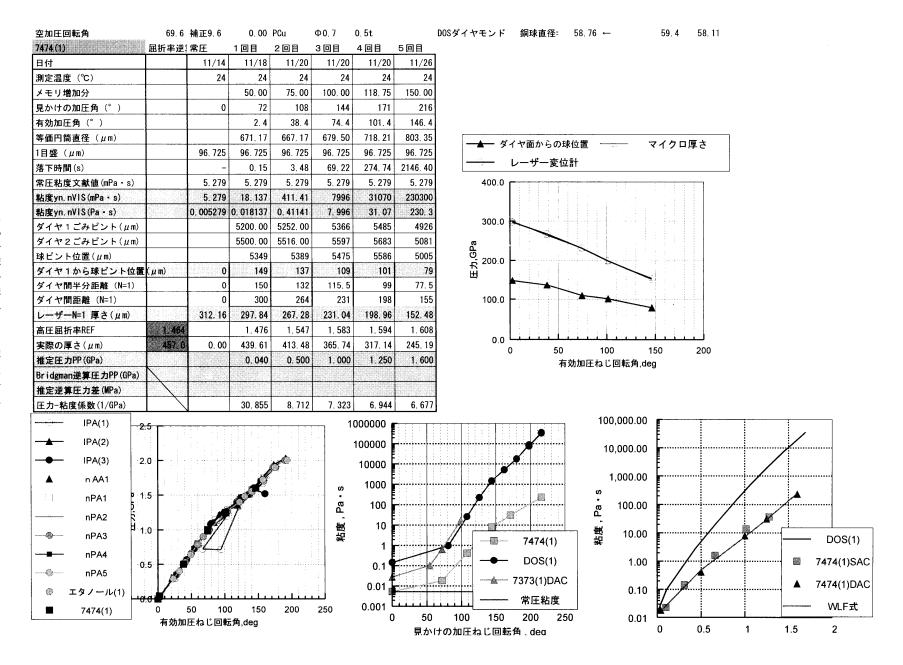





### 実験詳細データ例 nAA

有効加圧ねじ回転角,deg

| 1目盛 (μm) 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44 99.44  |              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 日付 9/13 9/13 9/13 9/25 9/28 10/1 10/1 10/1 10/1 10/2 1 10/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| 測定温度 (°C) 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| メモリ増加分 0 0.00 62.50 75.00 87.50 100.00 112.50 125.00 137.50 150.00 見かけの加圧角(°) 0 0 63 90 108 126 144 162 180 198 216 有効加圧角(°) 0 0 27 45 63 81 99 117 135 153 153 153 153 153 153 153 153 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| 是かけの加圧角(°) 0 0 63 90 108 126 144 162 180 198 216 有効加圧角(°) 0 0 27 45 63 81 99 117 135 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 有効加圧角(°)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 特価円筒直径 (μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| 目盤 (μm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nPA(4)       |
| 客下時間(s) 0.19 0.72 2.53 7.13 13.37 23.34 50.51 100.45 常圧粘度文献値 (mPa·s) 3.645 (24°C) 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3     | Bridgman nAA |
| 客下時間(s) - 0.19 0.72 2.53 7.13 13.37 23.34 50.51 100.45 常圧粘度文献値 (mPa・s) 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.645 3.64 |              |
| 粘度yn.nVIS(mPa・s) 22.814 85.214 293.651 823.249 1524 2620 5560 10770 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1000       |
| ダイヤ 1 ごみピント (μm) 4682.00 5238 4080 4028 4041 5160 5142 4989 年 1000 タイヤ 2 ごみピント (μm) 4978.00 5511 4328 4252 4250 5352 5312 5142 世                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| ダイヤ 1 ごみピント (μm) 4682.00 5238 4080 4028 4041 5160 5142 4989 E 1000 ダイヤ 2 ごみピント (μm) 4978.00 5511 4328 4252 4250 5352 5312 5142 世                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m. e         |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *            |
| 球ピント位置(μm)   4827 5372 4210 4135 4140 5242 5221 5055 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100  |              |
| ダイヤ1から球ピント位置 (μm) 0 0 145 134 130 107 99 82 79 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| ダイヤ間半分距離 (N=1) 0 0 148 136.5 124 112 104.5 96 85 76.5 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| ダイヤ間距離 (N=1) 0 0 296 273 248 224 209 192 170 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| レーザーN=1 厚さ(μm) 289.60 270.00 251.76 231.04 211.92 193.12 174.80 155.92 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>i</u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5          |
| 実際の厚さ(μm) 459.2 0.00 0.00 425.71 403.38 379.91 350.95 322.97 294.89 267.62 239.34 圧力、GPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 推定压力P(GPa) 0,000 0,000 0,350 0,600 0,840 1,090 1,240 1,390 1,500 1,670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| Bridgman逆算圧力PP (GPa) 0.000 0.000 0.386 0.602 0.867 1.095 1.233 1.356 1.526 1.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |
| 推定逆算圧力差 (MPa) 0,000 36.4 2.0 27.0 5.0 7.0 34.5 25.8 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 压力-粘度係数(1/GPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| <b>港</b> *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| F paa(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ーザー変位計       |
| 2.3   <del>*   NAA(1)                                      </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | マイクロ厚さ       |
| → nAA(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
| 2.0 見かけ角 — nPA(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| nPA(2)   250   250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| mPA(1) g 1.5 nPA(3) nPA(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>A</b>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>     |
| 0.0 100 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 0 50 100 150 200 0 50 100 150 200 250 有効加圧ねじ回転角,deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50 2         |


見かけの加圧ねじ回転角、deg

| 空加圧回転角                                       | 対数粘度                                 | 35            |       | 24. 31   | PCu       | Ф0.7     | 0. 5t         |           | DOSダイヤ             | モンド      | 球直径=      | 62. 25          | ← 62. 68 61. 82                                                                                      |
|----------------------------------------------|--------------------------------------|---------------|-------|----------|-----------|----------|---------------|-----------|--------------------|----------|-----------|-----------------|------------------------------------------------------------------------------------------------------|
| PA (6)                                       | 屈折率逆                                 | 常圧            | 1回目   | 1回目      | 2回目       | 3回目      | 4回目           | 5回目       | 6回目                | 7 回目     | 8回目       | 9回目             |                                                                                                      |
| <br>l付                                       |                                      | 6/10          | 6/10  | 6/12     | 6/12      | 6/16     | 6/16          | 6/18      | 6/18               | 6/19     | 6/20      | 6/20            |                                                                                                      |
|                                              |                                      | 24            | 24    | 24       | 24        | 24       | 24            | 24        | 24                 | 24       | 24        | 24              |                                                                                                      |
| メモリ増加分                                       |                                      | 0             | 37. 5 | 37. 50   | 50.00     | 62. 50   | 87. 50        | 112. 50   | 125. 00            | 137. 50  | 143. 75   | 150. 00         |                                                                                                      |
| 見かけの加圧角(゜)                                   | 0                                    | 0             | 54    | 54       | 72        | 90       | 126           | 162       | 180                | 198      | 207       | 216             |                                                                                                      |
| 有効加圧角(°)                                     |                                      |               | 0     | 19       | 37        | 55       | 91            | 127       | 145                | 163      | 172       | 181             |                                                                                                      |
| <br>等価円筒直径 (μm)                              |                                      |               |       | 630. 75  | 618.04    | 607. 99  | 638. 56       | 689. 28   | 732. 92            | 776. 40  | 793. 26   | 832. 10         |                                                                                                      |
| 目盛 (μm)                                      |                                      | 99. 44        |       | 99. 44   | 99. 44    | 99. 44   | 99. 44        | 99. 44    | 99. 44             | 99. 44   | 99. 44    | 99. 44          |                                                                                                      |
| 客下時間(s)                                      |                                      |               | 球不動   | 0. 09    | 0. 21     | 0. 29    | 1. 71         | 6. 38     | 10. 87             | 20. 81   | 23. 53    | 36. 80          | <b>─★</b> ダイヤ面からの球位置 <b>── マイク</b> ロ厚さ                                                               |
| 常圧粘度文献値(mPa・s)                               | 2. 008 (24                           | 2. 008        |       | 2. 008   | 2. 008    | 2. 008   | 2. 008        | 2. 008    | 2. 008             | 2. 008   | 2. 008    | 2. 008          |                                                                                                      |
| 貼度yn.nVIS(mPa・s)                             |                                      |               |       | 11.422   | 24. 322   | 33, 038  | 190, 032      | 682, 559  | 1136               | 2083     | 2309      | 3460            | ーー レーザー変位計                                                                                           |
|                                              |                                      |               |       | 0.011422 | 0. 024322 | 0.033038 | 0.190032      | 0. 682559 | 1.136              | 2.083    | 2. 309    | 3. 46           | 300.0                                                                                                |
| ダイヤ1ごみピント(μm)                                | F . /                                | ۵)            |       | 5129.00  | 4308.00   | 4155     | 4168          | 4918      | 4950               | 5012     | 5070      | 5050            | 350.0                                                                                                |
| ダイヤ2ごみピント(μm)                                | nPA (                                | b)            |       | 5399. 00 | 4540.00   | 4385     | 4369          | 5088      | 5102               | 5148     | 5193      | 5162            | 250.0                                                                                                |
| <b>球ピント位置(μm)</b>                            |                                      |               |       | 5260     | 4420      | 4262     | 4271          | 5008      | 5021               | 5087     | 5133      | 5103            | 200.0                                                                                                |
| ダイヤ1から球ピント位置                                 | (μm)                                 | 0             |       | 131      | 112       | 107      | 103           | 90        | 71                 | 75       | 63        | 53              |                                                                                                      |
| ダイヤ間半分距離 (N=1)                               |                                      | 0             |       | 135      | 116       | 115      | 100. 5        | 85        | 76                 | 68       | 61.5      | 56              | 任<br>150.0<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日<br>日 |
| ダイヤ間距離(N=1)                                  |                                      | 0             |       | 270      | 232       | 230      | 201           | 170       | 152                | 136      | 123       | 112             |                                                                                                      |
| レーザーN=1 厚さ(μm)                               |                                      | 295, 78       |       | 280. 60  | 268. 16   | 245, 76  | 209. 60       | 170, 00   | 152. 64            | 132, 08  | 125, 04   | 112, 68         | 100.0                                                                                                |
| 高圧屈折率REF                                     | 1,548                                |               |       | 1. 490   | 1.514     | 1. 521   | 1. 550        | 1. 561    | 1. 565             | 1.568    | 1. 569    | 1. 57           |                                                                                                      |
| 実際の厚さ(μm)                                    | 458.0                                | 0.00          |       | 418. 09  | 405. 99   | 373. 80  | 324. 88       | 265. 37   | 238. 88            | 207. 10  | 196. 19   | 176. 91         | 50.0                                                                                                 |
| 推定圧力PP(GPa)                                  |                                      |               |       |          |           |          |               |           |                    |          |           |                 | 0.0                                                                                                  |
| Bridgman逆算圧力PP(GPa)                          | $\sim$                               |               | 0.000 | 0.306    | 0, 537    | 0, 635   | 1.212         | 1.630     | 1. 792             | 1, 982   | 2.014     | 2. 138          | 0 50 100 150 2                                                                                       |
| 推定逆算圧力差(MPa)                                 |                                      | 0,000         | 0,000 | 305.5    | 536.7     | 635, 11  | 1212          | 1630      | 1792               | 1981.9   | 2013. 8   | 2137. 6         | 有効加圧ねじ回転角,deg                                                                                        |
| 王力-粘度係数(1/GPa)                               |                                      |               |       | 5. 690   | 4. 647    | 4. 410   | 3. 754        | 3. 576    | 3. 537             | 3. 504   | 3. 500    | 3. 486          |                                                                                                      |
| 壁補正係数                                        |                                      | 0. 795        |       | 0. 799   | 0. 794    | 0. 782   | 0. 767        | 0. 740    | 0. 724             | 0. 694   | 0. 680    | 0. 652          |                                                                                                      |
| 備考                                           | 1回目球が                                | べくっつい         | たので減圧 | 後、球を     | 入れなおし     | .t=.     | ,             |           |                    |          |           |                 |                                                                                                      |
| 2.5                                          |                                      |               |       |          | 10000     |          | #\C+++        |           | T                  |          |           | 1               | I                                                                                                    |
|                                              |                                      |               |       |          | 10000     | E        | 常圧粘度          |           |                    |          | 1000      | <sup>00</sup> [ | n-i-l-                                                                                               |
| 20 -                                         |                                      |               | •     |          |           |          | nPA(3)        |           | d                  | ,        |           | E -             | Bridgman Bridgman                                                                                    |
| 2.0                                          |                                      | 7 ×           |       |          | 1000      | <b>_</b> | nPA(4) .      |           |                    | <b>.</b> | 100       | oo ∦ oo         |                                                                                                      |
|                                              | 0                                    | <i>*</i>      |       |          | Ø         |          | nPA(5)        | ر.        |                    |          |           | - El •          | ■ nPA4                                                                                               |
| 8 1.5 –                                      | 130                                  |               |       | IPA(1)   | es        |          | nPA(6)        | P 2       |                    |          | ທ<br>ສ 10 | 00 []           | nPA5                                                                                                 |
| ed 1.5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | - To                                 |               |       | IPA(2)   | M H 100   | <u> </u> | (IFA(0)       |           |                    |          | . mPa .   |                 |                                                                                                      |
| ⊞ 1.0                                        | 71                                   |               |       | / .(_/   | 度         | E        | 90            |           |                    |          | <u></u>   | F               |                                                                                                      |
| 1//                                          |                                      |               |       | IPA(3)   | 幹         | Firit    | 3 1           |           |                    |          | 整 1       | 00              |                                                                                                      |
| 40 -                                         | •                                    |               |       | かけ角      | 10        | F        | ₽ <del></del> |           |                    |          |           | F.              | •                                                                                                    |
| 0.5 🗕                                        |                                      |               | • /   |          |           | E        |               |           |                    |          |           | 10              |                                                                                                      |
| 0.5                                          |                                      |               |       | nPA4     |           | <b></b>  | 1             |           |                    | + 111    |           |                 |                                                                                                      |
|                                              |                                      |               |       | IIPA4    |           |          |               |           |                    |          |           |                 | i i i l                                                                                              |
| 0.0                                          | 100                                  | 150           |       |          | 1         | بنننا    | لنننا         | بىننا     | المنتنا            | نىنىل    | ,         | 1 L             |                                                                                                      |
| 0.0 50                                       | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 150<br>回転角 de | ·     |          | •         |          |               |           | 50 200<br>転角 , deg | ) 250    | )         | 1 0             | 0.5 1 1.5 2                                                                                          |



| 空加圧回転角              | 8               | 補正角           | 8. 4       |         |           | 0. 00     |            |         | 1. 0t      | 銅球直径= 53.21 ← 52.35 54.07 アルミ球[ 62.255 |
|---------------------|-----------------|---------------|------------|---------|-----------|-----------|------------|---------|------------|----------------------------------------|
| 7373(1)SAG          | 屈折率逆            |               | 1回目        | 2回目     | 常圧        | 1回目       | 2回目        | 3回目     | 4回目        |                                        |
| 日付                  |                 | 10/17         | 10/17      | 10/17   | 10/22     | 10/22     | 10/22      | 10/23   | 10/23      |                                        |
| 測定温度(°C)            |                 | 24            | 24         | 24      | 24        | 24        | 24         | 24      | 24         |                                        |
| メモリ増加分              |                 |               |            |         |           | 25. 00    | 50.00      | 81. 25  | 112. 50    |                                        |
| 見かけの加圧角(°)          |                 | 0             | 36         | 72      | 0         | 36        | 72         |         | 162        |                                        |
| 有効加圧角(゜)            |                 |               |            |         |           | 1.6       | 37. 6      | 82.6    | 127. 6     |                                        |
| 等価円筒直径 (μm)         |                 | 938. 82       | 943. 16    |         | 919. 77   | 917. 43   | 899. 71    | 897. 36 | 905.06     |                                        |
| 1目盛 (μm)            |                 | 96. 725       | 96. 725    | 96. 725 | 96. 725   | 96. 725   | 96. 725    | 96. 725 | 96. 725    |                                        |
| 落下時間(s)             |                 | 0. 25         | 0. 29      | 球付着     | 0. 31     | 0. 5      | 6. 18      | 119. 25 | 3992. 70   |                                        |
| 常圧粘度文献値(mPa・s)      |                 | 26. 784       | 26. 784    | 26. 784 | 26. 784   | 26. 784   | 26. 784    | 26. 784 | 26. 784    | ─★─ ダイヤ面からの球位置 マイクロ厚さ                  |
| 粘度yn,nVIS(mPa・s)    | 11,330,53       | 30. 147       | 34, 969    |         | 34, 121   | 54, 851   | 670. 883   | 12810   | 425000     | ーラー レーザー変位計                            |
|                     |                 |               |            |         | 0. 034121 | 0. 054851 | 0. 670883  | 12. 81  | 425        |                                        |
| ダイヤ 1 ごみピント(μm)     |                 | 5625          | 5748       |         | 5075.00   | 5332.00   | 5568.00    | 5430    | 5335       | 800.0                                  |
| ダイヤ2ごみピント(μm)       |                 | 6248. 00      | 6362. 00   |         | 5682.00   | 5938. 00  | 6128.00    | 5939    | 5812       |                                        |
| 球ピント位置 (μm)         |                 | 5929. 00      | 6055.00    |         | 5370      | 5632      | 5848       | 5683    | 5589       | 600.0                                  |
| ダイヤ1から球ピント位置        | (μm)            | 304           | 307        | 0       | 295       | 300       | 280        | 253     | 254        | 000.0                                  |
| ダイヤ間半分距離(N=1)       |                 | 311.5         | 307        | 0       | 303. 5    | 303       | 280        | 254. 5  | 238. 5     | g t                                    |
| ダイヤ間距離 (N=1)        |                 | 623           | 614        | 0       | 607       | 606       | 560        | 509     | 477        | 89.<br>400.0 -                         |
| レーザーN=1 厚さ(μm)      |                 | 620. 48       | 617, 60    |         | 601.58    | 596, 16   | 560.08     | 517, 36 | 470, 00    | H L                                    |
| 高圧屈折率REF            | 1, 502          |               |            |         |           | 1.473     | 1.510      | 1. 544  | 1. 569     | <b>↑</b>                               |
| 実際の厚さ(μm)           | 903 6           |               |            |         | 0.00      | 878. 14   | 845. 72    | 798. 80 | 737. 43    | 200.0                                  |
| 推定圧力PP(GPa)         |                 |               |            |         | 0,000     | 0, 010    | 0. 210     | 0. 520  | 0. 950     |                                        |
| Bridgman逆算圧力PP(GPa) | $\setminus$     |               |            |         |           |           |            |         |            | 0.0                                    |
| 推定逆算圧力差(MPa)        | $\Box$          | K             |            |         |           |           |            |         |            | 0 50 100 150                           |
| 圧力-粘度係数(1/GPa)      |                 |               |            |         |           | 71. 682   | 15. 337    | 11.866  | 10. 181    | 有効加圧ねじ回転角,deg                          |
| 備考                  | 2回加圧            | したところ         | ろで球がく      | っついたた   | め球を入れ     | ·         | 1          |         |            | 1000 📻                                 |
| 1.0                 |                 |               |            |         | 1000 📻    | HE BH     | THE        | HELLIE. | : :1       |                                        |
| 1.2                 |                 |               |            |         | Ę         |           | <b>/</b> ₹ |         |            |                                        |
| DOSSAC(1            | )               |               | / <u>*</u> |         | 100       |           | 7          | #       |            | 100                                    |
| 1.0                 |                 | ø             |            | s.      | <b>F</b>  |           | 1 1        | 1       |            |                                        |
| ● 7373(1)SA         | s               |               |            | Pa      | 10        | 7         |            |         |            | σ 10                                   |
| 0.8                 |                 |               |            | Jind    | <b>.</b>  |           | Æ          |         |            | · 10                                   |
| 田力,GPa              | ,               | /             |            | 粘度      | 1 1       | <b>9</b>  | *          |         |            |                                        |
| £ 0.6               |                 | 1             |            |         | 0.4 E     |           | 1          |         |            | w 1                                    |
| # <b> </b>          | /               |               |            |         | 0.1       |           |            |         |            | T DOS(1)                               |
| 0.4                 | /               | <del>  </del> |            |         | 0.01      | <u> </u>  | تسلينا     | أعليتنا | Ш          | 7272(4)                                |
| /                   |                 |               |            |         | 0.01 —    | 50 100    | 150 2      | 00 250  | 300        | 0.1                                    |
| 0.2                 |                 | <del>  </del> |            |         | 見:        | かけの加      | 圧ねじ回!      | 运角,deg  |            | WLF                                    |
|                     |                 |               |            |         |           |           |            |         |            | 0.01                                   |
| 0.0                 |                 | حلحك          | لـــــا    |         |           | S-SAC(10) |            | 常压      | l          | 0 0.2 0.4 0.6 0.8 1 1.2                |
|                     |                 |               | 440 400    | 1       |           | S-SAC(12) |            | 7373    | 1(1)       |                                        |
|                     | 0 80 1<br>圧ねじ回転 |               | 140 160    | İ       |           | 0-0A0(12) |            | 757.    | <b>'''</b> | 圧力,GPa                                 |

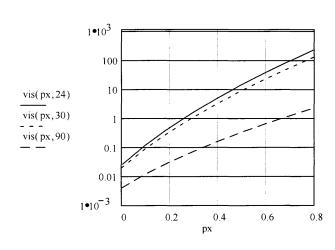
65. 27 59. 24



s0 := 1.047

vis0R := 0.019

z := 0.57


T0 := 30T := 30

px := 0, 0.1..0.8

alphasp(px,T) := 
$$\left(\ln(\text{vis}0\text{R}) + 9.67\right) \cdot \left[\left(\frac{\text{T} + 135}{\text{T0} + 135}\right)^{-\text{s}0} \cdot (1 + 5.1 \cdot \text{px})^2 - 1\right]$$

Pas

 $vis(px,T) := vis0R \cdot exp(alphasp(px,T))$ 



| X   | vis(px, | 24) vis(px, |
|-----|---------|-------------|
| 0   | 0.024   | 0.019       |
| 0.1 | 0.115   | 0.086       |
| 0.2 | 0.443   | 0.317       |
| 0.3 | 1.491   | 1.017       |
| 0.4 | 4.529   | 2.96        |
| 0.5 | 12.73   | 7.999       |
| 0.6 | 33.622  | 20.361      |
| 0.7 | 84.368  | 49.335      |
| 0.8 | 202.75  | 114.67      |
|     |         | ·           |

| 30) | vis(px,90)            |
|-----|-----------------------|
|     | $3.904 \cdot 10^{-3}$ |
|     | 0.012                 |
| 1   | 0.03                  |
| 1   | 0.069                 |
|     | 0.15                  |
| ]   | 0.308                 |
| 1   | 0.605                 |
| 1   | 1.146                 |
|     | 2.108                 |
|     |                       |

### vis(圧力(GPa), 温度(℃))

$$vis(0.05, 24) = 0.054$$

$$vis(0.05, 24) = 0.054$$

vis(0.05, 24) = 0.054

alpha25 := 
$$\ln \left\langle \frac{\text{vis}(0.8,25)}{\text{vis}(0,25)} \right\rangle \cdot \frac{1}{0.8}$$

alpha25 = 11.238

$$Pep := \frac{25}{alpha25}$$

Pep = 2.225

|          |            |                      |              | i                     |                      |                    |                      |                      | <u>C1</u>            | <u>C2/C</u>                           | Tgo/C                |                                       |
|----------|------------|----------------------|--------------|-----------------------|----------------------|--------------------|----------------------|----------------------|----------------------|---------------------------------------|----------------------|---------------------------------------|
|          |            | DOS                  |              |                       | 1                    |                    | 文献                   | 直参照                  | 11,17                | 31.69                                 | -89.7                |                                       |
|          |            |                      |              |                       |                      |                    | !                    | j                    |                      | <del></del>                           | <u> </u>             | <u> </u>                              |
|          | 1          |                      |              |                       |                      |                    |                      |                      |                      |                                       |                      | ļ                                     |
|          | - +        |                      |              | ·                     | <del></del>          |                    |                      |                      |                      |                                       | <u> </u>             |                                       |
|          | - 1        |                      |              |                       |                      |                    |                      | +                    |                      | -                                     |                      |                                       |
|          |            |                      |              |                       |                      |                    | -                    |                      |                      |                                       |                      |                                       |
|          |            |                      |              |                       |                      |                    |                      |                      |                      |                                       | <u> </u>             |                                       |
|          |            |                      |              |                       |                      |                    | i                    |                      |                      | <u> </u>                              | 1                    |                                       |
|          |            |                      |              |                       |                      |                    |                      | ;<br>;               |                      | <u> </u>                              | <del> </del>         |                                       |
|          |            |                      |              |                       |                      |                    |                      |                      |                      |                                       |                      |                                       |
| <u> </u> | +          |                      |              |                       |                      |                    |                      |                      |                      |                                       |                      |                                       |
|          | l          |                      |              |                       |                      |                    |                      |                      |                      | 1                                     |                      |                                       |
|          |            |                      |              |                       |                      |                    |                      |                      |                      |                                       |                      |                                       |
| -        |            | ,                    | Mug/Pas      | Tgo/C                 | <u>A1/C</u>          | <u>A2/1/GPa</u>    | <u>B1</u>            | <u>B2/1/GPa</u>      | <u>C2/C</u><br>11.00 | <u>C1</u><br>23.28                    |                      |                                       |
|          |            | DOS<br>pro-alcoho    | 0            | -165                  | 69.03<br>134.36      | 6.59124<br>0.89924 | 0.07080<br>0.09250   | 94.180<br>101.743    | 23.28<br>26.00       | 11.00<br>11.00                        |                      |                                       |
|          | ]          | oos                  | 10^7<br>10^7 |                       | 111.50               | 0.55800<br>3.34800 | 0.21700              | 25.300               | 31.69                | 11.17                                 |                      |                                       |
|          |            | SN50<br>DOS          | 10 7         | −54.7<br>−89.7        | 76.77<br>57.13       | 2.983              | 0.28200<br>0.115     | 17.47<br>58.750      | 26.59<br>31.690      | 10.96<br>11.170                       |                      | L                                     |
|          | _          |                      | DOS          |                       | 156.5249             | 2.29037            | 0.781255             | 10.96346             | 11.17                | 31.69<br>5.257523                     | -89.7<br>1.907964    |                                       |
| ļ        |            | η (exp)/ η           | (WLF)        |                       | Bridgman<br>in Pa.s  | log η (exp)        | log η (WLF           | )                    |                      | η (WLF,Pa                             | ıs)                  |                                       |
| -25      |            |                      | T, C<br>30   | <u>p/GPa</u><br>0.001 | η (exp)<br>0.019095  | mPas               | mPas<br>1.182986     | square err           | 重み<br>1              |                                       | T-TS(p)              | F(p)<br>0.993455                      |
| _1       | 1.0<br>2.2 | 1.010049<br>0.978311 | 30           | 0.053<br>0.193        | 0.046474<br>0.261463 | 1.66721<br>2.41741 |                      | 1.89E-05             | 1                    | 0.046012                              | 111.3142<br>93.72146 | 0.837842                              |
| 1        | 1.2        | 0.988184             | 30<br>30     | 0.36                  | 1.385                | 3.14145            | 3.146612             | 2.66E-05             |                      | 1.401561                              | 78.02682             | 0.644823                              |
| -2       | 2.3        | 1.007614<br>1.022915 | 30<br>30     | 0.566<br>0.828        | 8.757<br>76.97       |                    | 3.939061<br>4.876482 | 1.09E-05<br>9.68E-05 | 1                    | 75.24575                              | 63.2002<br>48.62053  | 0.552291                              |
| 1        | 1.3        | 0.986643             | 30           | 1.098                 | 621.7                | 5.793581           | 5.799421             | 3.41E-05<br>0.009869 | 1                    | 630.1163                              | 36.69549             | 0.520502                              |
| }        |            |                      |              |                       |                      |                    |                      | i                    |                      |                                       |                      |                                       |
|          | -          |                      |              |                       | 6                    |                    |                      |                      | 7                    |                                       |                      |                                       |
|          |            |                      |              |                       | 5                    |                    |                      |                      | _                    | 1                                     |                      |                                       |
| <br>     | 1          |                      |              | 1                     |                      |                    |                      |                      |                      |                                       |                      |                                       |
|          | +          |                      |              | as                    | 4 :                  |                    |                      |                      |                      | ļ                                     |                      | :<br>!                                |
|          |            |                      |              | og n.mPas             | 3                    |                    |                      |                      |                      | -                                     |                      |                                       |
|          | - †        |                      |              | o<br>g                | 2                    |                    |                      |                      | ļ                    | · · · · · · · · · · · · · · · · · · · |                      |                                       |
|          |            |                      |              |                       |                      | i                  | m /\A/I =            | / ma DOO             |                      |                                       |                      |                                       |
|          | 1          |                      |              | !                     | 1                    | - 15               | logη(WLF)            | ) <b>I</b> DOS       | `                    |                                       |                      |                                       |
|          | - 1        |                      |              |                       | 0 :                  |                    | 1.1.1                |                      |                      |                                       |                      | · · · · · · · · · · · · · · · · · · · |
|          | 1          |                      |              |                       | 0                    | 0.5<br>Pres        | 1<br>sure,GPa        |                      | 1.5                  | ‡                                     |                      |                                       |
|          |            | 1                    |              | •                     |                      |                    | ,                    |                      |                      |                                       | <del></del>          | +                                     |

| Γ       |     |          |                                         | Mug/Pas    |            | <u>A1/C</u>          | A2/1/GPa    | <u>B1</u>      | B2/1/GPa                                | <u>C1</u>            | <u>C2/C</u>          | Tgo/C                |                                                  |
|---------|-----|----------|-----------------------------------------|------------|------------|----------------------|-------------|----------------|-----------------------------------------|----------------------|----------------------|----------------------|--------------------------------------------------|
|         |     |          | PAO4                                    | 10^7       |            | 156 5240             | 2 20037     | 0.781255       | 10.96346                                | 11.33                | 35.99                | -87.7608             |                                                  |
| ŀ       |     |          | FAU4                                    | 10 /       |            | 130.3243             | 2.23037     | 0.761233       | 10.30340                                | 11.00                | 33.33                | 67.7006              |                                                  |
|         |     |          |                                         | PAO4       |            | 156.5249<br>Bridgman | 2.29037     | 0.781255       | 10.96346                                | İ                    | 5.257523             | 1.907964             | ļ                                                |
| -       |     |          | $\eta$ (exp)/ $\eta$                    | (WLF)      |            |                      | log η (exp) | log η (WLF     | )                                       |                      | $\eta$ (WLF,mF       | Pas)                 |                                                  |
|         |     |          | error                                   | T, C       | p/GPa      | $\eta$ (exp)         | mPas        | mPas           | square err                              |                      |                      | T-TS(0)              |                                                  |
|         |     |          | 1.011978                                | 24         |            |                      |             |                | 2.67E-05                                |                      | 0.027067             |                      | 1                                                |
|         |     |          | 0.994901                                |            |            |                      |             |                | 4.93E-06                                |                      | 0.014549             |                      | <del>                                     </del> |
| -       |     |          | 0.987476                                |            |            |                      | 0.771881    |                |                                         |                      | 0.005989             |                      |                                                  |
| -       |     |          | 0.994628<br>1.011265                    | 100<br>150 | <u>0</u>   | 0.003111             |             |                | 5.47E-06<br>2.37E-05                    |                      | 0.003128<br>0.001454 |                      | <u> </u>                                         |
| ł       |     | !.!      | 1.011203                                | 130        | <u> </u>   | 0.00147              | 0.107317    | 0.102432       | 9.08E-05                                |                      | 0.001434             | 237.7000             | <u> </u>                                         |
|         | 1   | 0.00     | 0                                       | 24         | 0          |                      |             | 1.432437       | 2.051875                                | 1                    | 27.07                | 111.7608             | 1                                                |
|         |     |          |                                         |            |            |                      |             |                | ·                                       | <u> </u>             | :<br>                |                      |                                                  |
| -       |     |          |                                         | Mug/Pas    | Tgo/C      | <u>A1/C</u>          | A2/1/GPa    | <u>B1</u>      | <u>B2/1/GPa</u>                         | <u>C2/C</u><br>11.00 | <u>C1</u><br>23.28   |                      | <u> </u>                                         |
|         |     |          | PAO4                                    |            |            | 69.03                | 6.59124     | 0.07080        | 94.180                                  | 23.28                | 11.00                | †                    |                                                  |
|         |     | i-       | -pro-alcoho                             |            | -165       | 134.36               | 0.89924     | 0.09250        | 101.743                                 | 26.00                | 11.00                |                      |                                                  |
| L       |     |          | DOS                                     | 10^7       | -89.7      | 111.50               | 0.55800     | 0.21700        | 25.300                                  | 31.69                | 11.17                | c                    | ļ                                                |
| L       |     |          | SN50                                    | 10^7       | -54.7      | 76.77                | 3.34800     | 0.28200        | 17.47                                   | 26.59                | 10.96                | !<br>                |                                                  |
|         |     |          | PAO4                                    | 10^7       | -87.7608   | 110.61               | 0.52207     | 0.26415        | 13.533                                  | 35.993               | 11.327               | 07.7600              |                                                  |
| -       |     |          |                                         | PAO4       |            | 156 5240             | 2.29037     | 0.701255       | 10.96346                                | 11,33                | 35.99                | -87.7608<br>1.907964 |                                                  |
|         |     |          |                                         |            |            | Bridgman             |             |                |                                         | ļ                    | L                    | L                    |                                                  |
| ŀ       |     |          | $\eta$ (exp)/ $\eta$                    |            | n/CDa      |                      | log η (exp) |                |                                         | <b>新</b> 7.          | η (WLF,Pa            |                      | F(-)                                             |
| ŀ       |     | 116      | error<br>0.88411                        | T, C<br>24 |            |                      |             |                | square err<br>0.002862                  |                      | 0.029252             | T-TS(p)              | F(p)                                             |
|         |     |          | 0.922494                                |            |            |                      |             |                | 0.002802                                |                      | 0.404364             |                      |                                                  |
| ŀ       |     |          | 1.066511                                |            | 0.45       | 7 649                | 3 883605    | 3 855639       | 0.001220                                | 1                    | 7.171985             |                      |                                                  |
| -       |     |          | 1.057486                                |            | 0.637      | 47.78                |             |                | 0.000589                                |                      | 45.18264             | 80.00533             | 0.401996                                         |
|         |     | 5.5      | 0.944599                                | 24         | 0.89       |                      |             |                | 0.000613                                |                      | 456.0664             | 69.55183             | 0.321574                                         |
|         |     |          |                                         |            |            |                      |             |                | 0.006073                                |                      |                      |                      |                                                  |
| $\perp$ |     |          | <u> </u>                                |            |            |                      |             |                | l <u>-</u> -                            | <u> </u>             |                      | Ĺ                    | 1                                                |
|         | i   | 1        | 1.6                                     |            | 1.555.555  |                      |             | 6              | ; · · · · · · · · · · · · · · · · · · · |                      |                      |                      | 1                                                |
|         |     | !        |                                         |            | : 8        | PAO4                 |             |                |                                         |                      | ĺ                    |                      |                                                  |
|         |     |          | -                                       | /          | _          | 17.01                |             | 5              |                                         |                      |                      | /                    |                                                  |
|         |     | 5        | 1.2                                     |            |            | - η (WLF,m           | Dec)        |                |                                         |                      |                      |                      |                                                  |
| -       |     | 1        |                                         |            | -          | // (VVLF,II          | IF45/       |                |                                         | İ                    |                      |                      | i                                                |
|         |     | ,mPas    | 1                                       |            |            | 1                    |             | တ္က 4          |                                         |                      |                      |                      |                                                  |
|         | 0   | <u> </u> | 1                                       | `          |            |                      |             | mPas           |                                         |                      |                      |                      | -                                                |
| -       |     | ر<br>ا   | ).8 + +                                 |            |            |                      |             | - 3            |                                         | /                    |                      |                      |                                                  |
| 1-      | - 7 | log 77   | ).6                                     |            |            |                      |             | Im, $\eta$ gol | <b>/</b>                                |                      |                      |                      |                                                  |
| H       |     | <u> </u> | 7.0                                     |            |            |                      |             | _ 2            |                                         |                      |                      | +                    | 4. 1                                             |
| -       | :   | (        | ).4                                     |            |            |                      |             |                |                                         |                      |                      |                      |                                                  |
|         |     | i        |                                         |            |            |                      |             | 1              |                                         |                      | DAO4                 | -1 m (\A/I )         | _\                                               |
| -       | . ! | (        | ).2                                     |            |            |                      | 7           | · · · · ·      |                                         |                      | PAO4 —               | -iog // (WLI         | F7!                                              |
| -       |     | -1       | 0 · · · · · · · · · · · · · · · · · · · | 30 50      | .i 70 9    | 110                  | 130 150     | 0              | ı l                                     |                      |                      |                      |                                                  |
|         |     | •        | - 10                                    |            | perature,° |                      |             |                | 0 0.                                    |                      | 0.6                  | 0.8                  | 1 :                                              |
| -       |     |          |                                         | ıem        | perature,  |                      |             |                |                                         | Press                | sure,GPa             |                      | · · · · · ·                                      |
| L       |     |          |                                         |            |            |                      |             |                |                                         |                      |                      |                      | 1                                                |

|    |                  |                                  | Mug/Pas              |               | <u>A1/C</u>         | A2/1/GPa             | <u>B1</u>          | B2/1/GPa          | <u>C1</u>               | <u>C2/C</u>                                                                                        | Tgo/C    |                                              |              |
|----|------------------|----------------------------------|----------------------|---------------|---------------------|----------------------|--------------------|-------------------|-------------------------|----------------------------------------------------------------------------------------------------|----------|----------------------------------------------|--------------|
| ļ  |                  | ethanol                          | 10^7                 |               | 134.36              | 0.899                | 0.092              | 101.743           | 12.75                   | 75 09                                                                                              | -243.943 | -                                            |              |
|    |                  | Ciriario                         |                      |               |                     |                      |                    |                   |                         |                                                                                                    |          |                                              |              |
|    |                  |                                  | ethanol              |               | 156.5249            | 2.29037              | 0.781255           | 10.96346          |                         | 5.257523                                                                                           | 1.907964 |                                              |              |
|    |                  | $n(\exp)/n$                      | (WLF)                |               | Bridgman<br>in Pa.s | log η (exp)          | log n (WLF         | !                 |                         | η (WLF,mF<br>0.00481<br>1 0.002836<br>0.001787<br>1 0.001448<br>1 0.000987<br>0.000987<br>0.000827 | Pas)     |                                              |              |
|    | i                | error                            | T, C                 | p/GPa         | η (exp)             | mPas                 | mPas               | square err        | 重み                      |                                                                                                    | T-TS(0)  | F(p)                                         | 4            |
|    | 0.4              | 0.995802                         | -40                  | 0             | 0.00479             | 0.680336             | 0.682163           | 3.34E-06          |                         | 0.00481                                                                                            | 203.9427 | 1                                            |              |
| ŀ  | 16.1             | 0.839199                         | -20                  | <u>u</u>      | 0.00238             | 0.376577             | 0.452712           | 2 59F-06          |                         | 0.002836                                                                                           | 223.9427 | 1                                            | +            |
| Ì  | -0.8             | 1.008127                         | 10                   | <u>0</u>      | 0.00176             | 0.164353             | 0.160838           | 1.24E-05          | ٠                       | 0.001767                                                                                           | 253.9427 | 1                                            |              |
|    | -0.1             | 1.001202                         | 20<br>30<br>40<br>50 | <u>0</u>      | 0.00119             | 0.075547             | 0.075025           | 2.72E-07          |                         | 0.001189                                                                                           | 263.9427 | 1                                            |              |
|    | -1.4             | 1.013609                         | 30                   | 0             | 0.001               | _0.00355             | -0.00587           | 3.45E-05          |                         | 0.000987                                                                                           | 273.9427 | 1                                            | ļ            |
|    | -0.1             | 1.000522                         | 50                   | 0             | 0.000823            | -0.15428             | -0.15451           | 5.13E-08          |                         | 0.000827<br>0.000701                                                                               | 293.9427 | 1                                            |              |
|    | 1.3              | 0.98749                          | UO                   | <u>0</u>      | 0.000591            | -0.22841             | -0.22295           | 2.99E-05          |                         | 0.000598<br>0.000447<br>0.000344                                                                   | 303.9427 | 1                                            | 1            |
|    | 2.7              |                                  | 80                   | 0             | 0.000435            | -0.36151             | -0.34953           |                   |                         | 0.000447                                                                                           | 323.9427 | 1                                            |              |
|    | 5.1<br>8.3       | 0.948955                         | 100<br>120           |               | 0.000326            | -0.48678<br>-0.60555 | -0.46403           |                   |                         | 0.000344                                                                                           | 363.9427 |                                              |              |
| L  |                  | 0.598464                         | 140                  | <u>0</u>      | 0.00013             | -0.88606             | -0.66309           |                   |                         |                                                                                                    | 383.9427 | 1                                            |              |
|    |                  |                                  |                      |               |                     | !                    |                    | 8.46E-05          |                         | 1 4 400                                                                                            |          |                                              | <u> </u>     |
| 1  | 0.00             | 0                                | 24                   | 0             |                     | #NUM!                | 0.042101           | #NUM!             |                         | 1.102                                                                                              | 267.9427 | 1                                            | ļ            |
| ļ  |                  |                                  | Mug/Pas              | Tgo/C         | A1/C                | <u>A2/1/GPa</u>      | B1                 | B2/1/GPa          | C2/C                    | C1                                                                                                 |          |                                              | ļ            |
|    |                  |                                  | magr. co             | <u> </u>      |                     | <u>/ 12 1/ 0/ 0</u>  |                    | <u> </u>          | 11.00                   | 23.28                                                                                              |          |                                              | +            |
|    |                  | ethanol                          |                      |               | 69.03               | 6.59124              | 0.07080            | 94.180            | 23.28                   | 11.00                                                                                              |          |                                              |              |
|    | i-               | pro-alcoho                       | 0<br>10^7            | -165<br>-89.7 | 134.36<br>111.50    | 0.89924<br>0.55800   | 0.09250<br>0.21700 | 101.743<br>25.300 | 26.00<br>31.69          | 11.00<br>11.17                                                                                     |          |                                              |              |
| ŀ  |                  | DOS<br>SN50                      | 10^7                 | -54.7         | 76.77               |                      | 0.28200            |                   | 26.59                   | 10.96                                                                                              |          |                                              |              |
|    |                  | ethanol                          | 10^7                 | -243.943      | 327.20              | 0.05248              | 0.17855            | 6.335             | 75.087                  | 12.748                                                                                             |          |                                              |              |
| ļ  |                  | η (exp)/ η (<br>error<br>1 01665 |                      |               | D.::1               |                      |                    |                   | 12.75                   | 75.09                                                                                              | -243.943 |                                              | !            |
|    |                  | $n(\exp)/n$                      | (WLF)                |               | in Pa.s             | log n (exp)          | log n (WLF         | )                 |                         | η (WLF.Pa                                                                                          | s)       |                                              | <del> </del> |
|    |                  | error                            | T, C                 | p/GPa         | η (exp)             | mPas                 | mPas               | square err        | 重み                      | η (WLF,Pa                                                                                          | T-TS(p)  | F(p)                                         |              |
|    |                  |                                  |                      | 0.040         | 0.001003            | 0.001301             | -0.00587           | 5.14E-05          |                         | 1 0 000987                                                                                         | 273 9427 | 0.051720                                     |              |
| -  | 1.3              | 0.998528<br>0.986586             | 30<br>30             | 0.049         | 0.001283            | 0.108294             | 0.108934           |                   |                         | 0.001285<br>0.001611<br>0.002361                                                                   | 272.2642 | 0.931729                                     | -            |
|    | 2.0              | 0.97982                          | 30                   | 0.1962        | 0.002314            | 0.364307             | 0.373161           | 7.84E-05          | 1                       | 0.002361                                                                                           | 270.5909 | 0.855769                                     |              |
| }. | 4.2              | 0.958304                         | 30                   | 0.3924        | 0.004152            | 0.618299             | 0.636796           | 0.000342          |                         | 0.004333<br>0.007118<br>0.010982<br>0.016267<br>0.02341                                            | 267.2731 | 0.777041                                     | -            |
|    |                  | 0.95053<br>0.963                 | 30<br>30             | 0.3880        | 0.000700            | 1 024301             | 1 040675           | 0.000485          |                         | 0.007118                                                                                           | 260 7367 | 0.722392                                     | ļ            |
|    | -0.2             | 1.002297                         | 30<br>30             | 0.981         | 0.016304            | 1.212302             | 1.211306           | 9.93E-07          |                         | 0.016267                                                                                           | 257.5168 | 0.647166                                     |              |
|    | -5.2             | 1.051711                         | 30                   | 1.1772        | 0.024621            | 1.3913               | 1.369404           | 0.000479          | generalistis caracistis | 0.02341                                                                                            | 254.3283 | 0.618786                                     | ļ            |
|    | . <sub>[</sub> ] |                                  | ·                    |               |                     | ·                    |                    | 0.001706          |                         |                                                                                                    |          |                                              | <del></del>  |
|    |                  | 0.8                              |                      | ■ etha        | nol                 |                      | 2 :                |                   |                         |                                                                                                    |          | ļ                                            |              |
|    |                  | 0.6                              | + +-                 | ecila         | 1101                |                      | :                  | <u>—</u> lo       | gη(WLF)                 |                                                                                                    |          | i                                            | 1            |
|    | 1                | 0.4                              |                      | — η (V        | VLF,mPas)           |                      |                    |                   |                         |                                                                                                    |          |                                              |              |
|    | · co             | 0.2                              |                      |               |                     |                      | 1.5                | etl               | nanol                   |                                                                                                    |          | i                                            | <del> </del> |
|    | 99               | 0.2                              | <b>"</b>             |               |                     |                      | T                  |                   |                         |                                                                                                    |          |                                              |              |
|    |                  | 0                                |                      | <b>"</b>      |                     |                      | as                 |                   |                         |                                                                                                    |          |                                              |              |
|    | 2                | -0.2                             |                      | <b>—</b>      |                     | H                    | E 1                |                   |                         |                                                                                                    |          |                                              |              |
|    | log n mPa        | -0.4                             | 1 -   -              |               |                     |                      | log 17, mPas       |                   |                         |                                                                                                    |          | ļ                                            | j            |
|    |                  | -0.6                             |                      |               | <b>M</b>            |                      | log                | _                 |                         |                                                                                                    |          |                                              |              |
|    |                  |                                  |                      |               |                     | _                    | 0.5                | <i></i>           |                         |                                                                                                    |          | <u> </u>                                     | ÷            |
|    |                  | -0.8                             |                      | : ;           | 1 -                 |                      | 0.0                |                   | 1                       |                                                                                                    |          | ļ                                            | <u> </u>     |
|    |                  | -1                               |                      |               |                     |                      |                    |                   |                         |                                                                                                    |          |                                              |              |
|    |                  | -40                              | -20 0 20             | 0 40 60       | 80 100 1            | 20 140               | الر ١              | <b>r</b>          | i                       |                                                                                                    |          |                                              | <del> </del> |
|    |                  |                                  | Tan                  | nperatur      | °C                  |                      | 0 🐠                |                   | 0.5                     | 4                                                                                                  | 4.0      | <u>.                                    </u> | ļ            |
| 1  |                  |                                  | ren                  | nperatur      | e, C                | 1                    | 0                  |                   | 0.5<br>Pressu           | l<br>re GPa                                                                                        | 1.5      | )                                            |              |
|    |                  |                                  |                      |               |                     |                      |                    |                   | 1 1 C S S U             | io,ui a                                                                                            |          |                                              |              |

|          |               | DOS                  |                                       |               |                |                                                                                                                     | 文献                                      | 直参照                  | <u>C1</u><br>11.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>C2/C</u><br>31.69                             | Tgo/C<br>-89.7       |                                |
|----------|---------------|----------------------|---------------------------------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|--------------------------------|
| 1        |               |                      |                                       |               |                |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i de la                                          |                      |                                |
|          |               |                      |                                       |               |                | i<br>Marie de la companya de la companya de la companya de la companya de la companya de la companya de la companya |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| } -      |               |                      |                                       |               |                |                                                                                                                     | :<br>-                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| }        |               |                      |                                       |               |                |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| }        |               |                      |                                       |               |                |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      | <del></del>                    |
| -        |               |                      | 7                                     |               |                | t construction .                                                                                                    | ÷                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      | ļ                              |
|          |               |                      |                                       |               |                |                                                                                                                     | i                                       | F -                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| }        |               |                      |                                       |               |                | !                                                                                                                   |                                         | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                | -                    |                                |
| 1        |               |                      |                                       |               |                |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                      |                                |
|          |               |                      |                                       |               | 1              | · · · ·                                                                                                             |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       |               |                |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                      |                                |
|          |               |                      |                                       |               |                |                                                                                                                     |                                         | i .                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| 1        |               |                      |                                       |               |                | ·<br>                                                                                                               |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| L        |               |                      |                                       |               | <u></u>        |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                      |                                |
|          |               |                      |                                       |               |                |                                                                                                                     | and the second second second            |                      | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 1                                                |                      |                                |
|          |               |                      |                                       |               | !<br>!         |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                      |                                |
| 1        | }             |                      |                                       |               | <del> </del>   |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>+                                           |                      |                                |
|          |               | - 1                  | Mug/Pas                               | Tgo/C         | A1/C           | A2/1/GPa                                                                                                            | <u>B1</u>                               | B2/1/GPa             | C2/C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>C1</u>                                        | <del></del>          |                                |
| <u> </u> |               | iPA                  | 10^7                                  | -165          | 134.36         | 0.89924                                                                                                             | 0.09250                                 | 101.743              | 26.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.00                                            |                      | )                              |
| -        |               | DOS                  | 10^7                                  | -89.7         | 111.50         | 0.55800                                                                                                             | 0.21700                                 | 25.300               | 31.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.17                                            |                      |                                |
|          |               | SN50                 | 10^7                                  | -54.7         | 76.77          | 3.34800                                                                                                             | 0.28200                                 | 17.47                | 26.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.96                                            |                      |                                |
| 1        |               | DOS                  | 10^7                                  | -89.7         | 1018.65        | -0.022                                                                                                              | 0.245                                   | 28.748               | 31,690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.170                                           |                      |                                |
|          |               |                      | · · · · · · · · · · · · · · · · · · · |               |                |                                                                                                                     |                                         |                      | 11.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.69                                            | -89.7                |                                |
|          |               |                      |                                       |               | Bridgman       |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                      |                                |
|          |               | $\eta$ (exp)/ $\eta$ | (WLF)                                 |               | in Pa.s        | log η (exp)                                                                                                         |                                         | )                    | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | η (WLF,Pa                                        | s)                   |                                |
| L        |               |                      | T, C                                  |               | η (exp)        | mPas                                                                                                                | mPas                                    | square err           | 重み                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | T-TS(p)              | F(p)                           |
|          | 22.0          | 0.780367             | 24                                    | 0             |                | 1.156973                                                                                                            |                                         | 0.0116               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.018394                                         | 113.7                | 1                              |
|          | 24.8          | 0.75206              | 24                                    | 0.107         |                | 1.98644                                                                                                             |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.128881                                         | 116.1424             |                                |
|          | 3.0           | 0.970297             | 24                                    | 0.43          | 2.632          | 3.420286                                                                                                            | 3.433381                                | 0.000171             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.712571                                         | 123.5511             |                                |
|          | -30.6         | 1.306431             | 24                                    | 0.678         | 22.54          |                                                                                                                     | 4.236867<br>4.969637                    | 0.013476<br>0.038379 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.25311<br>93.24735                             | 129.2762<br>134.6148 | 0.261286<br>0.19288            |
|          | -57.0<br>13.7 | 1.570018<br>0.863046 | 24<br>24                              | 0.908<br>1.15 | 146.4<br>524.5 | 5.165541<br>5.719745                                                                                                | 5.783711                                | 0.038379             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 140.2623             | 0.136992                       |
| h        | 16.3          | 0.836554             | 24                                    | 1.15          | 508.4          | 5.706206                                                                                                            | 5.783711                                | 0.004032             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 607.7311                                         | 140.2623             | 0.136992                       |
| 1        | 16.4          | 0.835869             | 24                                    | 1.3           | 1789           | 6.25261                                                                                                             | 6.330472                                | 0.006062             | ······i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | 143,7785             | 0.107833                       |
| <u>}</u> | 18.2          | 0.817647             | 24                                    | 1.3           | 1750           | 6.243038                                                                                                            | 6.330472                                | 0.007645             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2140.287                                         | 143.7785             |                                |
| 1        | -5.9          | 1.058916             | 24                                    | 1.45          | 8875           | 6.948168                                                                                                            | 6.923307                                | 0.000618             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8381.215                                         | 147.307              | 0.081782                       |
|          | 9.6           | 0.903926             | 24                                    | 1.45          | 7576           | 6.87944                                                                                                             | 6.923307                                | 0.001924             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | 147.307              | 0.081782                       |
|          | -9.7          | 1.096729             | 24                                    | 1.58          | 33470          | 7.524656                                                                                                            | 7.484556                                | 0.001608             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30518.01                                         | 150.3749             | 0.061252                       |
| L        | -16.8         | 1.168163             | 24                                    | 1.58          | 35650          | 7.55206                                                                                                             | 7.484556                                |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30518.01                                         | 150.3749             | 0.061252                       |
| <u></u>  |               |                      |                                       |               |                |                                                                                                                     |                                         | 0.111452             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       |               |                |                                                                                                                     |                                         | ļ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |                      |                                |
|          |               |                      |                                       |               |                | and a contract of the second                                                                                        |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       |               |                |                                                                                                                     |                                         | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       | 4 4<br>1      |                |                                                                                                                     |                                         |                      | į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del>                                     </del> |                      |                                |
| · ·      |               | -1                   |                                       |               | 8              | }                                                                                                                   |                                         | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | †                                                |                      |                                |
| -        |               |                      |                                       |               | 7 :            |                                                                                                                     |                                         | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                                         |                      |                                |
| 1        |               | I                    |                                       |               | ,              |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                |                      | - comment of Section Section 1 |
| ļ        |               |                      |                                       | ;             | б              |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
| }        |               | *                    |                                       | * 1           | န္ဌ 5          |                                                                                                                     | و                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       |               | مِيّ           |                                                                                                                     |                                         |                      | 1 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                      |                                |
|          |               |                      |                                       |               | <u> </u>       |                                                                                                                     | - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ndi siri masa        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                                                |                      |                                |
|          |               |                      |                                       |               | ® 3 ·····      |                                                                                                                     | _                                       | -log η (WL           | F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                      |                                |
|          |               |                      |                                       |               | ~ ,/           |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>+                                           |                      |                                |
|          | 1             | :                    | **                                    |               | 4              |                                                                                                                     | - 1000                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       |               | 1 🐔            |                                                                                                                     |                                         | DOS                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      |                                       |               | ^              |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      | ,                                     |               | 0              |                                                                                                                     |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          | •             |                      | :                                     |               | 0              | 0.5                                                                                                                 |                                         | 1                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>.</u>                                         |                      |                                |
|          |               |                      |                                       |               |                | P1                                                                                                                  | ressure,GP                              | a                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                      |                                |
|          |               |                      | *                                     |               |                |                                                                                                                     | ,                                       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | •                    | ** **                          |

|          |      |                          | Mug/Pas |                                             | <u>A1/C</u>          | A2/1/GPa                               | <u>B1</u>     | B2/1/GPa             | <u>C1</u> | <u>C2/C</u>    | Tgo/C          |                                       |
|----------|------|--------------------------|---------|---------------------------------------------|----------------------|----------------------------------------|---------------|----------------------|-----------|----------------|----------------|---------------------------------------|
|          |      | PAO4                     | 10^7    |                                             | 134.36               | 0.899                                  | 0.092         | 101.743              | 11.22     | 32.49          | -80.8204       | <br>-                                 |
|          |      |                          |         |                                             | 156.5249<br>Bridgman | 2.29037                                | 0.781255      | 10.96346             |           | 5.257523       | 1.907964       |                                       |
| ļ · ·    |      | $\eta$ (exp)/ $\eta$     | (WLF)   |                                             |                      | $\log \eta$ (exp)                      | log n (WLF    | )                    |           | η (WLF,mF      | as)            |                                       |
|          |      |                          | T, C    | p/GPa                                       | η (exp)              |                                        | mPas          | square err           | 重み        |                | T-TS(0)        | F(p)                                  |
| -        | 0.0  |                          | 24      | 0                                           |                      |                                        |               | 1.01E-08             |           |                | 104.8204       | 1                                     |
| ļ        | 0.0  | 0.999689                 | 40      | <u></u>                                     |                      |                                        |               | 1.82E-08             |           | 1 0.014479     |                | 1                                     |
| 1        | 0.0  | 1.000241                 | 70      |                                             |                      |                                        |               | 1.1E-08              |           | 1 0.005913     |                | 1                                     |
| -        | -0.2 | 1.001584                 | 100     | <u>0</u>                                    | 0.003111             | 0.4929                                 | 0.492213      | 4.72E-07             |           | 1 0.003106     | 180.8204       | 1                                     |
|          | 0.1  | 0.998801                 | 150     | <u>0</u>                                    | 0.00147              | 0.167317                               | 0.167838      | 2.72E-07<br>7.83E-07 |           | 1 0.001472     | 230.8204       | 1                                     |
| 10       | 0.00 | 0                        | 24      | <u>0</u>                                    |                      | #NUM!                                  | 1.437708      | #NUM!                |           | 1 27.4         | 104.8204       | 1                                     |
|          |      |                          | Mug/Pas | Tgo/C                                       | A1/C                 | A2/1/GPa                               | <u>B1</u>     | B2/1/GPa             | C2/C      | <u>C1</u>      |                |                                       |
|          |      | PAO4                     |         | <del></del>                                 | 69.03                | 6.59124                                | 0.07080       | 94.180               | 23.28     | 11.00          |                |                                       |
| 1        |      | iPA                      | 0       | -165                                        | 134.36               | 0.89924                                | 0.09250       | 101.743              | 26.00     | 11.00          |                | · · · · · · · · · · · · · · · · · · · |
|          |      | DOS                      | 10^7    | -89.7                                       | 111.50               | 0.55800                                | 0.21700       | 25.300               | 31.69     | 11.17          |                |                                       |
|          |      | SN50                     | 10^7    | -54.7                                       | 76.77                | 3.34800                                | 0.28200       | 17,47                | 26.59     | 10.96          |                |                                       |
|          |      | PAO4                     | 10^7    | -80.8204                                    | 4452.65              | 0.01152                                | 0.21323       | 20.701               | 32.487    | 11.216         |                |                                       |
| -        |      |                          |         |                                             |                      |                                        |               | ·                    | 11.22     | 32.49          | -80,8204       |                                       |
|          |      |                          |         |                                             | Bridgman             |                                        |               |                      |           | <b>UE</b> U    | 00.0201        |                                       |
| 1        |      | $\eta$ (exp)/ $\eta$     | (WLF)   |                                             |                      | log η (exp)                            | log n (WI F   | 5)                   |           | η (WLF,Pa      | s)             |                                       |
| 1        |      | error                    | T. C    | n/GPa                                       | $\eta$ (exp)         |                                        | mPas          | square err           | 重み        |                | T-TS(p)        | F(p)                                  |
|          | 14.0 | 0.860102                 | 24      |                                             |                      | 1.411081                               |               |                      |           | 1 0.029959     |                |                                       |
|          | 11.8 |                          | 24      |                                             |                      |                                        |               | 0.002342             |           | 1 0.040631     |                |                                       |
|          | 21.4 | 0.786465                 | 24      |                                             |                      |                                        |               | 0.002042             |           | 1 0.085444     |                |                                       |
|          | 30.1 | 1.301361                 | 24      | 0.55                                        | 17.98                |                                        |               | 0.013087             |           | 1 13.8163      |                |                                       |
| 1 3      | 2.1  | 0.978829                 | 24      | 0.33                                        |                      | 5.126456                               |               |                      |           |                | 63.96108       |                                       |
| -        | 21.4 | 0.786095                 | 24      | 1.05                                        |                      | 6.024896                               |               |                      |           | 1 1347.166     |                |                                       |
|          | -9.2 | 1.091802                 | 24      | 1.03                                        |                      | 6.764624                               |               |                      |           |                | 43.67118       | 0.3066                                |
| -        | 8.3  | 0.917219                 | 24      | 1.2                                         | 4886                 | 6.688953                               |               | 0.001408             |           | 1 5326.975     |                |                                       |
| <u> </u> | 11.3 | 1.113073                 | 24      | 1.35                                        |                      | 7.368287                               | 7.321763      |                      |           |                | 36.08623       |                                       |
|          | 11.0 | 1.110070                 |         | 1.00                                        |                      | 7.000207                               | 7.021700      | 0.046635             |           | 20077.00       | 00.00020       | 0.202404                              |
|          |      |                          |         |                                             |                      | ·                                      |               | 0.040003             |           |                |                |                                       |
|          |      |                          |         |                                             |                      |                                        |               |                      |           |                | ··-            |                                       |
|          |      | 1.6                      |         |                                             |                      | L :::::::::::::::::::::::::::::::::::: |               | 8                    |           |                |                |                                       |
|          |      | 1.4                      |         |                                             | ■ PAO4               |                                        |               | 7 : -                |           |                |                |                                       |
|          |      | 1.2                      |         |                                             |                      |                                        |               | 6                    |           |                |                |                                       |
|          |      | S                        | _       | j .                                         | n (WL                | F.mPas)                                | ļi            | 0                    |           |                |                | ļ                                     |
| ļ        | 1    | Pas                      |         | <b>\</b>                                    | .,                   | ,                                      | as            | 5                    |           |                |                | -                                     |
|          | į    | _                        |         |                                             |                      |                                        |               |                      | •         |                |                | ļ ————                                |
|          |      | 2 0.8                    |         |                                             |                      |                                        |               | 4                    |           |                |                |                                       |
| -        | !    | <b>6.0 0.6</b> ⋅ ⋅       |         |                                             | -                    |                                        | m, $\eta$ gol | 3                    | <b>Z</b>  | <del></del> lo | g $\eta$ (WLF) |                                       |
|          |      | 0.6 o                    |         |                                             | M                    |                                        |               | , /                  |           |                |                |                                       |
| F        |      | 0.4                      |         |                                             |                      |                                        |               | 2                    |           |                |                |                                       |
| ļ        |      | 0.2                      |         | 1                                           |                      |                                        | 1.            | 1                    |           |                | AO4            |                                       |
|          |      |                          |         | i i                                         |                      |                                        |               | 0                    |           |                |                |                                       |
| 1        |      | 0 :                      |         | t                                           |                      |                                        | 1             | 0                    | 0.5       |                |                |                                       |
| ł        |      | 0                        | -       | 50                                          | 100                  | 150                                    |               | U                    | 0.5       | 1              | 1.5            |                                       |
| <b> </b> |      |                          | i e     | mperatu                                     | ire, C               |                                        |               |                      | Pres      | ssure,GPa      |                |                                       |
|          |      | CONTRACTOR OF CONTRACTOR |         | and the transport program against some as a |                      | · · · · · · · · · · · · · · · · · · ·  | : :           | entri i ray          | 20 1000   |                |                | remain                                |
|          |      | I                        |         | • • • • • • • • • • • • • • • • • • • •     |                      |                                        |               |                      |           |                |                |                                       |

|               | ,                    | Mug/Pas           |                          | A1/C             | A2/1/GPa             | <u>B1</u>          | B2/1/GPa               | <u>C1</u>      | C2/C                 | Tgo/C                                      |                      |
|---------------|----------------------|-------------------|--------------------------|------------------|----------------------|--------------------|------------------------|----------------|----------------------|--------------------------------------------|----------------------|
|               | ethanol              | 10^7              |                          | 134.36           | 0.899                | 0.092              | 101.743                | 12.75          | 75.09                | -243.896                                   |                      |
|               | etilalioi            |                   |                          | Bridgman         | 0.099                | 0.032              | 101.743                | 12.73          | 75.05                | 243.030                                    |                      |
|               | $\eta$ (exp)/ $\eta$ |                   | »/CD»                    | in Pa.s          | $\log \eta$ (exp)    |                    |                        | <b>=</b>       | $\eta$ (WLF,mF       |                                            |                      |
| 0.5           | error<br>0.995306    | T, C<br>−40       | <u>p/GPa</u><br><u>0</u> | η (exp)          |                      | mPas               | square err<br>4.18E-06 |                | 0.004813             | T-TS(0)<br>203.8957                        |                      |
| 16.1          | 0.838958             | frame or a second | <u>o</u>                 |                  | 0.376577             |                    |                        |                | 0.004813             |                                            |                      |
| 0.4           | 0.996189             |                   | <u>0</u>                 | 0.00178          | 0.25042              | 0.252078           | 2.75E-06               |                |                      | 243.8957                                   |                      |
| -0.8          | 1.008092             | *                 | 0                        |                  |                      |                    | 1.23E-05               |                | 0.001448             |                                            | 1                    |
| -0.1          | 1.001238             | 20<br>30          |                          |                  |                      |                    | 2.89E-07               |                | 0.001189             |                                            | 1                    |
| -1.4<br>0.3   | 1.013711<br>0.997203 | 40                | <u>0</u>                 | 0.001            | 0<br>-0.08355        |                    | 3.5E-05<br>1.48E-06    |                |                      | 273.8957<br>283.8957                       |                      |
| -0.1          | 1.00074              |                   |                          | 0.000701         | -0.15428             |                    | 1.03E-07               |                | 0.000027             |                                            | 1                    |
| 1.2           | 0.987757             | 60                | <u>0</u>                 | 0.000591         | -0.22841             | -0.22306           | 2.86E-05               |                | 0.000598             |                                            | 1                    |
| 2.7           | 0.973141             | 80                | 0                        | 0.000435         | -0.36151             | -0.34969           |                        |                |                      | 323.8957                                   | 1                    |
| 5.1           | 0.949378             |                   |                          |                  | -0.48678             |                    |                        |                | 0.000343             |                                            | 1                    |
| 8.2           | 0.917851<br>0.598812 | 120<br>140        | <u>0</u><br>0            |                  | -0.60555<br>-0.88606 |                    |                        |                | 0.00027<br>0.000217  |                                            | 1                    |
| 70.1          | 0.000012             |                   | <u>×</u>                 | 0,00010          | 0.00000              | 0.00000            | 8.46E-05               |                | 0.000217             | 300.0337                                   | ·                    |
| 100.0         | 0                    | 24                | <u>0</u>                 |                  | #NUM!                | 0.042074           | 1                      | 1              | 1.102                | 267.8957                                   | 1                    |
|               |                      |                   |                          |                  |                      |                    | -                      |                |                      |                                            |                      |
|               |                      | Mug/Pas           | Tgo/C                    | <u>A1/C</u>      | <u>A2/1/GPa</u>      | <u>B1</u>          | B2/1/GPa               | <u>C2/C</u>    | <u>C1</u>            |                                            |                      |
|               |                      |                   |                          |                  |                      |                    |                        | 11.00          | 23.28                | :<br>! · · · · · · · · · · · · · · · · · · |                      |
|               | ethanol              | ^                 | _105                     | 69.03            | 6.59124              | 0.07080            | 94.180                 | 23.28          | 11.00                | :<br>                                      |                      |
| ļ !·          | −pro−alcoho<br>DOS   | 0<br>10^7         | -165<br>-89.7            | 134.36<br>111.50 | 0.89924<br>0.55800   | 0.09250<br>0.21700 | 101.743<br>25.300      | 26.00<br>31.69 | 11.00<br>11.17       |                                            |                      |
|               | SN50                 | 10^7              | -54.7                    | 76.77            | 3.34800              | 0.28200            | 17.47                  | 26.59          | 10.96                | i                                          | <del>   </del>       |
|               | ethanol              | 10^7              | -243.896                 | 329.78           | 0.24331              | 0.03117            | 147.919                | 75.091         | 12.749               |                                            |                      |
|               |                      | <u> </u>          |                          |                  |                      |                    |                        | 12,75          | 75.09                | -243.896                                   |                      |
|               |                      | ethanol           |                          | 156.5249         | 2.29037              | 0.781255           | 10.96346               |                | 5.257523             | 1.907964                                   |                      |
|               | η (exp)/ η           | (MIE)             |                          | Bridgman in Pa.s | log η (exp)          | log n (WI E        | ļ                      |                | η (WLF,Pa            | c)                                         |                      |
|               |                      | T, C              | p/GPa                    |                  |                      |                    | square err             | 重み             | // (**LI ,F a        | T-TS(p)                                    | F(p)                 |
| 9.2           |                      | 24                | 0                        | 0.001            | 0                    | 0.042074           | 0.00177                |                | 0.001102             | 267.8957                                   |                      |
| 12.1          | 0.878816             | 24                |                          |                  |                      |                    | 0.003147               |                |                      | 260.7523                                   |                      |
| -6.1          | 1.06127              |                   |                          |                  |                      |                    | 0.000667               |                |                      | 250.6998                                   |                      |
| -29.2<br>-0.5 | 1.292022<br>1.004639 |                   |                          |                  |                      |                    | 0.012381<br>4.04E-06   |                | 0.004219             | 238./34                                    | 0.873871             |
|               | 1.072067             | 24<br>24          |                          |                  |                      |                    | 0.000913               |                |                      | 221.5618                                   |                      |
| -2.7          | 1.027047             | 24                |                          |                  |                      |                    | 0.000134               | 1              |                      | 212.6206                                   |                      |
| 15.3          | 0.846932             | 24                | 0.88                     | 0.010934         | 1.038779             | 1.110931           | 0.005206               | 1              | 0.01291              | 203.9154                                   | 0.848009             |
| 4.2           | 0.957831             | 24                |                          |                  | 1.312262             |                    |                        |                |                      | 189.6876                                   |                      |
| -8.0          | 1.080098             | 24                | 1.25                     |                  | 1.519434             |                    | 0.00112                |                |                      | 180.3273                                   |                      |
|               | 1.070348             | 24                |                          |                  |                      |                    | 0.000872               | ]              |                      | 171.2253<br>156.5923                       |                      |
| 5.1<br>-7.6   | 0.949332<br>1.076116 | 24<br>24          |                          | 0.079817         | 1.902095<br>2.253401 | 2.221542           | 0.00051<br>0.001015    | 1              | 0.084077<br>0.166549 | 142.581                                    | 0.828527<br>0.824147 |
| 5.6           | 0.94446              | 24                |                          |                  | 2.359162             |                    |                        |                |                      | 135.5239                                   |                      |
|               |                      | 1                 |                          |                  |                      |                    | 0.01074                |                | ļ                    |                                            |                      |
|               | 0.8                  |                   | سمانی ا                  | nol .            |                      |                    |                        |                |                      |                                            |                      |
|               | 0.6                  | <b>\</b>          | ■ ethar                  | 101              |                      |                    | 2                      |                | ````                 |                                            | 1                    |
|               |                      |                   | n (\All                  | LF,mPas)         | 1                    |                    | •                      | $\log \eta$    | (WLF)                |                                            |                      |
|               | 0.4                  | <b>*</b>          | = // (۷۷)                | LI ,IIIF dS)     |                      |                    |                        | • "            | -1                   |                                            |                      |
|               | <u>v</u> 0.2         |                   | 1                        |                  | e                    | ļ                  |                        | ethane         | וס                   |                                            |                      |
|               | ,mPas<br>0<br>0      |                   | No.                      |                  |                      |                    |                        |                |                      |                                            |                      |
|               | Ε˙ ,                 |                   |                          |                  |                      |                    | <b>;</b>               |                | _/                   |                                            | - 1 - E              |
|               | -0.2                 |                   | <b>^</b>                 |                  |                      | , ~                | 1                      |                |                      |                                            |                      |
|               | U −0.2<br>0 −0.4     |                   |                          | ) <b>X</b>       |                      | 2 80               | 0                      | ~ ~/           |                      |                                            |                      |
|               |                      |                   |                          | <b>J</b>         |                      |                    | •                      |                |                      |                                            |                      |
|               | -0.6                 |                   |                          |                  |                      |                    | •                      |                |                      |                                            |                      |
|               | -0.8                 |                   |                          |                  |                      |                    |                        |                |                      |                                            |                      |
|               | -1                   |                   |                          |                  |                      |                    | <b>/</b>               |                |                      |                                            |                      |
|               |                      | 40 -20 0          | 20 40 6                  | 0 80 100         | 120 140              |                    | 0                      |                |                      |                                            |                      |
|               |                      |                   |                          | _                | •                    |                    | 0                      | 0.5            | 1                    |                                            | 1.5                  |
|               |                      | l                 | emperat                  | ure, C           |                      |                    |                        | Pr             | essure,GPa           |                                            |                      |
|               |                      | ·                 |                          |                  |                      |                    |                        |                |                      |                                            |                      |
|               |                      |                   |                          |                  |                      |                    |                        |                |                      |                                            |                      |

|   |             |                      | Mug/Pas  |               | <u>A1/C</u>  | A2/1/GPa          | <u>B1</u>       | B2/1/GPa             |             | <u>C2/C</u>    | Tgo/C                |                                         |
|---|-------------|----------------------|----------|---------------|--------------|-------------------|-----------------|----------------------|-------------|----------------|----------------------|-----------------------------------------|
|   |             | 7373                 | 10^7     |               |              |                   |                 |                      | 10.94       | 23.68          | -61.5858             |                                         |
|   |             | $\eta$ (exp)/ $\eta$ |          |               | in Pa.s      | $\log \eta$ (exp) |                 |                      | = -         | $\eta$ (WLF,mF |                      |                                         |
|   |             | error                | T, C     | p/GPa         | $\eta$ (exp) | mPas              | mPas            | square err           | 重み          |                | T-TS(0)              | F(p)                                    |
|   |             | 0.004570             |          |               | 0.000704     | 4 407075          | 4 40 400 5      | 4.505.05             |             | 0.007004       | or 50533             | =                                       |
|   | 1.5<br>-3.7 | 0.984578<br>1.037129 | 24<br>40 |               | 0.026784     | 1.427875          | 1.434625        | 4.56E-05<br>0.000251 |             | 0.027204       |                      |                                         |
|   | -5.6        | 1.037129             | 70       | <u>0</u><br>0 |              |                   |                 | 0.000251             |             | 0.013548       | 101.5858<br>131.5858 | <u> </u>                                |
|   | -3.2        | 1.031663             | 100      | <u>U</u>      |              |                   |                 | 0.000333             |             |                | 161.5858             | I                                       |
| ļ | 3.4         | 0.965986             | 150      | <u>0</u>      |              |                   |                 | 0.000183             |             |                | 211.5858             | <u> </u>                                |
|   | 5.4         | 0.303300             | . 130    | <u> </u>      | 0.001713     | 0.130142          | 0.103171        | 0.000220             |             | 0.001403       | 211.0000             | · · · - · · · · · · · · · · · · · · · · |
|   |             |                      |          | :             |              |                   |                 | 0.001201             |             |                |                      |                                         |
|   |             |                      | Mug/Pas  | Tgo/C         | A1/C         | A2/1/GPa          | <u>B1</u>       | B2/1/GPa             | C2/C        | <u>C1</u>      |                      |                                         |
|   |             | 7373                 |          |               | 69.03        | 6.59124           | 0.07080         | 94.180               | 23.28       | 11.00          |                      |                                         |
| 1 |             | iPA                  | 0        | -165          | 134.36       | 0.89924           | 0.09250         | 101.743              | 26.00       | 11.00          |                      |                                         |
|   |             | DOS                  | 10^7     | -89.7         | 111.50       | 0.55800           | 0.21700         | 25.300               | 31.69       | 11.17          |                      |                                         |
| l |             | SN50                 | 10^7     | -54.7         | 76.77        | 3.34800           | 0.28200         | 17.47                | 26.59       | 10.96          |                      |                                         |
|   |             | 7373                 | 10^7     | -61.5858      | 49.59        | 2.24680           | 0.08252         | 264.000              | 23.685      | 10.936         |                      |                                         |
|   |             |                      |          |               |              |                   |                 |                      | 10.94       | 23.68          | -61.5858             |                                         |
| 1 |             |                      | 7373     |               | 49.59        | 2.24680           | 0.08252         | 264.000              |             | 5.257523       | 1.907964             |                                         |
|   |             | :                    |          |               |              |                   |                 |                      |             |                |                      |                                         |
|   |             | $\eta$ (exp)/ $\eta$ | (WLF)    |               | in Pa.s      | $\log\eta$ (exp)  |                 |                      |             | η (WLF,Pa      |                      |                                         |
|   |             | error                | T, C     |               | $\eta$ (exp) |                   | mPas            | square err           |             |                |                      | F(p)                                    |
|   |             | 1.254286             | 24       |               |              |                   |                 | 0.009682             |             |                | 85.58577             | 1                                       |
|   | -15.6       | 1.155836             |          | <u>0.01</u>   |              |                   |                 | 0.003956             |             |                | 84.48382             |                                         |
| ļ | 10.2        | 0.897794             |          |               |              | 2.826647          | 2.87347         |                      |             |                | 66.41733             |                                         |
| ļ | -7.6        | 1.076463             |          | 0.52          |              | 4.107549          | 4.07555         |                      |             |                | 47.20178             |                                         |
|   | 1.7         | 0.982906             | 24       | 0.95          | 425          | 5.628389          | 5.635877        | 4                    | 1           | 432.3911       | 28.92643             | 0.54375                                 |
|   |             | 1                    |          |               |              | ,                 | ,               | 0.01691              |             | L              |                      |                                         |
|   | . 1         | .6                   |          |               |              |                   |                 |                      |             |                |                      |                                         |
|   |             |                      |          | ■ 7373        |              |                   | . 6             | T                    |             |                |                      |                                         |
|   | ·           | .4                   | <b>\</b> |               |              |                   |                 |                      |             |                |                      |                                         |
|   | 1           | .2                   | 1        | n (\A         | LF,mPas)     |                   | 5               |                      |             |                |                      |                                         |
|   | တ           | 1                    | _        | // (VV        | LF,IIIFas/   |                   | 4               | :                    |             |                |                      |                                         |
|   | ,mPas       | •                    |          |               |              | : ',——            | og 17, mPas 3 2 |                      |             |                |                      |                                         |
|   | , E (       | ).8                  | <b>\</b> |               |              |                   | E               |                      |             | 1              |                      |                                         |
|   |             | ).6                  |          |               |              |                   | 7,              |                      |             |                | \                    |                                         |
|   | <u> </u>    | 1                    |          |               |              |                   |                 |                      |             | $\log\eta$ (W  | (LF)                 |                                         |
|   | (           | ).4                  |          |               |              | -                 |                 |                      | i           |                |                      |                                         |
|   |             | ).2                  |          |               |              |                   | 1 1             |                      |             |                |                      |                                         |
|   |             |                      |          |               |              |                   |                 |                      |             | <b>7373</b>    |                      |                                         |
| 1 |             | 0 :                  |          |               |              |                   | 0               |                      |             |                |                      |                                         |
|   |             | 0 20                 | 40 60    | 80 100        | 120 140      | )                 | 0               | 0.2                  | 0.4 0       | .6 0.8         | 1                    |                                         |
|   | j           |                      | Tempe    | erature,°C    |              |                   |                 |                      | Pressure, C |                |                      |                                         |
|   |             |                      |          |               |              |                   |                 |                      |             |                |                      |                                         |
|   | -           |                      |          |               |              |                   |                 |                      |             |                |                      |                                         |

| 1        |              |                      | Mug/Pas |                | <u>A1/C</u>    | A2/1/GPa    | <u>B1</u>            | B2/1/GPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>C1</u> | <u>C2/C</u>    | Tgo/C        |          |
|----------|--------------|----------------------|---------|----------------|----------------|-------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|--------------|----------|
|          |              | 7474                 | 10^7    |                |                | 1           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.22     | 27.12          | -105.268     |          |
|          |              | $\eta$ (exp)/ $\eta$ | (WLF)   |                |                |             | $\log \eta$ (WLF     | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | $\eta$ (WLF,mF |              |          |
|          |              | error                | T, C    | p/GPa          | $\eta$ (exp)   | mPas        | mPas                 | square err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 重み        | <u> </u>       | T-TS(0)      | F(p)     |
|          |              |                      |         |                |                |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              |          |
| (        | 0.0          | 1.000014             | 24      | <u>0</u>       | 0.005279       | 0.722552    | 0.722546             | 3.52E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . 1       | 0.005279       | 129.2677     | 1        |
| (        | 0.1          | 0.999336             | 40      | <u>0</u>       |                | 0.541579    |                      | 8.33E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 0.003482       | 145.2677     | 1        |
| (        | 0.0          | 1.000069             | 70      | 0              | 0.001906       | 0.280123    | 0.280093             | 8.9E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                | 175.2677     | 1        |
| (        | 0.0          | 1.000229             | 100     |                |                |             |                      | 9.86E-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                | 205.2677     | 1        |
| 1        | 0.1          | 0.999434             | 150     |                | 0.000714       |             |                      | 6.04E-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                | 255.2677     | 1        |
|          |              |                      |         |                |                | : · · · · · |                      | 1.54E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                |              | ,        |
|          |              |                      |         |                |                | !           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1              |              |          |
|          |              | <u>-</u> :           | Mug/Pas | Tgo/C          | A1/C           | A2/1/GPa    | <u>B1</u>            | B2/1/GPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C2/C      | <u>C1</u>      | <u> </u>     |          |
|          |              | 7474                 |         |                | 69.03          | 6.59124     | 0.07080              | 94.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.28     | 11.00          |              |          |
|          | ·            | iPA                  | 0       | -165           | 134.36         | 0.89924     | 0.09250              | 101.743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.00     | 11.00          |              |          |
|          |              | DOS                  | 10^7    | -89.7          | 111.50         | 0.55800     | 0.21700              | 25.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.69     | 11.17          | L            |          |
|          | <del>;</del> | SN50                 | 10^7    | -5 <b>4</b> .7 | 76.77          | 3.34800     | 0.28200              | 17.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.59     | 10.96          |              |          |
|          |              | 7474                 | 10^7    | -105.268       | 326.31         | 0.16617     | 0.11312              | 175.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.125    | 11.224         |              |          |
|          |              |                      | 19.     | 100.200        | 020.01         | 0.10017     | 0.17012              | 170.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.22     | 27.12          | -105.268     |          |
|          | . ;          |                      | 7474    |                | 326.31         | 0.16617     | 0.11312              | 175.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.66     |                | 1.907964     |          |
| 1        |              |                      | /T/T    |                | Bridgman       |             | 0.11012              | 1/0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | 3.23/323       | 1.807804     |          |
|          |              | $\eta$ (exp)/ $\eta$ | (M/LE)  |                | in Pa.s        |             | log η (WLF           | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | η (WLF,Pa      | 2)           |          |
|          |              |                      | T, C    | n/GPa          | $\eta$ (exp)   |             | mPas                 | square err                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 舌 21      |                |              | F(p)     |
| <u> </u> |              | 1.078204             | 24      |                |                |             |                      | 0.001069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 里の        |                | 127,106      | 0.76424  |
|          | 7.0<br>4.5   | 0.85545              |         | 0.04           |                |             |                      | 0.001069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>1     | 0.016821       | 103.2243     |          |
|          |              | 1.110787             | 24      | 0.5            | 7,006          | 2.614275    | 2.00200              | 0.004398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                |              |          |
| -11      |              |                      | 24      |                |                |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | 7.1985         | 79.10681     |          |
|          | 5.6          | 1.056229             | 24      | 1.25           | 31.07          |             |                      | 0.000564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | 29.41596       |              | 0.38939  |
| ļ        | 5.6          | 0.944005             | 24      | 1.6            | 230.3          | 5.362294    | 5.38/32              | 0.000626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>      | 243.9605       | 52.33806     | 0.361577 |
| L        | ,İ.          |                      |         |                |                |             |                      | 0.00894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                |              |          |
| ļ        |              | 0.8                  |         |                |                |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              |          |
|          | !            | 0.7                  |         |                | 7474           |             | 6                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ;         | :              |              |          |
|          | !            |                      |         |                | 7474           |             | _                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | <b>,</b>     |          |
|          |              | 0.6                  |         |                |                |             | 5                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              |          |
| L        | n.mPas       | 0.5                  |         |                | $\eta$ (WLF,mF | Pas)        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              | 1        |
|          | ۵            | 0.4                  |         | 1              |                |             | ω 4                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |              |          |
|          | Ε.           | 0.3                  |         |                |                |             | log $\eta$ ,mPas 3 5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              | -        |
|          | u            | 0.5                  |         |                | !              | :           | Ē 3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              |          |
|          | Og           | 0.2                  |         |                |                |             | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         | — lo           | gη(WLF)      |          |
|          | 0            | 0.1                  |         |                |                |             | ∞ 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | -              | S // (VILI / |          |
|          |              | 0                    |         |                |                |             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                |              |          |
|          |              | -0.1                 |         |                |                |             | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | 174          |          |
| L        |              | -0.2                 |         |                |                | 78          | '                    | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | <b>9</b> /4    | 1/4          |          |
|          |              |                      | 00 40   | 00 00          | 100 100        | 140         | 0                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                | T            |          |
| "        |              | 0                    | 20 40   | 60 80          | 100 120        | 140         |                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                |              | _        |
|          |              |                      | _       |                | °0             |             | • • • (              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .5        |                | 1.5          | 2        |
|          |              |                      | l er    | mperatu        | re, C          | ļ           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Press     | sure,GPa       |              |          |
| T        |              |                      |         |                |                |             |                      | Market Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the |           |                |              |          |