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Executive Summary

The development of information technology has increased the availability of documents
in digital format. These documents can be stored in databases and can be accessed
through the Web or offline. Since the information is always disorganized, users are always
overwhelmed by a lot of information, most of which is irrelevant. In order to mitigate
this problem electronic information need to be indexed and organized in databases. Text
classification (TC) is one of the powerful tools for organizing electronic documents. There
are numerous other applications for TC. Examples include spam filtering, automated
cataloging, word sense disambiguation, and automated survey coding.

While achievement in text classification has been reported, the performance of classi-
fication systems is far from satisfactory. In the context of TC a researcher may wish to
address various research problems in the process of modeling texts for improved classifi-
cation performance. Examples of problems include variation in text length, asymmetry
sample distribution, high-dimensional feature space and under-sampled problems. All
these hinder the process of machine learning in text classification.

Generally, the objective of this research was to find out ways that would improve
classification performance using various statistical techniques and representation of doc-
uments. This should go along with extracting more discriminative information from
textual data to compose the features. Furthermore, since automatic text classification
faces a problem of high-dimensional feature space, it was important therefore to provide
solutions to reduce the dimensionality along with improving the performance of classifiers.
Another objective was to improve learning ability of the classifiers by applying discrimi-
nant analysis methods which simultaneously reduce the dimensionality and extract more
informative features to improve the separability of textual data. In short, Chapter 1 of
this dissertation describes my research motivation and the objectives. Based on the above
objectives the author presents the scientific contributions that lead to improved machine
learning in text classification.

Chapter 2 starts by reviewing the literature on machine learning methods that have
been proposed and applied to TC. Then the proposed methods for improving machine
learning methods are described. In particular, the normalized-weighted metric (NWM)
for k nearest neighbor method (kNN) and a posteriori probability (PPD) obtained from

distance based learning (DBL) methods are proposed. Experimental results show that

XV
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NWM improved the performance of kNN. Empirical results also show that PPD is better
than distance based classifiers in text classification. The performance measures for the
learning methods are also described.

Chapter 3 presents the details of the contributions based on feature transformation. In
particular, it shows that relative frequency with power transformation (RFPT) is better
than classical features such as term frequency weighted by inverse document frequency
(TFIDF). The transformation of TFIDF also was studied. Experiments were performed
using the benchmark text collections. It turns out that the feature transformation pro-
posed in this chapter outperforms its counterparts. The improvements are statistically
significant. Furthermore, the contribution of feature transformation on OCR-based doc-
ument classification is presented. Although OCR texts are noisy, RFPT proved to be
very robust such that classification performance is enormously improved.

Chapter 4 deals with feature selection and reduction methods. First, the conven-
tional methods for feature reduction are briefly described. Second, the contributions of
this study on feature reduction are presented. There is further discussions on theoretical
and experimental studies proposed on dimensionality reduction. Specifically the author
studied the combination of the principal component analysis (PCA) and canonical dis-
criminant analysis (CDA). Since text classification involves multi-label data, a solution
that extends the PCA+CDA algorithm is provided. Also an integrated discriminant
analysis (IDA) technique is proposed. Discriminant analysis methods simultaneously re-
duce the dimensionality and maximize discriminating power for classification. Multi-label
learning tasks are tackled by IDA in a similar way as in the PCA+CDA algorithm. Based
on classification effectiveness and the statistical analysis of significance, it was found that
IDA outperformed its counterparts in the comparative study.

Chapter 5 proposes feature integration (FI) which further improves the classification
performance. The improvements come due to the increased learning ability by the classi-
fiers emanating from the discriminating power of the integrated features. The improved
classification effectiveness is validated by statistical analysis. Chapter 5 also introduces
a contribution based on multiple features and multi-classifier combination (MCC). Un-
like the conventional methods of MCC, we used various features which were separately
fed to various classifiers then combined their decisions by majority vote rule. Since this
process involves the combination of the features and classifiers, it can be called multiple
feature-classifier combination (MFC).

In Chapter 6, the author draws conclusions derived from the empirical results. He
then summarizes the main contributions of this work. Based on performance evaluation
using classification effectiveness and statistical analysis of improvements, it is argued that
the proposed methods are suitable to use in machine learning for automated text classifi-
cation. Future research possibilities are given in the same chapter. These mainly outline

the open research problems which require further research to improve the effectiveness of
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Chapter 1

Introduction

1.1 Background

The development of information technology has increased the availability of documents
in digital format [82]. These documents can be stored in databases and be accessed on
the Web. Since the information is always disorganized, users are always overwhelmed
by a lot of information most of which is irrelevant [9]. In order to mitigate this problem
electronic information needs to be indexed and organized in databases. Text classification
(TC) is one of the powerful tools for organizing electronic documents.

TC tasks date back to the early 60’s. Until the early 90s, it became a major subfield
of information systems. Recently it is being applied in different tasks ranging from
automated survey coding, document indexing to organizing web pages [41, 82|.

The earlier approach of TC is known as knowledge engineering (KE) which involves
defining a set of classification rules manually. The disadvantages of this approach include

the following:
(i). it needs intervention from knowledge engineers or domain experts.
(ii). it is time consuming.

(iii). Third, it can be very tedious and inconsistency can arise as the set of rules gets

large.

The recent approach is to use the machine learning (ML) techniques. This approach has

two main advantages:

(i). the classifiers are automatically learned by providing examples to the classification

systems; and

(ii). it is less costly in the long run.
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In general text classification can be considered as a task of categorizing documents
according to predefined categories. Automated Text Classification (ATC) is the task of
automatically assigning a set of documents to appropriate categories (or classes, or topics)
[82, 49]. Other names for ATC include Automatic Text Categorization or Automatic
Topic Spotting. ATC can simply be called Text Classification. Therefore it is noted that
text classification (TC) also means ATC in this dissertation. In general terms, ATC is at
the crossroad of information retrieval (IR) and machine learning (ML) disciplines.

Sebastiani [82] argues that researchers on the side of IR, are interested in one particular
aspect of a general movement towards leveraging user data for controlling the inherent
subjectivity of the IR task, i.e. establishing the fact that it is the user, and only the user,
who can say whether a given item of information is relevant to a query s/he has issued
to a Web search engine, or to her/his private folder in which documents are filed.

Wherever there are predefined classes, documents that are manually classified by the
user are often available. As a consequence, this data can be exploited for automatically
learning the (extensional) meaning that the user attributes to the classes, thereby reaching
levels of classification accuracy that would be unthinkable if this data were unavailable.

ML researchers are interested in ATC due to the fact that IR applications are challeng-
ing benchmarks for their techniques and methodologies. This is because IR applications
usually feature extremely high dimensional feature spaces and involve truckloads of data.
ML researchers therefore are adopting TC as one of their benchmark application. This
means that cutting-edge ML techniques are being incorporated into T'C from their original
purpose.

Various machine learning techniques have been proposed and applied to TC. These in-
clude probabilistic methods such as Bayesian classifiers [26, 40, 61]; decision tree methods
such as C4.5 in [26, 40, 41]; regression methods [94]; instance-based methods such as k
nearest neighbor (kNN) [41, 85, 96]; support vector machines (SVMs) 26, 40, 41, 61]; and
classifier committees (ensembles) [5, 33, 52]. This work studies distance based learning
(DBL) methods. Furthermore it proposes methods to improve kNN and DBL methods.

Most of the ML methods have used the conventional way of representing documents.
The classic way of representing texts by the use of term frequency weighted by inverse
document frequency (TFIDF). Furthermore there are various methods for feature selec-
tion and reduction. State of the art in feature selection and reduction is discussed in
Chapter 4.

While a practical achievement has been reported in the literature, the performance
of text classification is still far from satisfactory. This work therefore proposes various
methods to improve automated text classification. In contrast to the way of representing
documents this work proposes the use of relative frequency with power transformation
(RFPT). Furthermore this work proposes various methods for feature reduction and pro-

poses methods which prove to be effective in improving the learning process that lead to
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better classification performance. Also, we propose a novel technique for feature integra-

tion. An overview of the contributions of this work are presented in Section 1.5

1.2 Overview of Text Classification

In this section the overview of the text classification process is provided. In general
there are four steps in automated text classification. These include: feature generation,
feature reduction, learning or training the classifier and classification. Each step is briefly

introduced below.

(i). Feature Generation

The importance of generating features is to represent textual data in such a way
that the learning algorithm can recognize them easily. There are various ways of
generating features from textual data. The vector model approach is commonly
used. The most commonly used vector model method involves the use of words or
terms. The literature shows that terms are the most used and probably have proved
to be the most effective way to generate features. In other words every document is
converted into word tokens which form the feature vector. More complicated rep-
resentations do not lead to better classification effectiveness [2, 26] which confirms

similar results in information retrieval [80].

The following example illustrates document representation using the feature vector
model. Assume that the feature vectors are defined as x = [zy,...,1,]T, where
x; is the term frequency in every vector formed from each document. Assume the
following items represent a text collection.

(a) Artificial intelligence subfields

(b) Pattern recognition

(c) There are other examples. There are many examples

The following is the vocabulary list (also known as lexicon) for this example.

‘ are, artificial, examples, intelligence, many, other, pattern, subfields, recognition, there

From this vocabulary list we can obtain feature vectors as follows:
(a) [0,1,0,1,0,0,0,1,0,0]T
(b) [0,0,0,0,0,0,1,0,1,0]7

(c) [2,0,2,0,1,1,0,0,0,2]7

Conventionally, after generating features, term weighting is performed. In this work,

instead of term weighting, feature transformation is carried out. A comparative
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study shows that feature transformation is better than conventional term weighting.

Chapter 3 gives further details on feature generation and transformation.

(ii). Feature Reduction

It is common practice not to use all the terms found in the collection. The rea-
sons for feature reduction include improved computational speed and sometimes
improved classification performance. In the literature there are various methods for
feature reduction. Examples include document frequency [97], mutual information
(82, 97, 93] and principal component analysis (PCA) [7, 24, 32]. Chapter 4 gives

more details on these methods.

(ili). Learning

The objective of learning is to extract information from available document exam-
ples so that the classifier can later classify unseen documents. There are various

methods for learning. Chapter 2 reviews and introduces the learning methods.

(iv). Classification

The task of assigning the unseen documents to various labels is what is referred to
as classification or categorization. After learning the system is expected to be able
to classify unseen textual data automatically. Depending on the need and on the
system classification can be offline or on-line. In the classification experiments the

offline approach was used.

1.3 The Organization of This Dissertation

The organization of this dissertation is as follows. The proceeding section 1.4 presents the
motivation for the research in general. The importance of the findings are given in Section
1.4.1. The author briefly describes the application of text classification in Section 1.4.2.
The description of the research problem is presented in Section 1.4.3. The objectives are
stated in Section 1.4.4.

Chapter 2 starts by reviewing the literature on machine learning methods that have
been proposed and applied to text classification (TC). Then the proposed methods for
improving machine learning methods are described. In particular, normalized-weight
metric (NWM) for k nearest neighbor method (kKNN) and a posterior: probability based
on distance learning (DBL) methods are proposed. The performance measures for the
learning methods are described in 2.5.1.

Chapter 3 goes into the details of the contributions based on feature transformation.
Particularly it shows that relative frequency with power transformation (RFPT) is better

than the classical method of representing documents using term frequency weighted by
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inverse document frequency (TFIDF). The transformation of TFIDF was also studied.
It is apparent that the feature transformation proposed in this chapter outperformed its
counterparts. Section 3.6 presents the impact of feature transformation on OCR-based
document classification.

Chapter 4 deals with feature selection and reduction methods. First, the conven-
tional methods for feature reduction are briefly described. Second, the contributions of
this study on feature reduction are presented. Chapter 4 also includes a discussion on the-
oretical and experimental studies for proposed dimensionality reduction methods. Specif-
ically we studied the combination of principal component analysis (PCA) and canonical
discriminant analysis (CDA). Also an integrated discriminant analysis (IDA) technique is
proposed in 4.3.2. It was found that IDA outperforms its counterparts in the comparative
study.

Chapter 5 proposes feature integration (FI) which further improves the classification
performance. The improvements come due to the increased learning ability by the classi-
fiers emanating from the discriminating power of the integrated features. Chapter 5 also
proposes a technique namely feature-classifier combination which achieved the highest
classification performance.

In Chapter 6 the author draws conclusions derived from the empirical results. He
then summarizes the main contributions of this work. Future research possibilities are
given in the same chapter. These mainly outline the open research problems which call

for further research to improve the classification effectiveness.

1.4 Motivation for the Research

1.4.1 Importance of Text Classification Research

In recent years there has been increased availability of digital documents stored in-house
or on line. For example, some researchers have argued that a lot of scientific litera-
ture is available on the Internet but it is disorganized [9, 72]. Increased availability of
the information creates a need for flexible and convenient access [82]. Automated text
classification that involves the activity of labeling natural language texts with thematic
categories is important in developing retrieval systems. Much of the work of organizing
documents therefore can be automated through text classification.

Also, the importance of automated text categorization lies in the fact that it frees
organizations from the need to manually organize document databases, which can be
expensive and not feasible in terms of time constraints.

In addition, the findings have a role of increasing the literature base and information
access for various purposes such as for research and other developmental programs. It is

argued that information usage increases when access is more convenient. Maximizing the
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usage of scientific literature benefits the whole society [55].
Another viewpoint of the importance of this study is the applications of the findings
in general. We devote Section 1.4.2 to describe various applications of ATC. It is clear

that a number of fields and daily activities use ATC.

1.4.2 Applications of Text Classification

The importance of this research work can be viewed in terms of its applications. In this
Section various applications of automated text classification are introduced. There are
number of applications of text categorization. It is importance to have techniques that

give the best possible performance. The following are a few examples.

1.4.2.1 Information Retrieval

Efficient and effective information retrieval (IR) is very important in information systems.
Similar information will always tend to be relevant to similar queries [18]. Once similar
information is grouped together the retrieval process can be improved in terms of efficiency
and effectiveness. The activity of grouping textual information for retrieval can be carried
out using TC techniques. ATC improves the performance of the process of information
retrieval [50].

1.4.2.2 Automatic Indexing

Automatic indexing can be defined as the assignment of content identifiers by the aid of

modern computing equipment. The advantages of automatic indexing include:

e the high possibility of maintenance of consistent indexes;
e index entries are generated at lower cost in the long run;
e a reduction of indexing time can be reduced; and

e achievement of an improved retrieval effectiveness [18, 79].

Automatic indexing is essential in tools such as search engines. Web search engines
collect information from the web and automatically index such information and store it
in databases to facilitate fast information retrieval (IR). The indexed information is used
in the search process when the user supplies a query [4].

Automatic document indexing for IR systems can rely on a controlled dictionary
[8, 82]. Each document is assigned one or more keywords or phrases describing its content.
The keywords and phrases form a finite set called controlled dictionary or vocabulary.
A good example of this can be the medical subject heading (MeSH) in the discipline of
medicine. One can view the controlled vocabulary or identifiers as categories. Therefore

TC can be applied in the process of indexing.
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1.4.2.3 Document Organization

Document organization can be considered to be a general area of ATC application. Text
classification can be used in organizing documents whether online or offline. If there is a
set of categories, incoming documents can be filed to an appropriate category automat-
ically. For example organizing patents into related disciplines [51]. Automatic grouping

of newspaper articles can be seen as part of the document organization process, too.

1.4.2.4 Automated Cataloging and Metadata Generation

A catalog is a key to a library’s collection as each catalog entry contains the bibliographic
details of a particular document. It is an organized list of documents in a library with
entries representing the documents arranged for access in some systematic order. The
catalog is important since it enables a user to find a book or any form of a document in
a library [18].

In traditional librarianship cataloging and classification of library materials is done
by trained individuals manually. This can be tedious and laborious. By employing text
classification techniques these tasks can be done automatically [37]. In digital libraries,
documents can be tagged by metadata such as creation date, document type or format

and availability. Manual cataloging of Internet resources is not feasible.

1.4.2.5 Information Filtering

With the development of the web, filtering electronic information has become an impor-
tant task. Examples are the filtering of pornography and junk e-mail (spam). Internet
users are facing these problems as they use the Web. This task can be tackled as an ATC
problem.

The problem of junk email is growing daily. Siefkes [17, 84] argues that spam is
ubiquitous and is one of the most annoying things on the Web. Spam filtering is one
of the important applications of text classification. Text classification can play a big
role in solving the problem. The learning system can be provided with the information

incrementally which can be learned to filter any spam information.

1.4.2.6 Hierarchical Categorization of Web Pages

Categorized Web pages may be useful to users. One can find it easier to navigate to a
hierarchy of categories and restrict the search to a particular category of interest. The
advantages of automatically categorizing/classifying Web pages has advantages such as
removing the infeasibility of doing it manually. A number of authors have shown that
ATC can be used in this task [14, 25, 68, 82].
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1.4.2.7 Word Sense Disambiguation

In natural language many words can have several meaning or senses [66]. Such words
lead to ambiguity if interpreted out of context. For example the word ’light’ may mean
not very heavy or not very dark.

Word sense disambiguation (WSD) is the task of determining which of the senses of
an ambiguous word is invoked in a particular context. WSD can be framed as a multi-
class text classification task. A number of authors have explored this task [27, 39, 73].
According to Escudero et al. [27], we can view word occurrence contexts as documents
and word senses as categories.

It is argued that WSD can be treated as a single-label TC case. One can consider that
WD is just one example of solving natural language ambiguities. Other examples include
context-sensitive spelling correction, prepositional phrase attachment, speech tagging and

word choice selection in machine translation [78, 82].

1.4.2.8 Automated Survey Coding

Survey coding can be defined as the task of assigning a symbolic code to an answer given
by respondents. The codes are taken from a set of predefined codes and questionnaires
are usually used in getting responses from the participants. Open ended questions can
be used in questionnaires. The applications of survey coding include classification of
respondents in order to extract statistics on politics, customer satisfaction and life style
habits.

Survey coding is one of the good applications of text classification [35]. The task of
automating survey coding can be done using text classification techniques. The set of all
answers to a given question are represented as documents. The set of all possible codes
that may be attributed to an answer to a question represent the set of categories. There-
fore the task corresponds to that of TC. Classifiers are automatically built using machine
learning techniques and association between answers and codes (categories) is done. This
can be easily done when precoded answers used in the training set are available. Then
new answers can be automatically associated (coded) by using the examples provided to

the system in the training phase.

1.4.3 Research Problem

Although achievement in text classification has been reported, the performance of clas-
sification systems is far from satisfactory. Text classification tasks are characterized by
natural languages (NL). This means TC is closely linked to natural language process-
ing (NLP) which needs knowledge on its subject matter. In general NL reveals a lot of

syntactic and semantic ambiguities as well as complexities [66]. In the context of TC a



1.4 Motivation for the Research, Busagala’s Ph.D. Dissertation 9

researcher may wish to address various problems arising from document properties in the

process of modeling texts; or else problems emanating from the learning algorithms. The

following sections provide ideas on research problems.

1.4.3.1 Problems Emanating From Textual Data

(1).

Variation in Text Length

In practice, textual data vary in content and length. It is common to have very
short, medium length or very long documents in a collection. This can have a neg-
ative impact in representing textual information for classification. This is because
the words contained in the documents are usually used in document representation.

Short documents have fewer words and long ones have more words.

Term or word frequency are conventionally used to represent documents in classi-
fication systems. Absolute word frequency has the drawback of depending on text
length leading into lower classification performance. This is because text length
may differ within the same class of documents leading to difficulties in the learning
process {12, 10, 82].

The problem of variation in text length has been conventionally tackled by nor-
malizing the feature vectors using the concept of the unit length of a vector. This
has been applied to term frequency (TF) weighted by inverse document frequency
(IDF) which is abbreviated as TFIDF. Examples can be found in [40, 41, 56, 82,
85, 95, 100].

While this kind of normalization can partially solve the problem, theoretical analysis
have pointed out that TFIDF is basically suited for information retrieval problems
[43, 77](see Section 3.1).

Therefore we propose the use of feature transformation techniques which include
normalizing absolute word frequency to relative word frequency (RF) and power
transformation (PT). When RF is transformed using PT we abbreviate the name
of these features as RFPT. This was essentially studied in comparison with conven-

tional methods.

. Asymmetric Sample Distribution

Sample distribution of real world data may be skewed. This is especially true when
one deals with texts. This is undesirable particularly for parametric classifiers
such as linear or quadratic classifiers which are typically designed for Gaussian
distributions. TFIDF do not take care of sample distribution leaving it at a risk of

being skewed.
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(ii).

This skewness can lead to classification errors by the classification systems. Conven-
tional methods of representing texts always ignore the fact of skewness. We provide
a remedy in Section 3.3. Results of the experiments show that RFPT improves the

symmetry of sample distribution, leading to higher classification effectiveness.

High-Dimensional Feature Space

Extremely high-dimensional feature spaces and large volumes of data problems oc-
cur in automatic text classification. High dimensionality problems arise because
the number of words used in the classification process increases along with dimen-
sionality of the feature vectors [12, 10, 41, 82]. Practical examples show that the

number of features consisting the dimensionality could amount to thousands.

In order to solve this problem the feature vector dimensionality is required to be
reduced without degradation of classification performance. It was important to ex-
tract the features with high discriminating power using various techniques. Chapter

4 treats this problem in detail.

. Frequency Distribution of Words

The frequency distribution of words in text collection can give an insight on what
kind of words should be included in the classification process. It has been argued
that frequency distribution of words follow what is called Zipf’s law [101]. His law
states that given a (large) corpus of natural language, the frequency of occurrence
of any word is inversely proportional to its rank/position in the word list. More
formally, let z; denote word frequency of a word i and r be the rank of that word

(position of the word in the list). Zipf’s law gives the reciprocal relationship as

1
x; o< — or if there exists a constant k then z;r = k. (1.1)
T

Mandelbrot [65] however noted that Zipf’s law is not good in reflecting details. He

therefore provides a “generalized” relationship between rank and word frequency
z;=c(r+s)° or logz; = logec — blog(r + s), (1.2)

where ¢, s and b are parameters of a text that measures the richness of the text’s
use of words. Experimental study to verify these formulae have been done by a
number of authors [41, 66]. It is apparent that the Mandelbrot formula provides
the better fit than Zipf’s law.

The implication of these laws is that a small number of words occurs very fre-
quently, while most words occur very infrequently. This concept is important in

feature selection. Words that occur very frequently, such as articles, can occur in
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every document — hindering separability of documents according to their categories.
Furthermore the use of all words in the text collection may increase the complexities
in machine learning due to the curse of dimensionality. Therefore only words that
can provide high performance are preferable. In the experiments therefore words
that occur very frequently are usually removed. This was achieved by the use of a

stop word list.

(v). Under-sampled Data

Due to high-dimensional feature space, the size of the training sample may always
be smaller than its dimensionality. This hinders the application of the classical
discriminant analysis (DA) [12, 13, 11, 24, 32]. In chapter 4 we provide a remedy
to this problem.

(vi). Imbalanced Sample Size

In text classification, binary classification tasks are common. This involves the class
of interest (positive class) and the rest of training data (negative class). The TC
learning tasks are always featured with smaller training sample sizes particularly
in the positive class. The performance of learning systems is usually influenced by
the class sample size imbalance in which samples in the data belonging to one class
heavily outnumber the examples in the other [3, 47, 53, 54]. Consequently, the

number of errors can be high.

1.4.3.2 Problems Emanating From the Learning Algorithms

(i). Weakness of learning algorithms can be in obtaining enough information for decision
making. For example the Euclidean distance algorithm uses only the vector mean
of a class in obtaining information for making classification decisions. The class
mean vector may easily be affected by outliers. As such it can make a lot of errors
in classification. Furthermore the class mean vector alone does not give enough
information of the distribution of a sample. Another example is when one considers
the classical k nearest neighbor (kKNN) method. The classical kNN gives equal
weight to all examples regardless of distance or similarity value. This can lead to

errors especially when furthest data points outnumber the closest.

(ii). Learning algorithms can be numerically unstable. For example, the classical linear
discriminant function can usually face the singularity problem when the sample
size is smaller than the dimensionality. This is because it requires the inverse of the

within-class matrix which may not exist in practice.

With the aim of solving these problems above, various techniques are proposed and

experiments were carried out to verify their effectiveness.
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1.4.4 Objectives

In general, the objective of this research was to find out ways that would improve classifi-
cation performance using various statistical techniques and representation of documents.
This should go along with improving separability of textual data.

Specifically, problems presented in Section 1.4.3 were tackled to improve classification
performance. In other words, we had to provide a way of avoiding variation in text
length per document. Therefore, normalizing absolute word frequency to relative word
frequency and power transformation techniques are proposed in this research work.

In particularly, improvement in text classification was found by the use relative fre-
quency with power transformation (RFPT). The goal of using RFPT is to avoid variation
in text length and to improve the sample distribution by removing the skewness and nor-
malizing the kurtosis. In other words, RFPT seeks to represent documents such that
their distributions are in a Gaussian-like form.

Furthermore, since automatic text classification faces a high dimensional feature space,
it was important therefore to provide solutions to reduce the dimensionality along with
improving the performance of classifiers.

Another objective was to apply discriminant analysis methods which simultaneously
reduce the dimensionality and improve the separability of textual data. Finally, it was

an aim to improve learning algorithms in regard to the problems presented in this work.

1.5 Scientific Contributions

In this Section, we outline the scientific contributions as a consequence of this study.
This work proposes various techniques for improving automated text classification. The
following items summarize the general contributions that lead to improved machine learn-

ing.
(). Text Representation by Transformed Features

The traditional way of representing textual data is by the use of term frequency
weighted by inverse document frequency (TFIDF). In contrast, we propose the
relative term frequency with power transformation RFPT in Chapter 3. Empirical
results and statistical analysis show that RFPT is better than TFIDF. Furthermore
we employed power transformation on TFIDF, and we refer to it as TFIDF+PT.
Empirical results show that TFIDF+PT outperforms conventional TFIDF.

(ii). Empirical Study with OCR-based Texts

Optical character recognition (OCR) is applied in various areas in daily life. OCR-
based texts are full of errors and so the conventional methods are not effective

enough. In this work the proposed RFPT was applied to these kinds of data and
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(i)

empirical results show that RFPT is suitable to use in this context. Section 3.6 is
the topic of this contribution. The experimental study with noisy data shows that

RFPT is robust regardless of the use of error-prone OCR texts.

Feature Reduction

Chapter 4 proposes various methods for dimensionality reduction. In the first place
we experimentally studied principal component analysis (PCA) which is not com-
mon in ATC. We noted setbacks in the PCA method and experimentally studied

the canonical discriminant analysis.

However we noted that due to the reason described in Section 1.4.3(v), CDA can’t
be a good choice for ATC. Therefore we studied the PCA+CDA algorithm. The
classical CDA can’t handle multi-label problems. Since ATC can involve multi-
label data, we extended CDA and the PCA+CDA algorithms to handle multi-label

learning tasks.

. Integrated Discriminant Analysis (IDA)

In Chapter 4, we further propose an integrated discriminant analysis (IDA) which
outperforms its counterparts. The multi-label setting is tackled in a similar way
as with the PCA+CDA algorithm. A comparative study was also carried out. Fi-
nally, we conclude that IDA increased the learning ability of various methods. This
conclusion is based on the improved classification effectiveness and the statistical

significance of the improvements.

. Normalized-weighted metric for k Nearest Neighbor (kNN)

This work proposes a method called normalized-weighted metric (NWM) for the
kNN learning method or simply the kNN classifier. As it will become clear in the
following chapters, NWM improves the performance of kNN. We describe NWM in
2.4.1.

i). Distance Based Learning Methods (DBL)

To the best of our knowledge DBL methods studied in this work are not seen in
the TC literature. Therefore DBL were experimentally evaluated as a preliminary
study in 2.3.1.

Furthermore we propose the use of a posteriori probability (PPD) based on DBL
methods in 2.4.2. An empirical study shows that PPD is far better than the use of

distance classifiers in text classification.
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(vii). Feature Integration

Chapter 5 presents another contribution. It proposes a feature integration (FI)
technique that generates composite features with higher discriminating power. Ex-

perimental results show that FI improves the performance of ATC.

(viii). Multiple Feature-Classifier Combination (MFC)

Chapter 5 also introduces a contribution based on multiple features and multi-
classifier combination (MCC). Unlike the conventional methods of MCC, we used
various features which were separately fed to various classifiers and then combined

their decisions by majority vote rule.

Based on these contributions, Chapter 6 provides concluding remarks. Furthermore
it outlines the open research problems which provide further areas for investigation to

achieve further ATC improvements.

1.6 Summary of the Introduction

In this chapter, we have seen that in TC, there are knowledge engineering (KE) and
machine learning (ML) approaches. The ML approach is the subject of this study and
it is also called automated text classification (ATC). However both TC and ATC will be
used inter-changeably in this document.

In Section 1.2, the author gives a brief overview of the text classification process. The
motivation for the research in 1.4 is based on the elements of research problem, objectives
and the importance of TC in general. The importance includes the numerous applications
of TC presented in Section 1.4.2. The organization of this dissertation is presented in 1.3
which briefly describes the topics for each chapter.

We have also outlined a number of contributions by this work in Section 1.5. These
contributions are discussed in detail in the chapters to follow. We describe these tech-

niques in detail meanwhile introducing the contributions in the rest of the chapters.



Chapter 2

Learning Methods

2.1 Introduction

In general there are two approaches to text classification. These are the knowledge
engineering (KE) and machine learning (ML) [82]. The knowledge engineering approach
involves defining a set of rules encoding from expert’s knowledge on how to classify
documents under a given set of categories. This approach was popular until late in the
80s. Manually defined sets of rules are common in KE. For example one rule can be
defined as:

I(DNF formula) then (category).

A DNF (disjunctive normal form) formula is a disjunction of conjunctive clauses; the
document is classified under category if and only if it satisfies the formula, that is, if
and only if it satisfies at least one of the clauses. The most popular example is the
CONSTRUE system [19], developed by the Carnegie Group for Reuters news agency.

The main disadvantage of the KE approach is the need for intervention from knowledge
engineers or domain experts. If the set of classes is updated professionals should intervene
again, and if these rules are taken to different domains the work must again begin from
scratch. So it does not free organizations from the need for human expert interventions.
Therefore, it can be quite constraining in terms of cost and time [82].

The ML approach has been popular since the early 90s. It involves building a classifier
through learning a classification scheme from labeled training examples [24]. This refers
to supervised learning since the learning happens from examples of categorized datasets.
Unsupervised learning or clustering does not need manually labeled examples. The system
forms clusters or groups or classes that are dependent on the algorithm in use.

The advantages of the ML approach are higher effectiveness comparable to those
achieved by human experts; it saves expert labor power and time, because there are no

human expert interventions every time the classification task has to be carried out; and

15
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it is portable to different domain applications. It is portable in the sense that if it is
given examples from different domains, it automatically learns from those examples and
easily classifies unseen documents [82]. Unsupervised machine learning seems to be rare
in automatic text categorization research. Possibly this area can be a challenging task to
be carried out in the near future leading to organizations being freed in making examples.

In this chapter, machine learning methods are introduced. The first aim of the chapter
is to present the state of the art in the literature on machine learning methods. This
is mainly the objective of Section 2.2. The second aim is presented in Section 2.3. In
particular we introduce learning methods which are not common in TC literature. In
the same section we shall further describe proposed learning methods which improve the

classification performance of the conventional ones.

2.2 Popular Learning Methods

2.2.1 Multinomial Naive Bayesian Classifier

In this section we present Bayesian classifiers which are popular in the TC literature
[26, 40, 41, 45, 61, 59]. In general there are two event probabilistic models which are
common. The first one is the multivariate Bernoulli event model. The second is the
multinomial event model [45].

The multinomial model is usually referred to as multinomial naive Bayes (MNB). This
has been reported to outperform the multivariate one [45, 67]. We give a brief review
of MNB below. Further details of the multivariate model can be found in references
provided.

MNB classifier finds a posterior: probability P(w;|x,) that document x, belongs to
class w;. Let

Pluy) = 32 (2.)
be a prior: probability that a document x;, belongs to class w; such that NV; is the number
of documents in class w; and N is the total number of all documents in a collection.

The multinomial naive Bayes assigns a test document x; to a class that has the

maximum P(w;|x;) using Bayes’ rule which is given as

Plw;) P(xilw;)
S Plw;) P(xkwy)

P(wj|xx) = (2.2)
P(xi|w;) is the probability of observing a document xy in class w;.

The estimation of P(x|w;) in (2.2) is difficult in practice, because the the number
of possible document vectors x; can be too large. Also it is almost impossible to collect

enough training samples without prior knowledge or assumptions. Therefore it is common
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to assume that any two coordinates of the document vector are statistically independent

of each other [41, 82]. This assumption leads us to an equation written as

n

i=1
where z; ranges over the sequence of words in document x; and n is the number of words
in document x;. The approximation of P(xy|w) is reduced to estimating each P(x;|w;).

The probability
1+ TF(iL'i, {.dj)

n+ 3 iy TF(zi,w;5)

is estimated from the training documents. Where T F(x;,w;) is the count of the word z;

in all training documents belonging to class w;. The Laplace estimator is employed to

add one to each word frequency to avoid the zero-frequency problem [40, 41, 45].

2.2.2 Decision Tree Learning Methods

Decision tree learners (DTL) are symbolic algorithms which use a tree in which internal
nodes are labeled with terms. The branches attached to the nodes are labeled by tests on
the weight that the term has in the unseen document x;. The leaves have category labels.
DTLs classify a test document xj by recursively testing for the weights that the terms
labeling the internal nodes have in vector x, until a leaf node is reached. Then the label
of such a node is assigned to xi. Most of DTLs use binary document representations and

as a result they consist of binary trees [82].

One of the most common DTL algorithms is the C4.5 [19, 26, 40, 41, 60, 75, 82]. It
outputs confidence values when classifying new examples. The output values are used to

obtain recall/precision tables. Further details can be found in references provided.

2.2.8 Support Vector Machines

The support vector machine is a machine learning method which has attracted attention
since the second half of the 1990s. The SVM is one of the linear classifiers that use linear
boundaries with margins such that the data from two categories are separated by the
hyperplane with the largest margins. In other words, a support vector machine consists of
finding the optimal hyperplane which is the one with maximum distance from the nearest

training data. The support vectors are those patterns nearest from the hyperplane [24].

Fig. 2.1 illustrates the decision boundary of two categories. SVM can be extended to
nonlinear functions when combined with kernel functions. For further reading, references

[20, 41] have more detailed explanations about the theory of SVMs.
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Figure 2.1: SVM margins of two categories

In the classification experiments, we used the LIBSVM package*. The linear kernel
(Linear SVM) and radial basis function (RBF SVM) were adopted[15]. We further used
the SVM""t package! [41] in experiments that need to give out values for recall, precision
and F-measure (see Section 2.5). In this case we used the linear SVM and polynomial
SVM.

2.2.4 k Nearest Neighbor (kNN)

Although various classification methods have been proposed in the literature, k nearest
neighbor (kNN) is one of the best performers [48, 76, 82, 96, 100]. The kNN algorithm
relies on the concept that given unseen document x, the learning system finds the &
nearest neighbors in the training document set D to predict its category [96].

The system assigns x to the class that appears most frequently within the subset

Dy € D. In short this method requires:
e an integer k preferably an odd number to avoid ties in the decision.

e a set of labeled examples which are referred to as training data set D. These
examples are called instances. Therefore the kNN method is grouped under instance
based method.

e a metric to measure or determine the nearest or closest examples. A distance metric

such as those described in Section 2.3.1 can be used. One of the popular metric is

*The software can be freely obtained at http://www.csie.ntu.edu.tw/~cjlin/libsvm/ Much ap-
preciation to Lin’s research team for availing the software and their support.

This package can be freely obtained at http://svmlight.joachims.org/. I am grateful to acknowl-
edge Thorsten Joachims for availing the software and his support.
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Class 2

Figure 2.2: kNN learning method for two categories

the Euclidean distance defined by equation (2.8). Furthermore similarity measures
such as the cosine function

T no
sim(x,y) = *y _ 2iz1 il (2.5)

Il 3/ v

can be used.

e a threshold ¢, particularly when binary classification decisions are used. Conven-
tionally, binary classification facilitates the use of performance measures such as

recall, precision and the Fz-measure described in Section 2.5.1.4.

Fig. 2.2 illustrates the concept of the kNN learning method. In this Figure, £ = 3.
Since there are two closest examples in class 1 and one example in class 2, the decision
would be that sample x belongs to class 1. This way of predicting the unseen data is
called majority vote rule (MVR). This can be defined as

kj:max{kla"'vkc} — X €Wy, k:kl++kCa (26)

where k; is the number of neighbors from class w;, (j =1,---,C) among kNN examples.
[32]. This can also be called discrete metric function (DMF) in [64].
Instead of using expression (2.6) directly, a posterior probability P(w;|x) can be
preferably estimated as
k.
P(wj|x) = ?J (2.7)

Then we have the property 0 < P(w;|x) < 1. With this property, the task of determining
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the threshold is simplified. The threshold is correlated to the number of neighbors k. We
used equation (2.7) in the experiments.

Furthermore, kNN can easily handle both multi-class and multi-label problems simul-
taneously as opposed to other classification methods. This is because it can use class

local information flexibly. Figure 2.3 illustrates how kNN can deal with these problems

Class 1 and 2

O Class 3 and 4
O

/\
OQ N A
VAN

s SL
ST

Figure 2.3: kNN learning method for multi-class multi-label case

simultaneously in the vector space. In this figure it can be seen that there are 3 groups of
data belonging to 5 categories. The first group belongs to class 1 and 2; the second group
belongs to class 3 and 4; and the third one belongs to class 5. Suppose the threshold
t = 0.4. Assume the decision rule for classification is x € w; when P(w;|x) > ¢, then an
incoming document x would be classified into categories 3, 4 and 5. This flexibility is
a great advantage of the kNN method. Since the Reuters-21578 and OHSUMED collec-
tions are both multi-class and multi-label problems, kNN was used in the classification
experiments.

Motivated by this flexibility, the binary category assignments were obtained by spec-
ifying a threshold in experiments. The k value and the threshold can be determined
by using a validation set or by use of cross-validation techniques. The k value was ex-
perimentally varied from 1 until when the classifier could give more errors rather than
improving the performance.

The KNN method can be considered to be a lazy learning algorithm. This is because
it defers learning and processing the training data until it receives a request to classify
unseen data. After classifying the data it discards the constructed prediction and any
immediate results.

This is in contrast to other methods which can be referred to as eager learning algo-
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rithms. They process the training data and store it in a compressed description or model
such as in SVMs. They discard the training data after the training phase. They then
classify the incoming sample using the constructed model.

The trade-offs can be realized between the eager learning and the lazy learning algo-
rithms. Lazy algorithms have lower computational costs than eager algorithms during
the training phase. In contrast, lazy algorithms have higher storage requirements and
higher computational cost during classification.

In summary NN have various advantages such as simple implementation, and use of
local information which can lead to highly adaptive behavior. The disadvantages include

large storage requirements and highly susceptibility to the curse of dimensionality.

2.3 Unpopular Learning Methods

2.3.1 Distance Based Learning Methods (DBL)

In this section, distance based methods are introduced. It is noted that most of these
methods, except for the Euclidean Distance, are not common in text classification liter-

ature.

2.3.1.1 Euclidean Distance (ED)

The Euclidean Distance between the incoming pattern or document x and mean vector

of the training data set is defined as
go(x) = (x = my)"(x — my) = [|x — my )%, (2.8)

where x is a feature vector of the incoming text, m; is the mean vector of category w;.
The learning process by this classifier needs to compute the mean vector of each class.

In the expressions below the subscript j is omitted for the sake of simplicity.

2.3.1.2 Projection Distance (PD)

Projection distance function gives the distance from pattern x to the minimum mean
square error in the hyperplane which approximates the distribution of the sample and is
defined as

k
g(x) = [Ix — ml||* — Z{(X —m)" P}, (2.9)

h

where ®; denotes the i' eigenvector of the covariance matrix for each category, k denotes
the dimensionality of the hyperplane. In the case of two dimensional feature spaces, the

decision boundary of projection distance becomes a pair of straight lines (i.e. asymptotic
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lines of hyperbola as shown in Fig. 2.4) in which the hyperbola degenerates, and in case
of 3-dimensional space or more the decision boundary is of the form of quadratic hyper-
surfaces. Training this classifier requires the computation of covariance matrices and the

eigenvectors for each class.
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Figure 2.4: Decision boundaries of PD and MPD

2.3.1.3 Modified Projection Distance (MPD)

Classification error rates in and near the intersecting point of the hyperplane (i.e. shared
subspace) may be high when projection distance is used. If expression (2.9) is modified

to expression (2.10) this problem can be eliminated [31].

2y (L—a)\ r
9(0) = llx —ml[* = 3 | m—e=es {(x — m)T @i}, (210)

=1

whereby A; is the ith eigenvalue of the covariance matrix for each category, and o? is
the average of all eigenvalues of all categories. « represents a parameter of a value [0,
1]. In expression (2.10) when a = 0 it is equivalent to the projection distance and when
a =1, it is equal to the Euclidean Distance. Fig. 2.4 illustrates the decision boundary
of modified projection distance. This figure shows that an incoming document x would
be correctly classified by MPD as opposed to PD. Training this classifier requires the

computation of the covariance matrices and the eigenvectors for each class.



2.3 Unpopular Learning Methods, Busagala’s Ph.D. Dissertation 23

2.3.2 Linear Discriminant Function (LDF)

The linear discriminant function’s decision boundary is a straight line, a plane, a hyper-
plane for two, three, or higher dimensional spaces respectively. The linear discriminant
function can be defined as

g(x) = wi'x + w, (2.11)

where w is the weight vector computed as
w = —Y,;/m, (2.12)

and wy is the bias or threshold weight expressed as

1
wy = §mTZ;V1m. (2.13)

Yw denotes the pooled within covariance matrix (the mean covariance matrix for all
categories). Expressions (2.12) and (2.13) have to be computed during the training of
this classifier. The reader may note that this classifier assumes that ¥y exists. This is

not necessarily true in practice.

2.3.3 Reqularized Linear Discriminant Function (RLD)

The drawback of the LDF is that when the sample size is smaller than the dimensionality,
the inverse matrix, Ev_vl does not exist. To overcome this problem a regularized linear dis-
criminant function (RLD) can be used. It is also argued that RLD is for high-dimensional
data to overcome performance degradation [92]. Since automatic text classification (ATC)
involves higher dimensional space than sample size, it was appropriate to study RLD in
ATC.

Instead of using Ty in equation (2.12), we regularize it to X}, which can be defined

as
t’l“(zw)

w=01-a)Zwy+a I, (0<a<l), (2.14)

where tr(Xy) is the trace of Ty, I is the identity matrix and n is the dimensionality.
The value of o can be determined by use of cross-validation techniques [30, 36]. RLD
tends to be equivalent to the linear discriminant function and the Euclidean distance

when a = 0 and o = 1 respectively.

2.8.4 Logistic Discrimination Classifier

The early studies on logistic discrimination can be found in [1, 21]. The author also
applied the logistic discrimination classifier in text classification. We adopted the max-

imum likelihood estimation of parameters which uses iterative optimization. This uses
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the likelihood function and its derivatives as described in [92].

Since the binary classification approach was adopted the two category case was taken
into consideration. The basic assumption is that the difference between the logarithms

of the conditional density function is linear in the variables x shown here as

P(x]|w:) _ Ty
log <_—P(x|w2)> Go+ 3 " x, (2.15)

where 3y and B are constant and the vector parameters, respectively. These parameters

are estimated during training as described below.

From 2.15 it can be shown that the assumption is equivalent to

eXP(ﬁ’O + IBTX) P(wglx) _ 1
1+ exp(fo + B7x)’ 1+ exp(fy + B7x)’

P(wq]x) = (2.16)

where §y = (o + log(P(w1)/P(ws)). The maximum likelihood estimation can be used to

estimate this model of logistic discrimination.

An iterative nonlinear optimization procedure can be used which involves likelihood
function and its derivatives. The likelihood of observed documents x with two categories

can be written as

N1 Ny
L= HP(xlr]wl) HP(xgrlwg) r=1,...,Ng; s=1,2, (2.17)
r=1 r=1

where x,, are the documents in category ws. Rewriting equation (2.17) we have

N, Ny
1 N Na
T PN P(wy)Me all_llx P(x) TI:II P(wi]x1y) [[1 P(ws|x2,) (2.19)
Since the factor ,
P(w;)M1 P(w,y)Ne H P(x)

is independent of the parameters of the model, it can be eliminated, under the assumption
that we are free to choose P(x) as in [22]. In this regard the likelihood L can be maximized

by using

N1 N2
L =[] Plwifxi) [] Plwalxer). (2.20)
r=1 r=1
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For simplifying the computation, we can introduce logarithms to this equation obtaining

log(L Zlog (w1lx1r)) +Zlog (walxar)), (2.21)

which can be written by using (2.16) assuming that

log((L)) = (B + BTx1,) — Y log{1 + exp(fo + BTx)}. (2.22)
r=1 all

The gradient ascent algorithm was used to estimate parameters ,6;0 and (. The gradient
of (2.22) with respect to [; is

dlogL
BE N - Y Plwnfx) (2.23)
8/80 all X
dlogl, &
gk _ (X1r); Plw|x)z;, 7=1,...,n 2.24
00, !
r=1 all x

Algorithm 2.1 Gradient Ascent Algorithm for One Category

1: input: document x

2: output: optimized Gy and B

3. initialize: [y, B, threshold ¢, learning rate r, K = 0
4: repeat

5: k—k+1

6 §+1 — pEk+r (Nl — Zall N P(wllx))

7. for j=1tondo

s A e g (S - Yl o Pl@l)a;)
9

end for

10: until (\[2?31@“1 - 55) <e€

In this regard algorithm 2.1 was particularly used in the iterative optimization process.

2.4 Proposed Improvements of Learning Methods

2.4.1 Normalized-weighted Metric (NWM) for kNN

We propose an improvement to the kNN learning method. The conventional kNN learning
method has drawbacks. For example, it assumes that all examples in the subset Dy C D
have equal importance in predicting the class of the incoming document. Thus it results

in giving equal weight even to those instances that are far from the incoming pattern.
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Consequently, local-category information for correct prediction of a class can be distorted.
In an attempt to remove this drawback Lim [64] proposed a technique for weighting

document similarities defined by

Z(x,w;) = Y sim(x, D;)y(Di,wy), (2.25)

D;eDy

where y(D;,w;) € {0,1} is a discrete function that refers to the classification of training
document D; belonging to a specific category such that y(D;,w;) = 1 for YES and
y(D;,w;) = 0 for NO. The sim(x, D;) is the similarity between the test document and
the training document. This can be called the similarity weighted function (SWF). In
general terms it can be called weighted metric function (WMF).

However, one can note that expression (2.25) can still result in noises and difficulties
in determining the threshold. To solve these problems, we propose a normalized-weighted
metric (NWM) function. The function can use a distance or similarity measure. Let our
metric be similarity measure, sim(.) as in (2.25). NWM can be defined as

Z(x,w;)

A N = ) 2.
(Xv wj) ZDieDk sim(x, Dz) ( 26)

This can be understood as the normalization of (2.25). This was used instead of the
conventional voting strategy. Expression (2.26) has a property such that (0 < Z’(x,w;) <
1). In other words probabilistic value will always be obtained. In doing so, the threshold
will always be in the range of 0 to 1.

In general terms, sim(x, D;) can be replaced with other metrics such as distance
metrics. For example Euclidean distance can be used instead of cosine similarity. However

the reader should note that the cosine similarity function was used in the experiments.

2.4.2 A Posterior Probability by Distance Classifiers (PPD)

PPD is one of the proposed improvements for distance classifiers. It generally works
better than the distance based learning methods. Distance based learning methods may
not catch enough discriminatory information from training data. This can lead to er-
rors in classification decisions of unlabeled data points. In order to solve this problem
and enhance learning by these methods, we introduce a function which provides more
information in a probabilistic approach.

Assume there are C classes in the text collection. Instead of using distances, 9u; (X) in
the classification process, a posteriori probability, P(w;|x) of class w; can be computed

as
P(wj)exp(—50u,(x))

S ii1 Plwy)erp(—3g.,(x))’

P(wj|x) = (2.27)
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where a priori probability P(w;) is defined in (2.1). P(wj|x) has a property that 0 <
P(wj|x) < 1. This simplifies the process of setting the threshold.

Training this classifier depends on the distance metric used. Section 2.3.1 describes
various classifiers based on distance metrics. Using such distances involve training the
classifier as described accordingly.

The general form of PPD can use other discriminant functions such as the linear
discriminant function described in 2.3.2. Empirical results show that PPD is better than

the simple use of distance metric in text categorization.

2.5 Performance Evaluation

Although TC is at the cross-road of information retrieval and machine learning, evaluating
text classification is always done using measures from information retrieval. The popular
ones are recall, precision, break-even point and the Fjz-measure.

Other measures adopted from machine learning techniques have been reported in the
literature. These include classification rates [10, 70, 62], accuracy and error rates [94].
The list is not exhaustive here. We discuss these measures in Section 2.5.1.

Note that the measures such as the recall, precision and Fj-measure for evaluation
of classification effectiveness were mostly adopted. These measures are regarded as the
standard evaluation methods for classification systems in automatic text classification.

It is also of interest to test the significance of the proposed methods in this work. We

adopted the commonly used methods to test statistical significance in Section 2.5.2.

2.5.1 Measuring Classification Performance

Classification performance can be measured using effectiveness and efficiency criteria. Ef-
fectiveness is the most popular criterion in measuring the performance of classifiers. Most
of the measures in this section will deal with effectiveness. Furthermore, the efficiency
criterion is explained very briefly in Section 2.5.1.5.

Binary classification tasks are common in text classification (T'C). These involve defin-
ing the class of interest or positive class and the negative class. To measure effectiveness,
information retrieval (IR) metrics are usually used [57, 58, 82, 94]. Most of the mea-
sures for binary classification tasks involve defining a contingency table for classification
decisions. Table 2.1 illustrates the idea of the contingency table. It is noted that the
classification system is evaluated against a human expert’s decisions.

When the decision of a human expert and that of the classification system (i.e.,
machine/classifier decision) is YES (i.e., the document truly belongs to class w;), the
decision is called a true positive (T'P). When the decision of the classifier is NO while

human expert decision is YES (i.e., the machine falsely rejects the document in category
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wj), the decision is called a false negative (FN) or an error of omission. When the
classifier’s decision is YES while the human expert’s decision is NO (i.e., the machine
falsely accepts the document classifying it under category w;), the decision is called a
false positive (FP) or an error of commission. When both classifier and human expert’s
decisions are NO (i.e., the document truly does not belong to class w;), this judgment is

referred to as a true negative (T'N).

Table 2.1: Contingency table for classification decisions

(a) Macro-average strategy

Human Expert Decisions
YES NO

YES TP, FPD
NO FN, TN,

(b) Micro-average strategy

Category w;

Machine Decisions

Human Expert Decisions
YES NO

YES TP=3Y",TP; FP=Y7 FP,
NO FN=3" FN; TN=3_ TN,

Category Set 2 = {wy,- -+ ,wc}

Machine Decisions

2.5.1.1 Recall

Recall is one of the popular measures for text classification effectiveness. Recall can be

regarded as the proportion of class members that the machine assigns to class w;.

In general, there are two methods of computing recall. These are the macro averaging
and the micro averaging methods. These methods can give quite different scores depend-
ing on the generality of the data sets. Categories with few positive training examples
are always emphasized by macro-averaging — since this approach gives equal weight to
every category. Micro-averaging gives equal weight to every document, and it can be

considered to be a per-document average strategy.

In the macro-averaging method recall R; for each class is first computed as

TP
RM = — L. (2.28)
77 TP+ FN;

The illustration is given in Table 2.1(a). The averaged recall R of all categories is com-

puted as
c
_ Zj:l R;

M
R C

(2.29)
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The micro-averaging method requires the calculations of recall as

TP+FN Y7 (TP+FN;)

m

(2.30)

This concept is summarized in Table 2.1(b). To enable comparisons with previous works
in the literature we mostly adopted the micro-averaging and reported the F'-measure

scores. For complementing the results, macro-averaged results are also reported.

2.5.1.2 Precision

Precision is another popular measure for text classification effectiveness. We adopted
precision for measuring classification effectiveness. This is one of the measures that are
regarded as standard evaluation methods for classification systems in automatic text

classification.

Precision can be regarded as the proportion of documents that the classification sys-
tem assigns to a class that really belong to the class in question. As described in Section
2.5.1.1, macro- and micro-averaging methods were usually adopted. The macro-averaged

precision needs to calculate the precision PJM for each category in the first place as

pPM = T—%T:L%. (2.31)
Then macro-averaging is done using the formula
pM = —Z"CZ} 5 (2.32)
The micro-averaging is similarly carried out as
pH rr Zia T (2.33)

" TP+FP YO (TP, +FP)

This concept is summarized in Table 2.1(b). To enable comparisons with previous works
in the literature we mostly adopted micro-averaging and complimented the results with

macro averaging.

Fig. 2.5 illustrates the relationship between recall and precision. It can be observed
that recall decreases with an increase in precision and vice versa. This means that the
use of recall only or precision only can not reflect the real behavior of the classification

system. A trade-off should be sought by setting up the parameters appropriately.
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>
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Figure 2.5: Recall versus precision

2.5.1.3 Break-even point

Break-even point (BEP) is one of the popular measure of TC effectiveness. It seeks to
provide a single score from recall and precision. If recall and precision of a classifier
can be tuned to have an equal value (i.e., R = P), then this is called the BEP of the
classification system.

If the recall and precision values can not be made exactly equal, the average of the
closest recall and precision scores is used as an interpolation of the BEP. The interpolation

is always undesirable since it can give misleading systems’ performance [94].

2.5.1.4 Fjs-measure

The Fj-measure was first defined by C. J. van Rijsbergen [88]. It is a harmonic mean of

recall and precision. The harmonic nature can easily be seen by considering the harmonic

mean formula. The harmonic mean H of n numbers py, ..., p, can be defined as
H= . (2.34)

2 i1 Pi
By plugging the recall R and precision P in (2.34), we have

2 2RP

H= = = F. 2.35
+1) R+P ! (2.35)

(

This gives recall and precision equal weight. The generalized case of F} in (2.35) can be
defined as

=i

l%uﬁp):(ﬂ”+URP

PR+ P (0 <8< 00), (2.36)
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where 3 is a parameter which allows weighting of precision and recall.

F} in (2.35) is the special form of (2.36) when 3 = 1. Fj is maximized when the values
of recall and precision are equal or close. Otherwise the value of either one can dominate
Fj5. Tt can therefore be noted that the BEP in Section 2.5.1.3 is a specific variable of the
Fs-measure. According to [94], the F is the most suitable choice among the measures
of TC effectiveness. However it is notable that, in general terms, a variety of scores to

measure classification performance are desirable.

2.5.1.5 Other Performance Measures

e (lassification Rate

This measure of effectiveness is used when the binary classification tasks are not
considered [70]. This is defined in terms of the number of documents which are
correctly classified ¢ and number of documents which are wrongly classified n. The

formula is

_ 9
C+n

Note that the contingency table is not used here. This measure is common in

CR x 100. (2.37)

machine learning and pattern recognition fields. We used this measure in some of

the experiments.

e Accuracy

Accuracy is another measure of text classification effectiveness and it can be defined

as
TP+TN

T TP+FP+FN+TN’

This measure was adopted from machine learning literature, even though it is not

A

(2.38)

widely used in TC literature. This is because it has a large denominator which
leads to insensitivity to more variations in the number of correct decisions than

with recall and precision [94].

e Error Rate

The error rate takes care of both errors of commission and errors of omission [57]

and it can be defined as

FP+ FN

E= T p T FPTENTTN

1—A. (2.39)

This measure is closely considered in statistical analysis of improvements as will be

indicated in Section 2.5.2. It usually takes care of text classification effectiveness.
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Efficiency

The efficiency measure is very important in the case of applications that require
time and speed considerations [26]. In our study we report how the instance based
classifier like the kKNN’s efficiency was improved. The feature reduction methods
proposed in chapter 4 improved the efficiency of the classifiers. Efficiency is also

very important in selecting among classifiers with similar effectiveness.

2.5.2  Statistical Analysis of Improvements

Statistical significance testing gives an insight into any apparent improvement in the

performance of algorithms or methods. This gives any researcher an insight for drawing

conclusions about the performance of a proposed method. It is therefore desirable to

perform statistical analysis to show whether proposed methods really have an impact on

the performance of text categorization or not. Testing for significance of improvements

can be done using the following general steps:

Formulate the null hypothesis (Hp, which assumes that “no difference in ability of
methods”) and the alternative hypothesis (H4 — the opposite statement of Hy).

Decide on the value of significance level a. This can be considered as the fixed
probability of wrongly rejecting Hy when it is in fact true. It is the probability of

a type I error set by the researcher. Commonly used values include 0.05 and 0.01.

Calculate the critical value of the test statistic by using the classification score that
shows the error rate of both methods (e.g. see Table 2.2). This depends on the

statistical test in use. Examples of statistical tests are described below.

Compare the test statistic with p-value obtained either from a table or computed
based on the normal distributions’ assumption, or compare with a critical value

from a statistical table

Draw conclusions.

— If the calculated test statistic is higher than the critical value from the table (i.e.,
if the p-value is less than o), then reject Hy. This implies that, the probability
that the difference happened by chance is small. In other words the improvement

is statistically significant.

— If the calculated test statistic is lower than the the critical value from the statistical
table (i.e., if the p-value is greater than «, then accept Hy). The implication is that
the probability that the difference happened by chance is high. In other words the
probability that the improvements happened by chance is high. In this case there

is no statistical evidence of improvement.
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There are various statistical tests used in the literature. These include McNemar’s
test, Z-test of comparing two proportions and the x? test. We describe these statistical

tests below.

2.5.2.1 McNemar’s Test

In statistics, McNermar’s test was first introduced by Q. McNermar in 1947 [69]. In the
field of machine learning and other related fields, McNemar’s test has been recommended
to be a powerful statistical test [23, 34]. It is powerful in the sense that it has a low
probability of making a type I error. Indeed various authors on text categorization have

applied this statistical test successfully [87, 91].

Table 2.2: 2x2 Contingency Table for two methods’ performances

Method 65
Correct Wrong
Method 5, Correct (f b
Wrong ¢ d

McNermar’s test is a statistical analysis tool that can validate the significance of
the differences between two methods. Let §; and d, be the first and second method,
respectively. The number of documents which are correctly and wrongly classified can
be defined using a contingency table as illustrated in Table 2.2. In this table the number
of data that are correctly classified by both methods is represented by a. The number
of data that are wrongly classified by both methods is represented by d. The number of
data that are incorrectly classified by first method 4, is denoted by ¢. The number of
data that are wrongly classified by the second method ds is denoted by b.

Testing the statistical significance can be done under a null hypothesis (Hp) that the
two methods d; and &3, would have the same error rate E, which is reflected by b and
¢ of Table 2.2. The alternative hypothesis (H,4) is that the two methods have different
error rates. The chi-squared statistic can be approximately obtained using

. b—c|—1)?

= (o=l =17 blc ) , (2.40)
where minus one in the numerator caters for the Yates correction of continuity [98, 99].
This approximation is carried out due to the fact that McNemar’s test is based on a
x? test for goodness-of-fit that compares the distributions of counts expected under the
null hypothesis [23]. If the test statistic x* is greater than xi 95 = 3.841459, there is
a probability that the difference in performance by the two methods is less than the
significance level o = 0.05. Therefore we reject Hy in favor of H,4. In other words, given
the fact that the degree of freedom is 1, if the statistical value x? > 3.84149, it would
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give a p-value that is less than the significance level o = 0.05. This suggests that the
there is statistical evidence that the two methods in question perform differently.

Note that various values for significance level o can be used as is usual in statistical
analysis procedures. For example the popular values include oo = 0.01, o = 0.001 or
even smaller values. In these cases, standard statistical tables or software can be used
to obtain the p-value that is always compared in order to make the decision to reject or
accept Ho. The smaller the p-value in comparison with the o significance level, the more

the significance of the difference among the methods under the statistical analysis.

2.5.2.2 Comparing Two Proportions by Z-Test

Another statistical test is that of comparing two proportions [23] to find out whether
there is a difference among methods 8; and d,. This is based on the comparison of the
error rates of methods d; and 6;. Using Table 2.2, let

(é+d)

be the proportion of the test instances that are misclassified by method d;, and

b+ d)
N

—~

P2 = (2.42)
be the proportion of the test instances that are misclassified by method d,. This statistical
test assumes that when method 6, classifies an instance x from test set T, the probability
of misclassification is p;. Therefore the number of misclassification of N test instances is
a binomial random variable with a mean Np; and the variance p(l—p1)N.

Another assumption is that given a good representation of N, the binomial distribu-
tion can sufficiently be approximated by a normal distribution. The difference between
two independent normally distributed random variables result in normally distributed
variables [23]. Therefore the quantity of p; — p, is normally distributed by assuming that
the measured error rates p; and p; are independent. If we let p = (p; + p3)/2 be the
average of the two error probabilities, then we have a mean of zero and a standard error
defined as

2p(1 - p)
SE =/ =5 (2.43)

Therefore the test statistic Z can be given as

7 — |p1 —pzl

2.44
S (244

which has approximately a standard normal distribution. It is known that the critical
value a(—1.96 < Z < 1.96) = 0.05 [91, 99]. The null hypothesis can be rejected if
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Z > 1.96 or Z < 1.96. This is true if the significance level a = 0.05 for the two-sided
statistical test. A similar approach using various values of significance level o can be
followed as discussed in Section 2.5.2.1.

This method of comparing two proportions in machine learning has been criticized
[23] due to the following problems. First, the assumption of independence of p; and p,
is violated because methods §; and 4, are always measured using the same test set 7.
Second, the internal variation of methods §; and 8§, are not measured.

The lack of independence can be corrected by changing the estimation of the standard

error and the resulting Z’ statistic can be calculated as

~

7' = (2.45)

=2

|
>

o> '
[a—

b+
The test statistic in (2.45) can be seen to be the square root of the x? statistic in McNe-

mar’s test.

2.5.2.3 The Binomial Comparative Trial Using the y? Test

The test statistics described in Sections 2.5.2.1 and 2.5.2.2 have been implemented suc-
cessfully in machine learning as seen in the literature (see respective sections for details).
The x? test also can be a good method to use in testing the significance of improvements.

It was therefore adopted in the current study and described below.

Table 2.3: The 2x2 contingency table for binomial comparative Trial

Method 6; Method 8, | Total
Correct a b é
Wrong ¢ d f
Total g h N

Using Table 2.3 we can redefine the two proportions defined in expressions (2.41) and
(2.42) as follows:

a
15 — 246
1= (2.46)
and )
fr = 2 (2.47)
2 iL .

The assumption with this method is that if the columns or the rows of a contingency table
represent random samples from independent populations, then the null hypothesis can be
phrased as a comparison of proportions such that Hy : p; = po. Another assumption of
these test statistics is that the proportions follow the chi-square goodness of fit property.

Therefore given a good representation of N, the binomial distribution can be sufficiently
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approximated by a normal distribution. x? test is recommendable when the sample size
is considerably large. Otherwise the Fisher exact test! is recommended.

This is a two-tailed null hypothesis [99] which can be tested using the statistic

X2 = n . (2.48)

One can find that the degree of freedom df = 1 with the significance level o = 0.05,
the critical value of the statistic x§ 5, = 3.841. If the test statistic x? > 3.841 at this
significance level, then H, can be rejected in favor of Hy : i, # ps.

This test also faces similar discrepancy as seen in Section 2.5.2.2, because it assumes
that the proportions p; and p, are independent while they are actually obtained from

methods ; and d, measured on the same test set 7T.

2.6 Experiments to Evaluate PPD and NWM

The experiments in this section focused on demonstrating the effectiveness of the proposed
learning methods. Therefore a lot of details of the experimental setup are given in

proceeding chapters.

2.6.1 Ezxperimental setup

Experiments were conducted to evaluate the effectiveness of the proposed PPD and
NWM. Since the focus is on these learning methods we follow the experimental setup
which is described in 3.5 of Chapter 3. The PCA+CDA algorithm was also used in
extracting the features. Further details of this algorithm can be found in Chapter 4.

2.6.2 Data for experiments

The ModApte Split of Reuters data set was used in the experiments. The details of these
data can be found in 3.5.1.1.

2.6.3 Empirical Results

2.6.3.1 PPD Results

Table 2.4 summarizes the resuits of PPD. In this table results from various features are
presented. These include absolute term frequency (AF), relative term frequency (RF),
and power transformed relative frequency (RFPT). Other features include the use of
term frequency weighted by document frequency (TFIDF) and TFIDF with the power

Fisher exact test is preferable when the sample size is small such as below 30 [99]



2.6 Experiments to Evaluate PPD and NWM, Busagala’s Ph.D. Dissertation 37

transformation (TFIDF+PT). The definitions of all these features are found in chapter
3.

Table 2.4: Micro-averaged F; measure (%) of the proposed PPD versus Euclidean Dis-
tance (ED). 115 categories of ModApte Split.

Type Features Used
Classifier AF AFPT RF RFPT TFIDF TFIDF+PT

PPD 75.3 76.8 78.2 80.5 72.6 74.2

ED 32.8 36.6 46.8 64.4 64.7 63.6
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Figure 2.6: PPD in comparison with ED

Note that PPD in this case used the Euclidean distance (ED) to compute the posterior:
probability. As it was pointed out earlier any distance based classifier can be used. Since
the ED is efficient, it was chosen to illustrate the effectiveness of PPD.

With a simple perusal of Table 2.4, it can be seen that the PPD outperformed the
Euclidean distance. The improvements range from about 20% to 40% of the averaged
Fy-measure. Given the fact that the implementation was efficient these can be considered
to be significant improvements.

Fig. 2.6 presents the relationship between dimensionality and micro-averaged F3-
measure. The significant improvements in all features used can be easily seen. RFPT
leads to the highest performance of learning methods.

Results for the use of various popular learning methods in [41] were outperformed by

the PPD method. The outperformed classifiers included the multinomial Naive Bayes
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(MNB), Rochio and C4.5 algorithms. This is particularly true when the comparison is
done using RFPT (i.e., in Table 2.4, PPD F; =80.5%, while in [41]: MNB’s break even
point (BEP) = 72.3%; Rochio BEP = 79.9% and C4.5 BEP = 79.4%). The encouraging
thing is that the improvement is obtained with less computational costs. Note that the

BEP is a special variable of Fj-measure as discussed in 2.5.1.4.

2.6.3.2 NWDM results

Figure 2.7 illustrates the effect of NWM. It presents empirical results using various fea-
tures which have been mentioned in Section 2.6.3.1. It is observable that NWM improves

the performance of kNN learning methods.
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Figure 2.7: The effect of normalized-weighted metric (NWM)

The improvements are observed in all types of features used in the classification pro-
cess. These results shows the weakness in the classical kNN of equal weighting of neigh-
bors. It reveals that the use of the NWM method mitigates this weakness and improves
the performance of KNN. These improvements are achieved without introducing compli-
cations in determining the threshold. This is because the value of the NWM method is
always in the range of [0, 1].

The essence of improving the kNN learning method comes due to the fact that it is one
of the best performers and it is simpler to implement in comparison with other learning

methods such as SVMs. It is also flexible in handling multi-label data as is common in
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automated text classification. Details of the advantages and flexibilities can be found in
2.24.

2.7 A Summary of the Learning Methods

In this chapter we described the machine learning methods. We first described selected
popular learning methods in Section 2.2 to give an idea on the state of the art in the
literature of TC. We further introduced the unpopular learning methods in Section 2.3. In
particular we experimentally studied the learning methods presented in Sections 2.3.1.1;
2.3.1.2; 2.3.1.3; 2.3.2 and 2.3.3. Methods to improve the learning methods in this study
are given in Section 2.4.2 and 2.4.1.

Although we give more details on feature transformation, reduction and integration in
the following chapters, we presented the experimental results using the learning methods
proposed in this Chapter. In every chapter it is indicated whenever a learning method is
used accordingly. It will become clear that the proposed learning methods improve the
classification performance in the TC.

Moreover we have seen various methods of performance evaluation described in Section
2.5. We used most of these methods given in Section 2.5.1 to evaluate the classification
effectiveness. Then we carried out the statistical evaluation described in Section 2.5.2,

which gave insight in drawing conclusions about the improvements.
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Chapter 3
Document Representation

Documents are composed of natural language idioms. In order for a machine learning
system to recognize a document there should be a way of representing it. This is usually
done by the use of feature vectors. The vector elements are known as features. In the
context of documents they are the words originating from the documents. They are
known as features because not all words are used to represent a document.

This chapter starts by reviewing the state of the art on document representation for
machine learning in text classification. Then it proposes a feature transformation that
form a better document representation in machine learning. It mainly proposes the use
of relative frequency with power transformation (RFPT). Comparative studies show that

RFPT is better than the conventional methods for document representation.

3.1 Conventional Features

The vector model representation of textual data is common in automated text classifica-
tion (ATC). Classically, the components of the feature vectors are the term frequencies
weighted by inverse document frequency (TFIDF). This technique has been borrowed
from information retrieval (IR) [82]. A recent theoretical analysis has shown that TFIDF
is well suited for information retrieval problems. This is because it was actually developed
with the idea of ranking documents in terms of relevancy to simplify the retrieval process
[43, 77]. Although TFIDF has been shown to work well in IR, it might not be the best
choice for text classification problems. For the convenience of the reader we review the
theoretical analysis briefly.

In 1972 Jone Spark [43] proposed the term weighting technique in IR which later
came to be known as inverse document frequency (IDF). He was working specifically
with information retrieval problems for indexing documents. The theory has shown that
the combination of TF (term frequency) and IDF is basically suited for IR. Without

going into the details of IR-style, suppose we represent the documents as a feature vector

41
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X = [z1,...,2,]7, where n is dimensionality (lexicon size or vocabulary size), x; is the
frequency value of i"* word which are also known as term frequency (TF), and T refers

to the transpose of a vector. Then the term weighting is done as

N
Wi = T; * logﬁi, (3.1)
where N refers to the total number of documents in the collection and N; is the document
frequency which is the number of documents in which term i occurs. In other words the
log part of the equation (3.1) denotes the inverse document frequency (IDF). The intuition
here was that a query term which occurs in many documents is not a good discriminator
for retrieving desired documents. Therefore it should be given less weight than the one
which occurs in few documents [43, 77]. In order to avoid text length variation within

documents, a normalization to vector unit length is classically carried out using

Wy

W = ———, (3.2)
Z?:l(wj)2

which is also called cosine normalization.

The IDF part of equation (3.1) consists of the logarithm of inverted probability. We
can therefore estimate the probability that a random document d can consist of the term
t;. This probability can be computed as

Ni
P(t;) = P(t; occurs in d) ~ e (3.3)

We can therefore redefine the IDF in terms of probability as

1
idf (t;) = —logP(t;), { by recalling from — logz = log;}. (3.4)

In terms of IR, the document scoring functions are assumed to be additive. In this
context, if two query terms are denoted as t; and ¢y, and the weights for each term are
w; and wy. Therefore a document containing both terms would score w; +w,. Let us use
the symbol A to denote logical operator 'and’. Assuming that the occurrences of different

terms in documents are statistically independent then the idf can be computed as

idf(ty ANta) = —logP(t; Aty) (3.5)
= —log (P(t1)P(t2)) (3.6)
= —(logP(t1) + logP(ts)) (3.7)
— idf(t) + idf(ts) (3.8)
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From this point of view and from the probabilistic model of IR in general, we can say
that TFIDF can be seen to fit well with IR. A detailed theoretical analysis can be found
in [77]. The work in [77] also explains how document relevancy ranking in IR relates to
TFIDF which consists of IDF, consequently working well with IR problems.

Contrary to the use of TFIDF in ATC, we propose transforming relative frequency us-
ing power transformation (RFPT) in text classification problems. RFPT simultaneously
takes care of both document length and sample distribution problems. We performed ex-
tensive experiments to verify the effectiveness of RFPT. We find RFPT to be empirically
superior to TFIDF. In section 3.3 we shall see how RFPT is suited to text classification

problems.

3.2 Related Works

In this section we present some relevant works that may relate to ours. Where similarities
with our work are found, we briefly describe the differences.

First of all it is worth mentioning that there are some works that use the unit length
normalization and power law concepts [76]. However, it may be noted that the approach
in [76] and ours are different. First, they used weighted vectors commonly called TFIDF
while we used relative term frequency and its transformation. Second the unit length
normalization they used is common in the literature and is different from ours.

Rennie et al. [76] furthermore used the concept of power law distribution on weighted
vectors - based on choosing a value of a parameter d, which is added to weighted vector
components and then the result is transformed by computing its log value. In other
words, their transformation is a special version of the log transformation described in
[32]. In contrast we use power transformation (PT) on relative term frequency (RFPT)
with which we observe higher classification performance. In addition we apply PT to
TFIDF. Similarly we observe higher performance than by simply using TFIDF.

Unlike in previous research we used transformed features. Particularly we improved
classification effectiveness by the use of relative term frequency with power transformation
(RFPT).

3.3 Feature Transformation

In this Section the author describes the proposed feature transformation in text classifi-
cation. It will become clear that the proposed way of document representation improves
the learning ability of classifiers. In this research, feature transformation (FT) refers to
transforming absolute term frequency (AF) to relative term frequency (RF) and power

transformation (PT). We discuss these techniques in this subsection.
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Let us consider a set of N sample texts, x = {X1,X2,+- , Xy} with n—dimensional
text space. Let us assume that every textual document belongs to one of the C' classes
{wi,ws, ..., wc}. Each text can be represented as a feature vector, x; = [1122 ... 2,]7,
whereby, n is dimensionality (lexicon size), z; is the frequency value of i** word and T

refers to the transpose of a vector.

3.3.1 Relative Term Frequency(RF)

It is clear that the feature vectors generated in this way are absolute term frequencies.
We transform absolute frequency to relative term frequency (RF) to solve the problem

of dependency on text length as follows:

T

Y ==n - (3.9)
Zj:l Zj

This follows a property so that
du=1 (0<u<l) (3.10)
i=1

The length variation can now be smaller compared to absolute term frequency. Therefore
the problem of dependency on text length is solved. By plotting y; for all ¢ this leads to
frequency distribution of words in a document. In other words RF can be regarded as a

probability P(t;) = y; of an event ¢; in document x.

3.3.2  Power Transformation (PT)

After obtaining the RF, the sample distribution for the documents may still be skewed.
This is undesirable particularly for parametric classifiers such as linear or quadratic clas-

sifiers which are typically designed for Gaussian distributions.

Therefore, with the purpose of obtaining Gaussian-like distribution, power transfor-

mation can be performed using equation (3.11).

z=vy, @O<wv<l). (3.11)

This transformation makes the sample distribution of the frequency y; > 0 to be
Gaussian-like. Note that when RF is transformed using equation (3.11) the resulting
features can be abbreviated to RFPT and they have superior properties to simplify the

process of learning by a classification system. One can choose to write equations (3.9)
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and (3.11) concisely as

zi = (m) , (0<wv<1), (3.12)

which represents RFPT explicitly.

The process of modeling texts using these transformations is illustrated in Fig. 3.1. In
this figure the distribution for absolute term frequency is right-skewed (positive skewness)
and document length within-class may vary considerably. This depicts many cases of real
world problems. When absolute term frequency is transformed into relative frequency
(RF), the lengths of documents are normalized and we can observe the fact that the
length generally gives no information about the category. This reduces the learning load
of classifiers and improves classification accuracy.

When power transformation (PT) is applied to relative frequency, the shape of the
distribution becomes Gaussian-like. Based on the optimality of the linear or quadratic
classifiers to the Gaussian distributions, this kind of transformation can be advantageous
to text classification systems. Gaussian-like distributions lead to an optimal decision
boundary.

The proportion of the frequency of the variables that lie at the center of a sample
distribution is important in defining the shape of a given distribution. Therefore the
shape of the sample distribution can be conveniently discussed in terms of skewness and
kurtosis. The discussion on how to obtain a desirable sample distribution can be done
with reference to Gaussian distribution as a standard. Let z and 02 denote the mean and
the variance of z;, respectively. The measure of skewness is based on the third moment

about the mean, E{(z; — z)3}. The index of skewness is a unit measure defined by the

sz{(zi;Z)?’}:%g(z’;z)g. (3.13)

Large negative values of 7 indicate negative skewness (left skewness). Large positive

ratio

values show right skewness (positive skewness). For a normal distribution the value of
v = 0 in (3.13). Therefore, the aim of (3.11) is to get a Gaussian-like distribution with
a value of v that is close to 0. Therefore variables z; tend to be Gaussian-like when the
values of v tend to be close to O.

Kurtosis is measured around the 4'h central moment of a distribution. It is also known
in [42] that the kurtosis

n:E{(Zi;2)4}=%g<zi;Z)4 (3.14)

of the Gaussian distribution is 3. Positive kurtosis is always accompanied by a property
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(c¢) RF with power transformation (RFPT)

Figure 3.1: The effect of feature transformation on non-Gaussian sample distribution.
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of peakedness in a distribution. Peakedness usually suggests a relatively long or fat tail.
Positive kurtosis can also be called leptokurtosis. Negative kurtosis is sometimes referred
to as platykurtosis. It shows a presence of a relatively short or thin tail. Fukunaga [32]
shows that the kurtosis of variables z; tends to be 3 when the variables y; are causal (i.e.
positive) and are transformed using equation (3.11). Therefore variables z; tend to be
Gaussian-like.

It is also worth noting that the length of RFPT is normalized to 1 when v = 0.5 as

sz = Zy => (ZT”:?) =1. (3.15)

follows:

i=1 J=1
In other words RFPT satisfies the normality property. Indeed we find higher classification

performance with RFPT when v = 0.5 (see section 3.5.5 for the empirical results).

3.4 Experiments Using Small Samples

3.4.1 Data for experiments — randomly selected

For an effective evaluation of feature transformation and classification techniques, a set of
text data for category assignment was required. A benchmark collection of text catego-
rization research called Reuters-21578 was used. This collection has been widely employed
by other researchers, too [82], [49], [96], [83], [76], [100]. Reuters-21578 is composed of
21,578 articles manually classified into 135 categories.

A total of 1500 articles, randomly selected from 10 categories (i.e. acq, crude, earn,
grain, interest, money-fx, money-supply, ship, sugar, trade) that is 150 articles per cat-
egory were used. In order to retain the independence of the data used and to promote
the validity of results, 150 articles in each category were divided into three groups of
50 articles each. One of the groups became the evaluation data and the remaining two
groups were used as training data. Thus, by alternating the groups the same data could
be used 3 times (two times for training, one time for evaluation). The average values of
the experimental results were used to evaluate classification techniques.

After extracting or selecting data for experiments, the procedure for automatic text
classification could be divided into four general steps. The steps include Feature vector
generation, Dimension reduction, Learning or classifier training based on discriminant

functions and Classification. The following subsections describe each of the steps.

3.4.2 Term Selection in Generating Vocabulary List

Generally speaking, not all generated words during feature vector generation have a

significant contribution to discriminately represent a text. In general, function words
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are not useful to represent document features discriminately. Similarly all content words
are not necessarily helpful to represent document features. Therefore, before generating
feature vectors, functional words and general words were removed with reference to a
stop list prepared beforehand to reduce the features, amount of storage and processing

time required by a classification system. In doing so over-fitting is also reduced.

In this work, the stop list of 572 words which is used by the typical retrieval system -
SMART [49] for retrieving English documents was used. Even when a stop list was used
to remove needless words, a lot of words still remained. Hence, words which appeared

twice or less in all training data were removed to reduce further the remaining words.

3.4.8 Dimension Reduction by Principal Component Analysis

Principal Component Analysis (PCA) was used to further reduce the dimension of the
generated feature vectors. PCA is based on the idea of performing an orthonormal trans-
formation called the Karhunen-Loéve transformation, retaining only significant compo-
nents. Orthonormal transformation is a linear transformation which allows the derivation
of uncorrelated features from a set of correlated features [24, 32]. Details and results re-

flecting dimensionality reduction are reported in Chapter 4.

3.4.4 Learning Methods Used with Small Samples

Various discriminant functions were used in the classification experiments which included
Euclidean distance, projection distance, modified projection distance, linear discriminant
function, regularized linear discriminant function and support vector machines. We give
brief explanations for each classifier in Chapter 3. Readers who need details are encour-

aged to consult the indicated references.

The Euclidean distance classifier is trained by computing the mean vector of each
class. Training projection and modified projection distance classifiers involve computing

covariance matrices and eigenvectors for each class [31].

The Support Vector Machine is one of the linear classifiers that use linear boundaries
with margins such that the data from two categories are separated by hyperplanes with
the largest margins. In other words, a support vector machine consists of finding the
optimal hyperplane which is the one with maximum distance from the nearest training
data. SVM can be extended to nonlinear functions when combined with kernel functions.
Details for SVM are found in [20]. In the classification experiments the linear SVM
function (SVM-Linear) and the radial basis function (SVM-RBF), namely the C-Support
Vector Classification were used. Particularly we used the Library for Support Vector
Machines (LIBSVM) version 2.33 that was published by Chang and Lin [15].
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3.4.5 Empirical Results of Randomly Selected Samples

For the randomly selected texts of 10 category case, the results from the experiments show
that:- (1) the regularized linear discriminant function (RLD) classifier outperformed all
other classifiers by achieving the best classification rate (92.5%) with minimal computa-
tional cost. Table 3.1 shows that the RLD exhibited best classification rates in every kind
of feature vector used i.e. absolute frequency, relative frequency and power transformed
features. (2) As shown in figure 3.2, it is evident that the Linear Discriminant Function
achieved lower results than the regularized linear discriminant function (RLD) for every

feature vector used.

Table 3.1: The summary of best classification rates in %. Randomly selected texts of 10
categories

Classifiers AF¥ AFPT RF RFPT
Euclidean Distance 68.9 83.2 78.7 86
Linear Discriminant 85.1 89.6 90.9 91.1
Regularized Linear Discriminant 88.2 90.9 914 92.5
Projection Distance 85.9 90 87.7 90.7
Modified PD 87.6 90.7 87.8 90.7
Linear SVM 86.4 87.7 90.7 90.3
RBF SVM 86.7 89.5 90.5 90.7

O AF O AFPT (v=0.5) S RF ORFPT(v = 0.5)

Classification rates{®s)

Euclidian Lincar RLD PD MPD SVM SVM
Classifiers Linear RBF

Figure 3.2: Learning methods and classification rates of various features. 10 category set.

(3) As shown in table 3.1 and in figure 3.2, the classification rate was significantly
improved by employing the relative frequency instead of the absolute frequency. For

instance the accuracy of the Euclidean distance classifier was improved by 9.8% and
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that of the linear discriminant was improved by 5.8%. (4) As figure 3.2 shows, power
transformation further improved the classification accuracy of each classifier used. The
accuracy of the Euclidean distance classifier was improved cumulatively by 17.1% and
that of the linear discriminant was similarly improved by 7%. Power transformed features
from relative frequency improved classification accuracy such that all classifiers except

the Euclidean distance exhibited over 90% accuracy.

3.4.6  Summary of the Small Samples Results

This Section presents a performance evaluation of techniques for feature transformation
and classification to improve the accuracy of automatic text classification. The normal-
ization to the relative word frequency, principal component analysis (K-L transformation)
and power transformation were applied to feature vectors. Machine Learning Techniques
include the Euclidean Distance, the Linear Discriminant Function, the Regularized linear
discriminant function (RLD), the Projection distance, the Modified projection distance
and the SVMs.

It can therefore be stipulated that:- (1) the highest classification rates by a consider-
able margin for all kind of features were obtained from the regularized linear discriminant
function (RLD) with less computational cost. (2) normalizing the absolute frequency to
the relative frequency followed by the power transformation improved the classifiers’ per-
formance significantly.

Furthermore, relative frequency and power transformation are techniques that showed
considerable improvements in the classification performance. The implication of these re-
sults is that, these techniques can take a great role in getting higher performance without
unnecessarily employing sophisticated techniques to represent texts for classification pur-

poses even at lower dimensionality.

3.5 Experiments Using Large Samples

3.5.1 The Data For The FExperiments — published Splits

We used two popular data sets in our experiments. These were Reuters-21578 and the
OHSUMED data collections. The following two subsections describe them.

3.5.1.1 Reuters-21578

A benchmark collection for text categorization research called Reuters-21578 was used.
This has been widely employed by other researchers, too [49, 76, 83, 82, 96, 100]. Reuters-
21578 is composed of 21,578 articles manually classified into 135 categories. One textual



3.5 Experiments Using Large Samples, Busagala’s Ph.D. Dissertation o1

document may belong to one or more categories. Hence Reuters-21578 poses both multi-

class and multi-label problems.

We used the ModApte Split [100] which contains 12,902 articles. In this split the
training set contains 9,603 documents and for the test set 3,299 documents, and 8,676
documents are not used. ModApte Split is the most commonly used split among the

splits. In total we used 115 categories in the experiments.

3.5.1.2 OHSUMED(HD-119)

The OHSUMED collection was first published as a text retrieval test collection in 1994
[38]. It contains 348,566 MEDLINE references from the years 1987 to 1991. Although
all of the references have titles, only 233,445 have abstracts. According to Lewis et al.
[56], in text categorization problems, queries and relevance judgments in the collection
are ignored. We followed the split used in [56]. There are 183,229 documents from the
years 1987 to 1990 which were used as a training set, and 50,216 documents from the year
1991 which were used as a test set. Categories are based on medical subject headings
(MeSH categories).

Like in some of the past studies [56, 16], the focus here was on 119 MeSH categories in
the heart disease sub-tree (HD-119) of the cardiovascular diseases tree structure. In the
experiments, after preprocessing and labeling, we extracted 90 MeSH categories. We used
12739 abstracts of documents as a training data set. And 3742 abstracts of documents
as test data set. Therefore results presented here are for 90 categories. The HD-119
subtree is a multi-label problem meaning that one document may belong to one or more

categories.

3.5.2 Lexicon Generation

In general, function words are not useful to represent document features while preserving
separability. Therefore, before generating feature vectors, stop words and general words
were removed with reference to a stop list prepared beforehand to reduce the features.
This also reduced the amount of memory required for storage as well as the processing

time required by a classification system.

Even when a stop list was used to remove needless words, a lot of words still remained.
Hence, words with a frequency value of 5 or less in all training data were removed to reduce
further the remaining words. This removal of words reduced the lexicon size from 24868
to 7474 for Reuters and from 32,724 to 11,265 for OHSUMED. According to [82] this
word removal does not affect the classification performance. We did not perform any

type of stemming.
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3.5.8 Implementation of Dimension Reduction

As described in 4.14, PCA was used to reduce the dimensionality and used fewer princi-
pal components. We then applied CDA to appropriate amounts of principal components.
We choose the dimensionality before application of CDA experimentally, meanwhile ob-
serving the classification performance. This was done until no classification improvement

occurred, even when more features were added afterward.

3.5.4  Classification and Performance Measures

3.5.4.1 Learning Methods for Classification

In the experiments & nearest neighbor (kKNN) and support vector machines were used.
ENN can easily handle both multi-class and multi-label problems simultaneously as com-
pared to other classification methods. Since the Reuters-21578 and the OHSUMED col-
lection are both involve multi-class and multi-label problems, Therefore kNN was used

in the classification process.

To determine the kNN a cosine similarity function was used in the experiments. The
likelihood scores were obtained using similarity scores. Then the binary category assign-
ments were obtained by specifying a threshold. The k value was experimentally varied
from 1 until when the classifier gave more errors rather than improving the performance.
Detailed explanations of kNN can be found in 2.2.4.

Another machine learning method is the support vector machine described in 2.2.3.
We used the SV MLt package [41]. In the experiments we divided each classification
task into n binary classification problems. The linear kernel was adopted. This is because
a considerable a number of studies have shown that linear classifiers outperform non-linear
ones in ATC [96], [100], [41]. Unless otherwise mentioned, we used the default parameters
of the package to construct the training model.

The third learning method that was used is the logistic discrimination method. This
is described in details in Section 2.3.4. Therefore the details are omitted in this section.

3.5.4.2 Measuring Classification Effectiveness

We adopted the recall, precision and F-measure for performance evaluation of classifi-
cation effectiveness. These measures are regarded as standard evaluation methods for
classification systems in automatic text classification. The details can be found in 2.5.1.
Micro-averaging and macro-averaging strategies are commonly adopted. To enable com-
parisons with other works in the literature we adopted micro-averaging and report F-

measure Scores.
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3.5.4.3 Statistical Significance of Improvements

Statistical significance testing gives an insight into any apparent improvement in the
performance of algorithms or methods. It is therefore desirable to perform statistical
analysis to show whether the proposed methods really have an impact on the performance
of text categorization.

We used the methods described in Section 2.5.2 to perform a statistical analysis. The
null hypothesis Hy is that RFPT and TFIDF provide the same error rate when learning
and classification is done on the same test set T. Statistical analysis results are presented
in Section 3.5.5.2.

3.5.5 Empirical Results of Published Splits
3.5.5.1 The Effect of Feature Transformation

Fig. 3.3 plots the indexes of skewness and kurtosis. This figure illustrates the effect of
feature transformation on both the Reuters-21578 and the OHSUMED data sets. For
the Reuters data set an example from the acquisition class was used (see 3.5.1.1 for the
description of this data set). For the OHSUMED data set the data from heart diseases
was taken as an example.

It can be observed that the data before power transformation (i.e., RF) are skewed
as shown by the skewness index. In Fig. 3.3(a), it can be observed that the values of
of (3.14) by the RF take a wider range which is mainly from around 5 to above 40. This
indicates that the distributions of the RF are accompanied by a property of peakedness
because they show large positive values of the kurtosis index. The problem was mitigated
for the RFPT and the kurtosis values closely clustered around 3. Fig. 3.3(b) indicates
both positive and negative skewness of the variables in the distribution of the RF. This
problem was solved when the proposed transformation was applied as shown by values
of the skewness index from the RFPT.

The trend of kurtosis and skewness is similarly observed for the TFIDF in figures
3.3(c), 3.4(a), 3.4(b) and 3.4(c). It is noteworthy that the distributions of the RFPT are
more Gaussian-like than that of the TFIDF.

Figure 3.5 gives another view of the impact of feature transformation. The general
observation from the experimental results is that the classification performance of trans-
formed features are higher than those of untransformed features. This means it is better
to use feature transformation techniques than untransformed features. This is because
transformed features do not depend on text length and have better sample distribution —
Gaussian-like distribufion is advantageous to classification systems. The detailed expla-
nation for this is given in Section 3.3.

Looking at Fig. 3.5, we also noted a consistent trend which is seen in the ATC
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Figure 3.3: The effect of feature transformation based on kurtosis and skewness indexes
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Figure 3.4: The effect of feature transformation based on kurtosis and skewness indexes
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Figure 3.5: The impact of feature transformation on classification performance. Features
used include absolute term frequency (AF), AF followed by power transformation(AFPT),
relative term frequency(RF), power transformed RF (RFPT), term frequency weighted
by inverse document frequency(TFIDF), and power transformed TFIDF (TFIDF+PT)

literature. That is to say classification performances for the Reuters-21578 collection are
always higher than those for the OHSUMED data set. This is because the heart disease
subtree (HD-119) consisted of closely related documents between classes. It is also useful
to note that results from the HD-119 can not be directly compared with results in [41].
This is because the work in [41] uses relatively general medical subject headings (MeSH)
from higher level tree structure of 23 Mesh categories. By the term ’general’ we mean
that the documents from one class to another are not very closely related to each other

compared to those in HD-119 subtree. Hence they are relatively easier to classify.

Furthermore, we noted that the RFPT features consistently gave better results than
the TFIDF features for the both classifiers and for both of the two data sets. The
difference is more obvious with kNN. A similar situation is seen for SVM when Reuters
data set was used. We also found classification improvements with the TFIDF+PT. But

in most cases, its performances are lower than that with the RFPT features.

Another interesting point can be noted from Fig. 3.5 is that the power transformed
TFIDF i.e., TFIDF+PT achieved higher classification performance than the conventional
TFIDF. This means power transformation improved the sample distribution as explained

earlier.

The results of logistic discrimination are included in Fig. 3.5. However we note that
the logistic discrimination classifier can give poorer decision boundaries than support
vector machines since it does not use margins. This is due to the fact that it is influenced

by regions of high density rather than samples close to the decision boundary.
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3.5.5.2 Statistical Analysis of Improvements with RFPT

We carried out statistical analysis to find out whether the improvements were significant.
In this Section the analysis was between RFPT and TFIDF on respective classifiers and
data sets. Classification scores are considered in terms of the number of true positives
(T'P), false negatives (FN), true negatives (T'N) and false negatives (FN)*.

We were particularly interested to know whether RFPT performed statistically better
than TFIDF. The null hypothesis was that RFPT and TFIDF would achieve the same

performance on test data.

Table 3.2: Results of the statistical analysis: RFPT versus TFIDF. p-values are indicated
as p.

Reuters OHSUMED
kNN SVM kNN SVM
RFPT (F-measure) 86.8% 87.8% 68.5% 71.16%
TFIDF (F-measure) 82.1% 85.9% 65.3% 70.3%
McNemar p < 2.2e-16 | p=9.088e-05 | p = 0.003497 | p = 3.366e-05
x? Test p=1.63e-13 | p=0.02563 | p = 0.04427 | p = 0.03403
Z-test p = 1.083e-31 | p = 9.088e-05 | p = 0.003497 | p = 3.366e-05

Table 3.2 summarizes the analyzed statistical results. When using kNN on Reuters we
found that RFPT performed statistically better (p < 0.01) than TFIDF. Similarly, when
using SVM on the same data set, RFPT achieved statistically better results (p < 0.05).

In the case of OHSUMED data set, we generally found that RFPT was statistically
better (p < 0.05) than TFIDF. Based on this statistical evidence, we can therefore confirm
that the RFPT performs better than TFIDF.

3.6 Experiments on OCR Based Texts

The digitization process of various printed documents involves generating texts by an
OCR system for different applications including full-text retrieval and document orga-
nization. However, OCR-generated texts have errors with regard to the present OCR
technology. Moreover, previous studies have revealed that as OCR accuracy decreases
the classification performance also decreases. The reason for this is the use of abso-
lute word frequency as a feature vector. Representing OCR texts using absolute word
frequency has limitations such as dependency on text length and word recognition rate

consequently lower classification performance due to higher within-class variances. We

*The classification scores were fed to a statistical software called R. The software is available at
www.r-project.org
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present experiments with feature transformation techniques which do not have such lim-

itations and present improved experimental results from all classifiers used.

3.6.1 Background Information on OCR Texts

In recent years, the main means of information exchange has been changing from the
traditional printed information to digital data. This is due to the fact that digital data
such as text, image, and audio can be transferred and retrieved faster, more flexibly and
more easily. Activities such as digital publishing and the digital library might become the
main sources of information in the near future. As a matter of fact digitization projects
have been taking place [6, 63]. Since there has been a need to make archives accessible
through digital information systems, other traditional libraries might be considering con-
verting printed archives into digital data. Digitized materials might need techniques from
automatic text classification (ATC) to be applied to different domain applications such
as automatic indexing for Boolean information retrieval systems; document organization;

information filtering and hierarchical categorization of web pages.

When working with printed documents there might be two ways to generate digital
texts which are keying texts into computer system and using optical character recog-
nition (OCR) systems whereby text materials are extracted from digital text images.
The LDI project team [63] argues that the Harvard University Library keying process
costs approximately 10-13 times more per page than by using uncorrected OCR. They
refer to uncorrected OCR due to the fact that OCR-generated texts generally have er-
rors [71, 74]. The authors in [102] showed the impact of OCR accuracy on automatic
text classification such that as OCR recognition rates dropped down, the classification
performance decreased. In this work, we describe feature transformation techniques for

OCR-generated texts and present improved experimental results from all classifiers used.

3.6.2 Related Works on OCR Based Texts

This paper describes techniques for transforming features from OCR-generated docu-
ments. The literature shows rare research work done previously on OCR in relation to
automatic text classification (ATC). This section gives a brief survey of research that
might be relevant.

The work in [44] reports on OCR text representation for learning with a focus on dif-
ferent techniques for automatic construction of relevant features from Germany language
documents. Their study considered various features including all words, elimination of
stop-words, morphological and composite analysis, and use of n-grams. Some important
results are given. The fact that they used different language datasets, means their work is

remarkably different in various ways. Not only didn’t they perform feature transformation
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techniques but also they didn’t use the benchmark collection for text categorization from
which we generated image text documents to study the impact of transformed features

on OCR-generated documents.

Frasconi et al. [28, 29] performed experiments on text categorization for multi-page
documents extracted by an OCR system. In contrast they used untransformed word
counts i.e., bag of words to represent the texts. They also used information gain tech-
niques for feature selection to reduce the number of features. However we employed
principal component analysis (PCA) after using term selection techniques for dimension

reduction.

The authors in [102] investigated the impact of OCR accuracy on automatic text
classification using absolute word frequency as an OCR text representation technique.
Since absolute frequency depends on text length we propose techniques to solve this

problem.

Most of the research (if not all) mentioned above and in [86], exhibit notable differences
with ours. The biggest difference is that they reported experimental results from OCR
texts represented by untransformed features. Hence we focus on transformed features for

representing OCR texts. Experimental results reveal improved classification performance.

3.6.3 The Data Used for OCR Text Ezperiments

In order to study the impact of transformed features on OCR-generated documents in
the automatic text classification, a training sample was required. Therefore, we used the
Reuters-21578 text benchmark collection for English text classification. The Reuters-

21578 is composed of 21578 articles manually classified in 135 categories.

In the experiments, a total of 750 articles i.e., 150 articles per category randomly
selected from five categories (acq, crude, earn, grain, trade), were used. Since the sam-
ple size was not large enough, the sample was divided into three subsets each of which
included 50 articles per category. When a subset was tested, the rest of the two subsets
were used as learning samples in order to keep the learning sample size as large as possible
while maintaining independence between the samples for learning and testing. Classifi-
cation tests were repeated for three subsets and the average performance measures were

computed.

3.6.4 FExperimental Setup of the OCR Texts

There are three general steps to be followed in the experiments. These included text
image generation, OCR text generation and automatic text classification. The following

are descriptions of these steps.
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3.6.4.1 Text Image Generation

Textual documents from the Reuters collection were printed out. Paper texts were digi-
tized using a scanner into images of different resolutions including 300 dpi, 200dpi, 150dpi,
145dpi, 140dpi, 135dpi and 130dpi. Figure 3.6(a) and 3.6(b) show examples of the text
images for 300dpi and 140dpi respectively.

3.6.4.2 Text generation by an OCR system

In practice, OCR technology can be used in areas such as in automatic entry of informa-
tion into a computer and bank check processing. Since printed information can usually be
entered into a computer system by scanning, then texts have to be generated from those
images. The text images generated above were converted into ASCII texts by OCR soft-
ware "OKREADER2000”. The essence of this step was to simulate a practical example
of the use of OCR technology.

Examples are given in Table 3.3(a) and 3.3(b). The obtained texts were compared with
the original texts in the Reuters collection to compute the average character recognition
rates and the average word recognition rates for each dpi value. The average character

recognition rates can be defined as

ro= 8 - ) « 100, (3.16)

where s and e are the total numbers of characters and the number of miss-recognized
characters, respectively. The average word recognition rate can be defined as
(w—u)

re = —— x 100, (3.17)
w

where w and u are the total number of words and the number of miss-recognized words,

respectively.

3.6.4.3 Classification of OCR Texts

After obtaining ASCII texts, learning and classification experiments could be conducted.
Automatic Text Classification experiments were carried out. There are four general steps

involved in this process.

e Feature Generation: The procedures described in 3.3 were followed in generating

features.

e Dimension Reduction: The principal component analysis (PCA) was used in the

experiments. Chapter 4 explains the details of this technique.
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1986 Year
Net loss after exceptional charges 198 min francs vs profit
250 min
Exceptional provisions for closure of Viviez electrolysis
Plant 187 min francs vs exceptional gain 22 min —
Sales and services 16.51 billion francs vs 20.20 billion
Proposed net dividend on ordinary shares nil vs 110 francs
Company's full name is Vieille Montagne SA &It;VMNB.BR>.

REUTER
(14876)
(a) Text image of 300dpi
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1986 Year
Net loss after exceptional charges 198 min francs vs profit
250 min
Exceptional provisions for closure of Viviez electrolysis
Plant 187 min francs vs exceptional gain 22 min -
Sales and services 16.51 billion francs vs 20.20 billion
Proposed net dividend on ordinary shares nil vs 110 francs
Company's full name 1s Vieille Montagne SA &It VMNB.BR>.
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(14876)
(b) Text image of 140dpi

Figure 3.6: Examples of text images
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Table 3.3: Examples of ASCII texts converted by OCR software

(a) ASCII text from text image of 300dpi

VIEILLE MONTAGNE REPORTS LOSS, DIVIDEND NIL
1986 Year

Net loss after exceptional charges 198 min francs vs profit
250 min

Exceptional provisions for closure ofViviez electrolysis
Plant 187 min francs vs exceptional gain 22 min

Sales and services 16.51 billion francs vs 20.20 billion
Proposed net dividend on ordinary shares nil vs 110 francs
Company’s full name is Vieille Montagne SA &l1t;VMNB.BR;.
REUTER

(14876)

(b) ASCII text from text image of 140dpi

VIFTLLH MONTAGNB RLPORTS LOSS. DIVIDEND NJL
19S6Ye;ir

Net loss after exceptional charges 19S min fnincs vs profil
250 min

Exceptional provisions for closure of Viviez electrolysis

Plant 1S7 ruin fmncs vs exceptional gain 22 min

Sales and services 16,5 billion rr,mes v20.20 biltion

Proposed net dividend OEI ordinary shares nil vs 110 francs
Company’s full name is Vie/lie Monmgne SA &11:VMNB.BR;.
REmER

(14876)
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e Learning Methods

Various classifiers were trained accordingly using a learning sample as follows. The
Euclidean distance classifier involved computing the mean vector of each class. The
linear discriminant function required computation of the weight vector determined
by the mean vector of each class and the pooled within covariance matrix of all
classes. Training the projection and the modified projection distances needed the
computation of the eigenvectors and the eigenvalues of each covariance matrix of
the individual category [31]. Support Vector machines (SVMs) are methods that
find the optimal hyperplane during training. In the eXperiments, C-support vector
classification methods (C-SVC) with linear and radial basis (RBF) functions were
used. Particularly, we used the SVM library (LIBSVM Version 2.33) developed by
Chang and Lin [15].

e Measuring Performance: Recall, Precision and Classification rates were adopted.

3.6.5 Empirical Results of OCR Texts

In this section we present experimental results from different features that include abso-
lute word frequency, relative word frequency and their power transformations. Table 3.4
shows the classifiers’ classification rates versus character recognition rates and the word
recognition rates from absolute word frequency at different resolutions. In this table it
can be observed that, as the resolution of text images decreased, the character recognition
and word recognition rates by an OCR system also decreased. In other words at relative
higher resolutions, it was possible to obtain less recognition errors by using OCR systems.

Similarly, classification rates of OCR texts decreased with an increase in OCR errors.

Table 3.4: OCR text classification rates (%) for absolute frequency vs. character recogni-
tion rates (%) and word recognition rates (%) by an OCR system at different resolutions

(dpi)

Resolution (dpi) 130 135 140 145 150 200 300
Word Recognition Rates 41 53.8 63.7 721 843 929 97.2
Character Recognition Rates 57.7 71.6 82.8 89.8 96 984 99.3
Euclidean Distance 449 519 584 62.1 67.2 70.7 74.3
Linear Discriminant 65.7 74.8 80.1 86.0 88.3 89.9 91.1
Projection Distance 75.2 83.3 87.1 884 90.1 90.7 91.2
Modified PD 78.1 86.3 89.3 91.6 925 92.8 93.1
Linear SVM 76.1 84.9 87.5 89.9 92.0 929 93.3
RBF SVM 64.5 76.8 82.0 86.3 89.5 91.3 92.1

With regard to the OCR texts, the summarized best classification rates from all fea-

tures using different classifiers are given in table 3.5. It is notable that transformed
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features improved the performance of all classifiers used. Performing power transforma-
tion on relative frequency for example made all classification rates to rise as high as over
91%.

Table 3.5: The summary of best classification rates in % at 300dpi
Classifiers AF AFPT RF RFPT
Fuclidean Distance 74.3 89.6 86.0 91.1
Linear Discriminant 91.1 92.8 93.9 94.5
Projection Distance 91.2 94.9 93.3 95.7

Modified PD 93.1 95.3 94.7 96.1
Linear SVM 93.3 95.1 94.3 95.3
RBF SVM 92.1 93.5 944 95.3

Table 3.4, 3.5 and 3.6 also reveal that the modified projection distance (MPD) outper-
formed all the classifiers used in terms of accuracy and robustness. In other words, this
classifier gave the highest classification rates even when there were more OCR errors. For
example when OCR word recognition rate was 41%, MPD was accurate achieving 78.1%.
This is when absolute frequency was used as feature vectors. This improved to 91.7% 1
by employing power transformation on the relative frequency (RFPT). And when OCR
word recognition rate was 97.2%, the MPD’s classification accuracy was improved from
93.1% to 96.1%. This was when RPPT features were used.

Table 3.6: The summary of best recall/precision break even point (BEP) in % at 300dpi
Classifiers AF AFPT RF RFPT
Euclidean Distance 43.6 48.6 42 64.7
Linear Discriminant 87.3 90.1 87.2 91.3
Projection Distance 42.1 52.9 64.2 90.4
Modified PD 45.5 95.9 65.1 91.8

It was observed that the classification rates were significantly improved using rela-
tive frequency instead of the absolute word frequency. For instance, the accuracy of the
Euclidean distance classifier was improved by 11.7% at 300dpi and by 36.2% at 130dpi.
In addition, power transformation on absolute frequency (AFPT) also improved the per-
formance of all classifiers used. However, it is clear that the use of AFPT gave more
classification errors when there were more OCR errors in generating texts.

Power transformation on the relative frequency (RFPT) further improved the classifi-
cation accuracy of each classifier used. For example the accuracy of the Euclidean distance
classifier was improved cumulatively by 16.8% at 300dpi and by 40.4% at 130dpi. RFPT
improved classification accuracy such that all classifiers exhibited over 91% classification

rates.

tNote that 91.7% is a detail which is not reported in table 3.4 and 3.5. It was obtained at resolution
130dpi.
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Not only did the classifiers’ performance rise by doing power transformation on rela-
tive frequency, but also the robustness of classifiers increased such that even when OCR
systems gave a lot of unacceptable huge number of errors, the performance was con-
siderably higher than when using untransformed features in representing OCR texts for
classification purposes. For example, at highest level for OCR errors, when RFPT was
used, the worst classifier performed with an 85.5% accuracy rate. The best classifier came
up with classification rate of 91.7%.

It is also interesting to note that transformed features particularly relative frequency
do not heavily depend on word recognition rates by the OCR systems. The differences
in accuracy between the absolute frequency and the transformed features increase as the

word recognition rates by OCR systems decrease.

3.6.6 Summary of the OCR Text Experiments

In this Section we have shown the impact of using transformed features for OCR-generated
documents in automatic text classification. The findings show that using transformed
features significantly improved the performance of all classifiers used. Even when OCR
systems gave a lot of errors by representing texts with transformed features it was encour-
aging to obtain as high classification rates as possible. The implications of these results
are that, with error-prone OCR texts it is possible to automate the classification tasks
and use the automation in different applications such as information retrieval, informa-
tion filtering and document organization. Future experiments will include increasing the
sample size from more categories for real world applications in text classification. Also,
error correction of words by spell checking also remains for future study to improve text

classification performance.

3.7 A Summary of Document Representation

This chapter proposes the use of relative frequency with power transformation (RFPT)
for document representation in text classification. Experimental evaluation has been
presented. The author evaluated RFPT mainly in three kinds of experiments. First,
experiments were conducted using randomly selected samples. Second, experimental
evaluation was carried out using the widely published splits of benchmark text collections.
Finally, experiments were performed using noisy texts which are generated using OCR
technology.

This technique improved text classification performance. Feature transformation, in
particular the use of relative frequency with power transformation, improves the per-
formance of classifiers significantly. Our empirical results show that RFPT is generally

superior to conventional features namely the term frequency weighted by inverse docu-
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ment frequency (TFIDF).

The implication of these results is that, these techniques can take a great role in
getting higher performance without unnecessarily employing sophisticated classification.
After all, it is desirable to have better classification performance with efficient and simpler

techniques than to have complex methods to be employed in the classification process.



Chapter 4

Feature Reduction

4.1 Introduction

In automatic text classification by machine learning, feature vectors to represent texts
are commonly generated by the use of the term frequency, consequently the so called
curse of dimensionality arises. Extremely high-dimensional space increases learning com-
plexities which is detrimental to the classification performance of a system. This problem
arises because it involves simultaneous increase in dimensionality of the feature vectors
with the increase in the number of words (lexicon size). For example, in this research
the dimensionality of the word frequency vector of all used articles from Reuters-21578
amounted to 24,868 words. Such a high dimensional feature space needs large calculation

resources for processing and memory storage capacity for classification.

In order to solve this problem the dimensionality has to be reduced. This is preferably
done while extracting informative features that can improve classification performance.
Conventionally, the dimensionality reduction techniques that have been used are latent
semantic indexing (LSI) [82] and the mutual information (MI) method [41, 82]. In recent
years, some works applied principal component analysis (PCA) to reduce the dimension-
ality [48]. However PCA has not been experimentally studied in relation to transformed
features in automatic text classification. Practically, it is not accurate to assume that it
would work without experimental studies in the field of ATC.

It is notable further that PCA [24] and LSI [90] ignore category specific information.
For example, PCA maximizes the total scatter across all class resulting into retention of
non-discriminative information. To avoid the drawbacks of PCA, it might be desirable
to perform canonical discriminant analysis (CDA) [89] - a common statistical method in
other fields of research, but not common in ATC. However, there is a singularity problem
of the within-class covariance matrix that arises due to higher dimensionality compared
to the sample size. Therefore we study the combined dimensionality reduction with PCA.

We note that the approach we present in this work is not common in ATC literature.

67
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This combination can be known as the PCA+CDA algorithm.

Contrary to our approach for dimensionality reduction, Kim et al. [46] studied dif-
ferent algorithms for dimensionality reduction which include the Linear Discriminant
Analysis/Generalized Singular Value Decomposition (LDA/GSVD) algorithm. However,
they could not report some of their experimental results because the algorithm namely
LDA/GSVD on the Reuters-21578 data collection ran out of memory while computing
the GSVD. This is because the algorithm involves a lot of calculation resources as indi-
cated on page 49 of their paper. This means their algorithm could not handle a larger
number of data like those in the OHSUMED data set which we used in the experiments.

The rest of this chapter is organized as follows. Section 4.2 provides the review of
the state of the art on feature reduction in text classification (TC). Section 4.3 describes
the proposed methods for feature reduction by extraction. Particularly, we study the
PCA+CDA algorithm. We also propose an extension of this algorithm to handle multi-
label data. Furthermore we propose a technique called integrated discriminant analysis
(IDA) with the ability to handle multi-label data as well. Section 4.4 and 4.5 present
experimental results. It is observed that the proposed methods in this chapter are effective
in extracting fewer features with high discriminating power. Section 4.6 presents the

concluding remarks of this chapter.

4.2 Conventional Methods for Feature Reduction

Methods for feature reduction can be grouped into two categories. These include feature
selection and feature extraction. In this section we review representative methods for

every category.

4.2.1 Document Frequency Thresholding (DF)

The DF is one of the methods classified under the feature/term selection category. Doc-
ument frequency can be defined as the number of documents in which a term occurs [97].
The document frequency can be computed by using the training sample. Then those
terms which are below a predetermined threshold can be removed. This idea is based on
Zipt’s law with the assumption that very rare terms are not influential in the classification
effectiveness. This is true especially when the rare terms introduce false features. Based
on the same law most frequent words do not represent documents discriminately. This is
one of the simplest methods for reducing the size of the vocabulary list

In our experiments when using the randomly selected sample from Reuters-21578, we
removed the words which had document frequency below 3. This was done after removing
the functional words with reference to a stop-word list. Similarly, with the published split

namely “ModApte” split of the the Reuters, we removed words with values of document
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frequency below 6. According to [97], it is possible to reduce the dimensionality (the

vocabulary list) by a factor of 10 without noticeable loss in classifier’s performance.
The problem with DF is when a category of texts has very few documents. In prac-

tice ModApte split of Reuters21578 for example has document categories with only one

training document. Therefore one should use this method with great care.

4.2.2  Pointwise Mutual Information (PMI)

The pointwise mutual information method is one of the feature selection methods. Con-
ventionally, it has been reported by many other researchers* in text categorization [82,
97, 93]. Consider a word/term ¢t and a category w. PMI can be defined by

PMI(t,w) = log (4.1)

P(t) x P(w)’
where P(t,w) is the joint probability of ¢ and w. P(t) is the marginal probability of ¢ and
P(w) is the marginal probability of category w. Let 7 be the number of times that ¢ and
w co-occur and v be the number of times that ¢ occurs without w. Furthermore denote
1 as the the number of times that w occur without ¢t and denote N as the total number

of documents in w. The estimation of PMI can be given by

TXN
(T+9) x(r+v)

PMI(t,w) = log (4.2)

To get a measure of the goodness of a term in all features, category specific scores of

a term can be combined in one of two ways:
c
PMIuy(t) = Y P(w;)PMI(t,w;), (4.3)
j=1

or alternatively the estimation can be defined by
PM I, (t) = max _{PMI(t,w;)}. (4.4)

The terms with higher scores are chosen using a threshold such that the terms with values
below the threshold are discarded.
The PMI method has a weakness in that the score is strongly influenced by marginal

probabilities of terms, as it can be noted in the equivalent form:

PMI(t;w) = logP(t|w) — logP(t)

*In most of the works it is called mutual information. According to [93] the name contradicts with
the information theory. It should therefore be correctly called pointwise mutual information
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Rare terms always have higher score than common terms especially those terms with
equal conditional probability. Thus it is sensitive to probability estimation errors as it is

highly influenced by the marginal probabilities.

4.2.3  Mutual Information Method (MI)

One of the most used conventional techniques for dimensionality reduction is the mutual
information method (MI) [41, 81, 82]. It is one of the methods developed from the
information theory. This is also called Information gain in [82, 97]. In this section we
follow the definition from information theory [41].

Let H(t) = — >, P(t)logyP(t) and H(Q2) = — 3" P(w)log,P(w) be the entropies
of a random variables document t, and category (2, respectively. Denote H(t, () as the

joint entropy of these variables defined by

H(t,9Q) == ) P(t,w)logyP(t,w). (4.5)

tet we

The entropy is a measure of uncertainties in the particular random variables. Mutual
information aims at reducing the uncertainty of a random variable as a result of knowing

about the other variable. Formally, the mutual information can be defined by

MI(t;Q) = MI(Q,t) (4.6)
= H(t) + H(Q) — H(t,Q) (4.7)
S Plt s sl 49

tet wed

where P(t,w) is the joint probability between term ¢ and class w. P(t) and P(w) are

marginal probabilities of term t and class w, respectively.

In order to obtain a measure of mutual information for every term/word, equation
(4.8) needs to be rewritten [81]. For C classes, mutual information between a term ¢ and

a set of categories {2 computed from equation (4.8) can be written as

tarr = MI(t, Q) (4.9)
S P(t, w)log, i) 4.10

In other words, MI compares the probability of observing a term ¢ and w together (i.e.,
joint probability) with the probabilities of observing ¢ and w independently. If there is a
high association between ¢ and w, then the joint probability P(t,w) will be larger than

P(t)P(w). Using (4.10), one can compute the measure of mutual information of every
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term or feature. Based on a predetermined threshold, those features with higher values
are retained for the classification process. Those features with values below the threshold

are discarded.

4.2.4  Principal Component Analysis (PCA)

The PCA method falls into the category of methods of feature extraction. There are two
contextual definitions of PCA that lead to the same algorithm. PCA can be defined as
the orthogonal projection of the data onto a lower dimensional linear space such that
the variance of the projected data is maximized. Equivalently, it can be defined as the
linear projection that minimizes the average projection cost, referred to as the mean
squared distance between the data points and their projections [7]. The former definition

is preferably used in this work.

To solve the problem of high dimensionality, PCA can be applied [24, 32]. For the

convenience of the reader, a short review is given below. From the set of training doc-

uments x = {xi,X2,---,Xy} the total covariance matrix X of the training sample is
computed by
1
I NZ(x—m)(x—m)T; (4.11)
XEX
1
m= > x, (4.12)

XEX
where m is the total mean vector of training sample.

The corresponding matrix of eigenvalues A = diag[A; ..., \,] and eigenvectors & =
[®;...®,] are obtained by the definition:

0 = AD, (4.13)

provided that Ay > Ao > -+ > A,

Using eigenvectors which correspond to m(m < n) largest eigenvalues, principal com-

ponents U = [uj ..., U] are defined by the linear transformation
u=>o"x (4.14)

The reduced dimension of feature vectors is composed of m principal components u =
[y ..., Un]. This forms a projected or transformed data set Z = {uy,...,un} with the

extracted principal components used in the classification process.

Note that the transformation matrix ® satisfies orthonormal condition such that

TP =1 (4.15)
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Multiplying ®7 both sides of (4.13) and making use of (4.15) we obtain the maximized

variance (i.e., eigenvalues) matrix by
PTLD = A, (4.16)

which satisfies the eigenvalue analysis of equation (4.13).

4.3 Proposed Methods for Feature Reduction

4.3.1 The PCA+CDA Algorithm

One drawback of PCA is that it ignores category specific information. It maximizes the
total scatter across all classes (i.e. total variance) resulting in retaining non-discriminative
information. Canonical discriminant analysis (CDA) [24, 32, 89] can be applied instead.
However, direct application of CDA to high dimensional space data can lead into the
singularity problem of the within-class covariance matrix. To avoid this problem, after
reducing the dimensionality using PCA, we use CDA on the reduced features.

CDA considers category specific information since it uses the between class and the

within-class scatter matrices that generalizes the equation (4.13) as
Sp® = ASw®, (4.17)

where Sp and Sy are between-class and within-class covariance matrices respectively.

Their definitions are given by

m)(m; — m)7, (4.18)

2|2

and

c
1
= —]\72 (u—m;)(u—m,)7, (4.19)
j=1 u€g;

where the mean vector for each class m; is defined by

m; = Zu (4.20)

uE._.]

N; and E; refer to the number of documents and the set of text sample in a particular class
wj respectively. The other symbols are defined as before. The canonical discriminants
can be obtained using equation (4.14). It is worth noting that since Sp is the sum of C
matrices and each of the matrices is of rank 1 or less, hence Sp is of rank C' — 1. Therefore,

there are at most C' — 1 nonzero generalized eigenvalues and their vectors. This implies
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that C — 1 dimensional space or less may give the highest classification performance.

It is worth noting that Sp and Sy are related to total scatter matrix Y as
Yr =S5+ Sw. (4.21)

The reader can note that the total scatter matrix Y is defined in expression (4.11). The
criterion for class separability in CDA is obtained by optimizing a function that leads to
extraction of high discriminating power from data points. The objective is to achieve the
highest separability of between-class data points meanwhile minimizing the variance of

the within-class data points. One of the criterion is obtained by maximizing

J(®) = %ﬁ%. (4.22)

This criterion can also be written as
J(®) = tr{S,' Sp}, (4.23)

or alternatively it can be written as
J(®) = tr{(®Sw®T) " (®S52")}, (4.24)

which represents function of the projection matrix @ explicitly. This means that J(P)
should be large when the between-class matrix Sp is larger or when the within-class

matrix is smaller. In so doing class separability is maximized.

4.8.2  Integrated Discriminant Analysis (IDA)

Motivated by some propertiesiof CDA and PCA, this section proposes the integration
of the two. The canonical discriminant analysis in 4.3.1 maximizes the variance ratio
while extracting features with high discriminating power. In text classification usually
one has to face smaller sample size compared to its dimensionality as discussed in the
research problems (iii) and (v) of 1.4.3.1. Furthermore, CDA extracts C' — 1 features
where C is the number of classes. These properties hinder the applicability of CDA
in automated text classification (ATC). This is because the within-class matrix can be
singular leading into a numerical instability problem. While the PCA in 4.2.4 maximizes
the total variance [7], it does not consider class-specific information. This can result in
retention of non-discriminative information.

The integrated discriminant analysis (IDA) in this section optimizes both variance
ratio and the mean square error simultaneously. Therefore, the integrated discriminant

analysis can be regarded as the integrated optimization of PCA and CDA. Consequently,
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we call it Integrated Discriminant Analysis (IDA).
Let 3 be a constant in the range [0, 1]. Furthermore, let A and ® denote eigenvalues
and corresponding eigenvectors, respectively. Then, IDA can be treated as a generalized

eigenvalue analysis and defined by
(Sp+ BSw)® = {(1 — B)Sw + BI}PA, (4.25)

where Sp and Sy are between-class and within-class covariance matrices and their defi-
nitions are given in (4.18) and (4.19), respectively. I is the identity matrix. A and ® are
the eigenvalues and eigenvectors, respectively.

When 8 = 0, expression 4.25 tends to be equivalent to (4.17), therefore equivalent to
the classical discriminant analysis and, when 5 = 1, it tends to be equivalent to equation
(4.13), therefore equivalent to the principal component analysis (PCA). IDA solves the

following optimization problem:

e 27 (S2+ BSw)®
S{(1=B)Sw + BI1T

(4.26)

The determination process of the integration parameter 5 can be estimated via cross-
validation techniques as proposed in [30, 36]. The expression (4.14) can be used to
extract m features with high discriminatory information. Empirical results show that
IDA is effective in TC.

It is worth noting that we compared IDA with a variant called regularized discriminant
analysis (RDA) [30]. The definition of RDA is given by the modification of Sy satisfying
the relation:

Sp® ={(1—a)Sw + a@]}@& (4.27)
where o is a constant in a range [0, 1]. n is the dimensionality. It is notable that the
objective of RDA is to solve the singularity problem of Sy,. Therefore, RDA is limited
to C — 1 features. In the case of limited number of document categories, it can extract

insufficient features. On the other hand, IDA does not suffer from such limitations.

4.3.8  Discriminant Analysis for Multi-label Data

Let Q = {wi,ws,...wc} be a finite set of labels or classes and its size be denoted by
C. In classical text classification, multi-label texts are usually decomposed into C binary
classification tasks [82], [96], [100] [41]. In other words, each document x; € x is labeled
with a single label w; € Q. Methods in 4.3.1 and 4.3.2 can be directly applied to single
label documents.

For data with multi-label, some considerations should be made to handle the problem.

Each document x; € x is assigned multiple labels from . Hence a labeled textual
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document is a pair (xx, L) where L C 2 is the set of labels assigned to x;. The single

label problem is therefore a special case in which the size of L is one for every document.

One way of applying CDA to multi-label data, is to formulate C binary classification
tasks. Consequently, a positive class and a negative class would be constructed. There-
fore, CDA or IDA can be applied independently to all C' problems. In doing so, it would
result in at most one feature component per document. This may result in insufficiency
of discriminative information. Another problem with binary decomposition for CDA, is
that the correlation among classes is ignored.

Therefore, instead of constructing C' binary problems, we make sure that every docu-
ment with multiple labels contributes to all classes to which it belongs. In other words,
when discriminant analysis techniques are applied, document x; € x appears in  as
many times as the size of L. The advantages of this technique include a high possibil-
ity of getting the optimal amount of discriminative information and the correlation of
categories is taken into consideration. Experimental results show that this approach is

effective in text classification.

4.4 PCA+CDA Experiments

4.4.1 Fxperimental Setup of Randomly Selected Samples

The data for experiments are described in 3.4.1. The vocabulary list was generated using
the same procedure explained in 3.4.2. Learning methods used in the experiments are
also described in 3.4.4. Particularly, we present results from Euclidean distance, modified
projection distance and linear SVM.

The features used include absolute term frequency (AF) and relative term frequency

with power transformation (RFPT).

4.4.2  Empirical Results of Randomly Selected Samples

Figures 4.1 and 4.2 show the relationship between the average classification rates and the
dimensionality of the feature vectors after power transformation from relative frequency
features. It can be easily seen that the PCA+CDA algorithm achieved the highest clas-
sification rates.

The PCA+CDA algorithm reduced the dimensionality meanwhile extracting features
with high discriminatory information. PCA+CDA was effective on both transformed and
non-transformed features as illustrated in Fig. 4.1. It has been observed that PCA+CDA
extracted features such that 1.5% (60/4000 dim.) of the feature could achieve the highest

classification rates.
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Figure 4.1: PCA+CDA effect on randomly selected sample of 10 categories from Reuters-
21578 using Euclidean distance classifier
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4.4.3 Ezperiments on Published Splits of Data Sets

This section describes the implementation issues of published splits of data sets. Specifi-
cally, we briefly describe the data for experiments, the adopted feature selection methods,
the techniques used for dimensionality reduction, the classification process and the per-
formance measures that we applied.

We used two popular data sets in the experiments. These are the Reuters-21578
and OHSUMED data collections. ModApte Split was used in the case of Reuters-21578.
Heart diseases tree (HD-119) was used in the case of OHSUMED. The details of these
data sets are described in 3.5. The vocabulary list was generated as explained in 3.5.2.

As described in section 3, PCA was used to reduce the dimensionality. We then applied
CDA to the appropriate amount of principal components. We chose the dimensionality
before application of CDA experimentally.

The learning methods used include kNN, linear and polynomial SVMs. We adopted
the recall, precision and F-measure for performance evaluation of classification effec-
tiveness. These measures are regarded as standard evaluation methods for classification
systems in automatic text classification. The definitions of these measures can be found
in 2.5.1. Micro-averaging and macro-averaging strategies are usually adopted. For com-
parability with other previous works in the literature we adopted micro-averaging and

report F-measure scores.

4.4.4 The Effect of PCA+CDA Algorithm on Published Splits

In this subsection, we present the effect of the PCA+CDA algorithm based on the exper-
iments. We included other dimensional reduction techniques for comparability. These in-
clude the mutual information method (MI), principal component analysis (PCA), canon-
ical discriminant analysis (CDA) and the PCA+CDA algorithm.

Let us begin our discussion by considering the aspect of Fisher’s ratio for techniques
such as PCA and CDA. Fisher’s ratio is a measure of the discriminating power of variables
from various classes (groups). The higher the ratio the higher the separability of the
samples. Fig. 4.3 plots the Fisher’s ratios (a.k.a F' ratio or variance ratios) of principal
components (PCs) and canonical discriminants (CDs) from the training documents. This
figure shows that CDs have significantly better separability than PCs. It is shown that
RFPT have the highest F ratio implying better classification effectiveness than that of
TFIDF.

Before we proceed to describe the results, it is good to note that, unless otherwise
stated, CDA in this section is applied to 1000 principal components (PC) of RFPT or
TFIDF instead of direct application to original features. The 1000 PCs were chosen
because the dimensionality is computationally reasonable, and yet sufficiently high for

feature representation.
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Figure 4.3: F ratio (a.k.a Fisher’s ratio or simply variance ratio) of PC/CDs. AF (abso-
lute term frequency), RFPT (relative frequency with power transformation), and TFIDF
(term frequency weighted by inverse document frequency). The higher the F' ratio the
higher the separability. The ratios were obtained from ModApte split of Reuters-21578.
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In Fig. 4.4, it can be revealed that PCA+CDA considerably improves the classification
performance. Although TFIDF responded positively to canonical discriminant analysis,
RFPT generally gave better classification performance than TFIDF. This is even obvious
with the kNN classifier on the Reuters data set. The difference for SVM is smaller than
that of the kNN classifier. This is possibly because SVM is closer to the Bayes optimal
classifier for this data set than ANN.

It is worth mentioning that direct application of CDA to original RFPT of 7474
dimensionality achieved 76.4% (micro-averaged F;) with kNN on Reuters. This is signifi-
cantly low than the application of PCA+CDA which achieved micro-averaged F;=86.8%.
This is because of rank deficiency and numerical instability problems emanating from in-
adequate sample size per dimensionality. This problem occurs when the sample size is

smaller than the size of the feature vector.

The Figures 4.5, 4.6, and 4.7 give the relationship between dimensionality and micro-
averaged F7 or F-measure. The term dimensionality refers to the amount of features

used. Comparisons of various features and classifiers are given. Similarly it is clear that
RFPT performs considerably better than TFIDF.

PCA+CDA outperforms all compared methods in this case. This is especially better
at lower dimensionality. This means PCA+CDA algorithm can extract fewer features
with higher discriminatory information. When ENN (Fig. 4.5) and polynomial SVM
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(Fig 4.6) are used, the differences with the conventional methods for feature reduction
are higher at lower dimensionality.

Furthermore, it is noted that even when high amount of features were added above
the optimum level there was no performance improvement. From section 4.3.1, it can be
recalled that CDA algorithm produces C' — 1 nonzero generalized eigenvalues, leading to
equivalent dimensional space that gives highest performance.

Before proceeding to the next subsection, it is worth noting that the mutual informa-
tion (MI) method gives lower performances than its counterparts. This is even obvious
at lower dimensionality, or when relatively fewer features are used. The main reason is
that the features selected by the MI method are mutually correlated, while PCs and CDs

are uncorrelated.

4.4.5 Classifier’s Efficiency Improvements by PCA+CDA

Nonparametric classifiers such as kNN may be slower if subjected to high dimensional-
ity, which is always the case in automatic text classification. However, the combined
dimensionality reduction improved classifier’s efficiency with improved classification per-

formance.

Table 4.1: kNN classifier’s efficiency on Reuters (time in milliseconds per text), LT =

linear transformation
Dimensionality LT Time AkNN Time Total Time

All Features 7474 - 708.3 708.3
PCA 1000 92.4 110.0 202.4
CDA 114 14.7 31.6 46.3

Table 4.1 summarizes the time used for classification at different dimensionality. The
linear transformation column represents the time used to perform linear transformation
defined by equation (4.14). It can be seen that kNN time was reduced from 708.3 to 31.6
milliseconds per text, which is about 22 times less than using all words. Similarly the
total time was reduced from 708.3 to 46.3 milliseconds per text, which is about 15 times
less. The encouraging thing is that this efficiency improvement goes along with better

classification performance.

4.5 IDA Experiments and Results

In order to verify the performance of integrated discriminant analysis (IDA), we used the
published splits of data sets.
For comparison reasons we included results of PCA+CDA which are presented in 4.4.4.

Results for regularized discriminant analysis (RDA) are also included in this section.
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The classifiers included kNN, support vector machines using linear and polynomial
kernels. All these classifiers are described in chapter 2.
The performance measures adopted here are recall, precision and Fj-measure. The

definitions of every method are presented in Section 2.5.

4.5.1 Experiments on Published Splits of Data

We used two popular data sets in our experiments. These are Reuters-21578 and OHSUMED
data collections. We used the ModApte Split of Reuters-21578 and Heart Disease Tree
of 119 Medical Subject Heading (MeSH). The details of these data sets are described in

3.5. The vocabulary list was generated as explained in 3.5.2.

4.5.2  Effect of IDA on Published Splits of Data

Figures 4.8, 4.9 and 4.10 show the relation between dimensionality and Fj-measure. In
these figures only the well optimized results are reported.

It can be observed that when kNN is used in Fig. 4.8, IDA improves the performance
of this classifier. For both data sets IDA achieved the highest classification performance
especially at the range of features between 100 and 150. It is interesting also to note that
RFPT generally outperformed TFIDF.

A closer perusal of Fig. 4.9 reveals that IDA outperformed other methods for features
reduction. The differences with other methods is even significant in Fig. 4.9(b) when the
OHSUMED data set is used.

A similar trend is seen in Fig. 4.10, linear SVM is also favored by IDA. This is
particularly true with the Reuters-21578 data set. The interesting point that can be
seen in figures 4.10(b) and 4.10(a) is when IDA outperformed the other feature reduction
methods, especially when RFPT is used. It can be observed that IDA on RFPT performed
best, especially when more than 114 features are used. This demonstrates the fact that
IDA is not limited to C' — 1 features. In contrary CDA and RDA are limited to C' — 1
features, as demonstrated by the fall of performance after C' — 1 features.

The reasons for the improved performance by IDA are described in Section 4.3.2. IDA
simultaneously optimizes the variance ratio of CDA and the mean square error of PCA. In
so doing it extracts features with richer discriminatory information. Furthermore it does
not suffer from the singularity problem due to smaller sample size than its dimensionality.
In addition it is not limited to C' — 1 classes of data. This makes it more practical than
RDA.

Based on these empirical results, which are plotted in figures 4.8 to 4.10, it can be
said that IDA is effective in automated text classification (ATC). It can extract optimal

features with high discriminating power leading to improved classification performance in
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ATC. By extracting fewer features, the classifier’s efficiency improvement can be realized

similarly to what is discussed in 4.4.5.

4.6 Summary of Feature Reduction

This chapter mainly deals with feature reduction. It starts by reviewing the conventional
methods used in text classification which are mainly based on feature selection. While
these methods have been widely applied to text classification, feature extraction methods
are sparsely applied.

This chapter proposes methods for feature extraction to reduce the dimensionality.
Various experiments on different data sets are presented. These include randomly selected
data which are experimented using the 3-fold cross-validation technique. Furthermore
published splits by other researchers were used in the experiments. These are relatively
large samples with many categories reflecting the real world problems.

Feature extraction methods studied include the combination of principal component
analysis and canonical discriminant analysis (PCA+CDA). The studied dimensional re-
duction approach drastically reduced the dimensionality. This goes along with improved
classification performance.

Furthermore, integrated discriminant analysis (IDA) is proposed in this chapter. Em-
pirical results show that IDA is suitable and practical for text classification. This implies
that higher classification performance can be achieved even at lower dimensionality. This
is realized with improved classifier’s efficiency in terms of learning and classification speed.

Future research includes employing more samples.
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Chapter 5

Feature Integration and Ensembles

5.1 Introduction

The objective of feature integration is to seek to represent documents appropriately in a
machine learning system. It seeks to obtain a more informative representation that can

enhance the discriminating power by the learning algorithms on textual data.

In this chapter we propose a technique for feature integration by incorporating pre-
processed, transformed and reduced features. This integration generates composite fea-
tures that have enhanced discriminating power. The integration performed in this study
involves transformed and term weighted features.

The aim of transforming the features before integration is to avoid text length varia-
tion and asymmetry of sample distribution. Therefore, transformed features can be more
informative on class separability. On the other hand, it is seen that term weighting is
applied by using inverse document frequency to the other set of features for integration.
The essence of term weighting is to deemphasize the terms that appear in most of the
documents. This is because terms that appear in most documents may mask discrimina-
tive information for classification. Term weighted vectors are assumed not to suffer from
the inadequacy of discriminative information.

Feature reduction using techniques such as principal component analysis (PCA) is car-
ried out. The reason for using feature reduction is to obtain a more manageable amount
of features with high discriminating power. After the integration, discriminant analysis
(DA) methods can be applied for two reasons. First of all, DAs unify the discriminative
information shared by the integrated features. In so doing, extracting a more informa-
tive representation of data. Secondly, DAs simultaneously extract fewer features which
improve classification effectiveness and the computational speed (efficiency).

This chapter also proposes multiple feature-classifier combination (MFC). In the con-
ventional method of multiple classifier combination, only one type of feature is used.

Unlike the conventional way of classifier combination, in this technique, various types
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of features are separately fed to different classifiers. Then the classification algorithms
are combined to improve the classification effectiveness. The classifier decisions were
combined by the use of the majority vote function.

The rest of this chapter is organized as follows. Section 5.2.1 describes the proposed
feature integration. Section 5.2.2 introduces the details on MFC. Section 5.3 presents
experiments conducted to investigate the applicability of the proposed methods. Section

5.4 describes the empirical results. Section 5.5 gives the concluding remarks.

5.2 Methodology

9.2.1  Classification Approach with Feature Integration (FI)

The general steps for the approach that incorporates FI are summarized in Fig. 5.1.
First we generate feature vectors which represent the documents as described in 3.3.
The second step consists of feature transformation which include transforming absolute
term frequency to relative term frequency (RF) and power transformation (PT). This is
especially for step 2(a) in Fig. 5.1. Step 2(b) represents term weighting process given
in equation (3.2). Step 3(a) and 3(b) depict dimensionality reduction by using principal
component analysis (PCA) (see Section 4.14). They are separately shown because they
are applied to different types of features.

Step 4 is for the novel technique for feature integration which is proposed in this work.
Details are given in this Chapter. After this integration, canonical discriminant analysis
(CDA) or any other discriminant analysis methods can be performed in step 5. Learning
is carried out in step 6. Finally, classification is executed in step 7.

In our method, feature integration (FI) can be defined as the combination of various
features to generate composite features that give higher classification effectiveness. The
objective for FI is to compose more informative features by extracting discriminative
information from the transformed and/or weighted features. Consequently, it improves
the separability of the between-class documents. The integration studied here include
use of the concept of concatenation. Therefore this technique can be known as feature
integration by concatenation (FIC). Improved separability of class documents can be
achieved by suitably integrating reduced transformed features (RFPT) and the term
weighted features (TFIDF).

Class document separability is improved because the integrated composite features
receive the discriminative information from both RFPT and TFIDF. Particularly, REPT
does not depend on document length, and its variable distributions have the properties of
Gaussian-like distribution. The reader can recall from 3.3 that Gaussian-like distributions
reduce classification errors yielded by non-optimal classifiers. The TFIDF discriminative

information emanate from the assignment of high degree of importance to terms that
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Figure 5.1: Algorithm for automated text classification with feature integration. IDF is
the abbreviation for inverse document frequency.

occur in only few documents of the text data set.

Let us assume that there are two feature vectors for integration: (1) the term frequency
weighted by inverse document frequency (TFIDF) and (2) the transformed features, called
relative frequency with power transformation (RFPT). For simplicity, we denote RFPT
with a superscript t and TFIDF with a superscript w in equations 5.1 - 5.4. Consequently,

we can define such feature vectors as
T
x® = [acgt) xé) x(t)] , (5.1)
for the RFPT features. The TFIDF features can be expressed as

T
@) — [ () ) x(w)] , (5.2)

n

and the concatenation of these document features can be defined as

I = x® ¢ x® (5.3)
T
[0 o a0 2] 5.4)

n n)

We use this proposed technique for FI to generate composite features to improve

classification performance. We show the effect of FI in Section 5.4.
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There are various added advantages of the text classification with feature integration
approach. These can also be regarded as the reasons for the improved classification
effectiveness.

Firstly, FT uses transformed features which do not depend on textual length, as a
result, the within-class variability can be avoided. Secondly, as it is described in Section
3.3, transformed features provide a Gaussian-like sample distribution which makes it eas-
ier to find better decision boundary by the classification system. Thirdly, the singularity
problem due to size of the sample being smaller than its dimensionality is solved at PCA
stage.

The fourth advantage can be realized by improving separability by applying discrim-
inant analysis techniques. This is applied to the dominant principal components rather
than directly to the original features. Therefore, numerical stability and classifier’s effi-
ciency can be realized. The fifth advantage is that FI can incorporate new features other
than those from TFIDF and RFPT. In the end, we obtain improved classification perfor-
mance. In short, it can be said that the limitations of each technique can be avoided by

using FI.

5.2.2  Multiple Feature-Classifier Combination (MFC)

Multiple classifier combination (MCC) (also known as ensemble) has been reported to
improve text classification. There are various combination functions. The simplest one is
by majority vote (MVR). An odd number of classifiers is commonly used to avoid ties in
the number of votes [82]. Conventionally, MCC is carried out by getting decisions from
one type of features.

Unlike the conventional way of combining the classifier decisions, we used the proposed
RFPT and the conventional features, namely TFIDF, and combined classifiers’ decisions
from these features, thus the name multiple feature-classifier combination (MFC). Figure
5.2 illustrates the classification procedure that makes use of the algorithm with multiple
feature-classifier combination.

In the experiments, the best three performers out of the classifiers were used. These
are linear SVM, ENN and polynomial SVM. In the first case which is abbreviated to

MFC3, we carry out the feature-classifier combination as follows:
(i). Linear SVM’s decisions from RFPT

(ii). Polynomial SVM’s decisions from RFPT

(iii). Linear SVM’s decision from TFIDF

In the second case which is abbreviated to MFC5, the feature-classifier combination is

formed as follows:
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Figure 5.2: The automated text classification algorithm for multiple feature-classifier
combination (MFC). DA refers to discriminant analysis techniques proposed in this work.
Examples of the DA techniques are the integrated discriminant analysis (IDA) and the
regularized discriminant analysis (RDA). L; refers to the learning methods for classifi-
cation which are trained before the unseen data (test data) can enter the classification
algorithm. IDF is the abbreviation for inverse document frequency.

(i). Linear SVM’s decisions from RFPT

(ii). Polynomial SVM’s decisions from RFPT
(ili). Linear SVM’s decisions from TFIDF
(iv). kKNN’s decisions from RFPT

(v). kNN’s decisions from TFIDF

Figure 5.3 illustrates an example on how the experiments were conducted following the the
second case (i.e. MFC5). MFC also improved classification performance by outperforming

the best performer from single feature type when one classifier was used.

5.3 Experiments

This section describes the implementation issues. Specifically, we briefly describe the
data for experiments, the adopted feature selection methods, the techniques used for
dimension reduction, the classification process and the performance measures that we

applied.
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Figure 5.3: Example of the experiments with multiple feature-classifier combination
(MFC). This figure illustrates the experiments for MFC5. IDA refers to integrated
discriminant analysis. Features include relative frequency with power transformation
(RFPT) and term frequency weighted by inverse document frequency (TFIDF).

We used two popular data sets in our experiments. These are the Reuters-21578 and
OHSUMED data collections. The details of these data sets are described in 3.5. The
vocabulary list was generated as explained in 3.5.2.

The classification procedure with feature integration is generally illustrated in Figure
5.1. As described in 4.2.4, PCA was used to reduce the dimensionality and use fewer
principal components. We then applied discriminant analysis techniques such as CDA,
IDA or RDA to appropriate amount of principal components. We chose the number of
principal components before application of these techniques experimentally.

We adopt the recall, precision and F-measure for performance evaluation of classi-
fication effectiveness. These measures are regarded as standard evaluation methods for
classification systems in automatic text classification. The definitions of these measures
can be found in 2.5.1. The Micro-averaging and macro-averaging strategies are usually
adopted. For comparability with other previous works in the literature, we adopted

micro-averaging and report F-measure scores.

5.4 Empirical Results

5.4.1 Effect of Feature Integration on Classification Effectiveness

First of all, let us investigate the effect of FI by a perusal of an example given in Fig.
5.4. We observe that the data points of all classes in Fig. 5.4(a) are clustered together
in feature vector space. Clustering of these data points leads to difficulties in classifying
them. While in Fig. 5.4(b) where FI has been applied, the separability is clear such
that the decision boundary can be easily determined. Consequently, higher classification

performance can be achieved. This indicates that FI improves the separability of the
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between-class documents.
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Figure 5.4: Class separability for (a) TFIDF and (b) FI. This effect is illustrated from
real data used in experiments i.e., Acquisition category (class 1) and Money-fx category
(class 2).

Let us continue with our discussion by focusing on Fig. 5.5, 5.6 and 5.7. It is notable
that all figures show that the highest classification performance is from the FI features.
This means that the proposed technique for feature integration by concatenation (FIC)
improved the between-class document separability. The improvement is more obvious
when SVM was used. An exception is seen in Fig. 5.5(b) where its effectiveness is

uncertain. Since the other five figures indicate improvements, certainly FIC is effective.

The question on what constitutes the integrated features is described in section 5.2.
For the reader’s convenience, we shortly describe what constitutes Fig. 5.8. The fea-
ture integration (FI) in Fig. 5.8 is from the features, namely TFIDF and RFPT which
generated composite features, CF(1) and CF(2). The composite features are defined by

CF(l) 4 CD144(P01009(TFIDF)) <5} CD]14(P01000(RF.PT)), (55)

CF(?) = CD1]4(P01000(TFIDF) &2) PClDD{)(RFPT)) (56)

where CD,,(x) and PC,,(x) denote m discriminants and m principal components of

feature x respectively.

Fig. 5.8 compares the results of TFIDF+PT, RFPT, and those of CF(1) and CF(2).
It can be seen that FI improves the classification performance. This confirms our expec-

tation of separability improvement as demonstrated by the classification improvement.



Improving Automated Text Classification, Chapter 5: Feature Integration and
98 Ensembles

88
;\:; 87.5
-
k5 87
(@))
®
(O]
& 86.5
(o]
S
= g6 L ® RFPT(IDAB 0001 kNN) -
I TFIDF(IDA,B=.0009,kNN) - 7
- RFPT(RDA,a=.7 kNN) — -
N _TFIDF(RDA,0=.9,kNN) --©---
85.5 '
50 100 150 200 250
Dimensionality
(a) kNN on ModApte split of Reuters
g
-
©
(]
o
(8]
o ‘
% R N N S S
O o5 bp o FI(IDAB .0009 kNN) — ]
S Pl TFIDF(PCA+CDA KNN) ---x---
= sa W RFPT(IDA,B=.0008,kNN) ---%--- |
- TFIDF(IDA,B=.0009,kNN) -2~
B3 [ RFPT(RDA,0=.9,kNN) —-=-—
/ | . TFIDF(RDA,0=.9,kNN) -0~

62
50 1 OO 150 200 250

Dimensionality
(b) kNN on HD-119 tree of OHSUMED

Figure 5.5: The effect of feature integration (FI) in comparison with other conventional
methods when using NN learning method. Features include relative frequency with
power transformation (RFPT), term frequency weighted by inverse document frequency
(TFIDF). Feature integration of RFPT and TFIDF is followed by integrated discriminant
analysis (IDA).
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Figure 5.6: The effect of feature integration (FI) in comparison with other conven-
tional methods when using polynomial SVM. Features include relative frequency with
power transformation (RFPT), term frequency weighted by inverse document frequency
(TFIDF). Feature integration of RFPT and TFIDF is followed by integrated discriminant

analysis (IDA).
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Figure 5.7: The effect of feature integration (FI) in comparison with other conventional
methods when using linear SVM. Features include relative frequency with power trans-
formation (RFPT), term frequency weighted by inverse document frequency (TFIDF).
Feature integration of RFPT and TFIDF is followed by integrated discriminant analysis
(IDA).
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Figure 5.8: The effect of feature integration. CF(1) = composite feature by concatenation
of CDs of TFIDF and RFPT (classification at 114 % 2 dimensionality). Although CF(1)
is not advocated, it is given here for comparison reasons. CF(2) = composite feature by
the concatenation of principal components of TFIDF and RFPT followed by integrated
discriminant analysis (IDA).

5.4.2 Statistical Analysis of Improvements

In this section we are interested in statistically analyzing the significance of improvements
by feature integration. The statistical test is between RFPT and the integration of it
with TFIDF. The null hypothesis is that RFPT and feature integration would achieve
the same performance on test data.

Table 5.1 summarizes the statistical analysis results. When using kNN we found that
feature integration achieved statistically better results (p < 0.01) than RFPT. Similarly,
when using SVM, feature integration performed statistically better (p < 0.05). Since we
found significant improvement in comparison with RFPT, we argue that feature integra-
tion was even far better than TFIDF.

Table 5.1: Results of statistical analysis: RFPT versus feature integration (CF(2)). p-
values are indicated as p

Reuters OHSUMED
kNN SVM kKNN SVM
RFPT (F-measure) 86.8% 87.8% 68.5% 1%
CF(2) (F-measure) 88% 88.9% 71.1% 73%
McNemar’s test p=3.177e-05 | p =8.487e-08 | p < 2.2e-16 | p = 4.028e-05
2 Test D= 3.1456:07 | p=00273 | p = 3.1456-07 | p —0.04682
Z-test D= 3177005 | p = 8.4870-08 | p = 1.4820-27 | p = 4.028-05

More importantly, the composite feature, CF(2) in Fig. 5.8(a) and 5.8(b) achieved
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the highest performances. That is to say, kNN on 'ModApte’ split, CF(2) gave a micro-
averaged F; = 88% and on OHSUMED it gave a micro-averaged Fy = 71.1%. Simi-
larly linear SVM on "ModApte’ split, CF(2) gave a micro-averaged F; = 88.9% and on
OHSUMED(HD-119) it gave a micro-averaged F; = 73%. Considering these data sets
and the splits in question, these could be the highest performance scores ever reported
in the ATC literature.

5.4.3 The Effect of Multiple Feature-Classifier Combination

As it is described in 5.2.2, we also carried out experiments using multiple feature-classifier
combination (MFC). The performance of MFC is higher than the best individual per-
former. The highest performance by MFC are given by MFCH of Section 5.2.2. This
method performed competitively with FI.

Table 5.2: Summary of the micro-averaged F; scores (%) obtained from various meth-
ods in comparison with multiple feature-classifier combination. Features include relative
frequency with power transformation (RFPT) and term frequency weighted by inverse
document frequency (TFIDF). MFC3 and MFC5 refers to multiple feature-classifier com-
bination. Features in MFC3 include RFPT and TFIDF. Classifiers include linear SVM
and polynomial SVM. MFC5 is similar to MFC3 except that decision from kNN using

REPT and TFIDF are included.
Data Set | RFPT [ CF(2) | MFC3(pca+cpa) | MFC5(pca+cna) | MFC3(ia) | MFC5 (ipa)

Reuters 87.8 88.9 88.09 88.48 88.9 89.3
OHSUMED 71 73 70.3 72.3 72.27 73.7

Table 5.2 summarizes the performance of MFC. In both data sets, CF(2) performed
slightly better than MFC5 when features were extracted using PCA+CDA. The situation
is different when features were extracted by the integrated discriminant analysis (IDA)
method. In other words, in the case of the Reuters and OHSUMED data sets, MFC5(ipa)
outperformed CF(2) by achieving the highest micro-averaged F; = 89.3% and F, =
73.7%, respectively. Considering these data sets and the respective splits, these could be
the highest performance scores ever reported in the ATC literature.

Table 5.3 summarizes some results found in the literature in comparison with results
presented here. Based on the comparison between classifiers used, the highest perfor-
mances are in boldface. In other words we compare a particular classifier’s results versus
the same classifier of the other researchers. For example, we compare our kNN results
versus the results in [85] on the same data set. The comparisons we give are just indicative
figures in strict terms. This is because a lot of experimental design and pre-processing
may differ from other groups of researchers. Although they are just indicative figures, our
results are higher than the works in the ATC literature. Our results are consistent with
other previous researchers’ results [41, 85, 96] in the sense that SVM performed slightly
higher than KNN.
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It is also worth noting that we used different features such as RFPT. Unlike our work,
most of the works in the literature and those in Table 5.3 represent textual data using
term weighted vectors commonly called TFIDF.

Most importantly, the proposed techniques achieved not only the highest classification
performance as compared to the those in the ATC literature but also used the lowest

dimensionality ever before.

Table 5.3: Indicative comparison of results (%) from the literature and our results using
Reuters-21578’s ModApte Split and 119 MeSH categories for Heart Diseases (HD-119) of
OHSUMED data sets. Based on the comparison between classifiers, the highest perfor-
mances are in boldface. For example our kNN results are compared to other researchers’
kKNN results. Similarly for SVMs. BEP=Break even point, FI = the proposed Feature
Integration method. See Table 5.2 for details on MFC5(ipa).

Researcher [ Data Set [ Classes | Method Summary | Micro-F1/BEP
This paper Reuters-21578 115 FI, kNN, k=5, 114 features 88
FI, SVM, 120 features 88.9
MFC5(IDA), 120 features 89.3
OHSUMED 90 FI, kNN, k=11, 130 features 71.1
FI, polySVM 120 features 73
MFC5(IDA), 120 features 73.7
Soucy and Reuters-21578 90 ConfWt, kNN, thousands features 86.4
Mineau [85] ConfWt, SVM, thousands features 88.2
OHSUMED 49 ConfWt, kNN, thousands features 68.7
ConfWt, SVM, thousands features 70.7
Lam and Han [49] Reuters-21578 90 TFIDF, GIS, ?features 84.5
OHSUMED 84 TFIDF, GIS, 7features 58.3
Zhang and Reuters-21578 115 binary vector, ModLeast Square, 87.2
Oles [100] 10,000 features
OHSUMED - - -
Yang, Y. [95] Reuters-21578 90 TFIDF, kNN, 24,240features 85
OHSUMED ? TFIDF, kNN, 7features ~ 47
Anonymous split
Joachims, T. [41] Reuters-21578 90 TFIDF, kNN, 1000 features 82.6
TFIDF, SVM; all features 87.5
OHSUMED 23 TFIDF, kNN, 38,6797 features 63.4
(Not closely TFIDF, SVM, 38,679 features 71.6
related MeSH)

5.5 Summary of Feature Integration and Ensembles

In this chapter, we considered a novel technique for feature integration by concatenation
(FIC). It basically takes the advantages of discriminative information from the features
involved in the integration. FI uses the concept of concatenation which is applied to the
feature vectors.

As expected, the composite features generated using this method improved the clas-
sification of classifiers. Statistical analysis of improvements show that the improved
performance is statistically significant.

The proposed multiple feature-classifier combination also improved the classifica-
tion performance outperforming the best individual classifier. Not only that but also

it achieved the highest classification score.
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It is important to note that the proposed techniques achieved not only the highest
classification performance as compared to the those in the ATC literature but also used
the lowest dimensionality ever before.

Potential future research on feature integration includes use of multi-classifier com-
bination of the integrated features and use of more samples. In addition, it may be of
interest if this technique could be experimentally studied further in applications such as

spam filtering and automated survey coding.



Chapter 6

Conclusion

6.1 Introductory Remarks

In this work, the author attempts to address various problems posed by natural language
in text classification. The problems tackled include variation of text length, asymmetric
sample distribution, high-dimensional space and, the under-sampled problem.

While theoretical backgrounds have been discussed, empirical studies are comprehen-
sively carried out. Statistical analysis of the improvements is also performed. Respective
chapters demonstrate that the improvements are statistically significant.

In Section 6.2 therefore we summarize the scientific contributions as per proposed
techniques. In this chapter we summarize the conclusions in Section 6.3. In Section 6.4

we outline the future research problems.

6.2 Summary of Contributions

In this Section, we outline the scientific contributions as a consequent of this study. This
work proposes various techniques for improving automated text classification. The follow-
ing items summarize the general contributions that lead to improved machine learning.

This dissertation:

(i). Proposed Integrated Discriminant Analysis (IDA) in Text Classification.

In Chapter 4, we propose an integrated discriminant analysis (IDA) which out-
performs its counterparts. The multi-label setting was tackled in a similar way as
in PCA+CDA algorithm. A comparative study was also carried out. Finally, we
conclude that IDA increased learning ability of various methods. This conclusion
is based on the improved classification effectiveness and the statistical significance

of the improvements.

105
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(ii).

(iid).

(iv).

Demonstrated the use of the PCA+CDA algorithm in Text Classification for the

first time.

Chapter 4 proposes various methods for dimensionality reduction. In the first place,
we experimentally studied principal component analysis (PCA), which is not com-
mon in ATC. We noted setbacks in PCA method and experimentally studied the

canonical discriminant analysis.

However we noted that due to the reason described in Section 1.4.3(v), CDA
couldn’t be a good choice for ATC. Therefore, we studied the PCA+CDA algo-
rithm. The classical CDA couldn’t handle multi-label problems. Since ATC can
involve multi-label data, we extended CDA and the PCA+CDA algorithms to han-

dle multi-label learning tasks.

Developed a Feature Integration (FI) technique to generate a more informative set

of features.

Chapter 5 proposes a feature integration (FI) technique that generates compos-
ite features with higher discriminating power. Experimental results show that FI

improves the performance of ATC.

Developed a Normalized-weighted metric function for k¥ Nearest Neighbor (kNN).

This work proposes a method called normalized-weighted metric (NWM) for the
kNN learning method. We described NWM in 2.4.1. Section 2.6.3.2 presents a
comparative study with the classical kNN. It is clear that NWM improves the

performance of ANN.

. Proposed a function for computing a posterior: probability (APP) for Distance

Based Learning Methods (DBL).

To the best of our knowledge DBL methods studied in this work are not seen in
the TC literature. Therefore DBL were experimentally evaluated as a preliminary
study in 2.3.1.

Furthermore we propose use of a posteriori probability (PPD) based on DBL meth-
ods in 2.4.2. Empirical results show that PPD is far better than the use of distance

classifiers in text classification.

. Presented a comprehensive study of RFPT for the first time.

The traditional way of representing textual data is by the term frequency weighted
by inverse document frequency (TFIDF). In contrast, we propose the relative term
frequency with power transformation (RFPT) in Chapter 3. Empirical results and
statistical analysis show that RFPT is better than TFIDF.
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(vii).

(viii).

Applied power transformation to TFIDF for the first time.

Furthermore we employed power transformation on TFIDF, and we refer to it as
TFIDF+PT. Empirical results show that TFIDF+PT outperforms the conventional
TFIDF.

Demonstrated that RFPT is robust even when noisy texts such as OCR-based Texts

are used.

Optical character recognition (OCR) is applied in various areas in daily life. OCR-
based texts are full of errors such that the conventional methods are not effective
enough. In this work the proposed RFPT is applied to these kind of data and
empirical results show that RFPT is suitable to use in this context. Section 3.6 is
the topic of this contribution. The experimental study with noisy data show that

RFPT is robust regardless of the use of error-prone OCR texts.

. Proposed Multiple Feature-Classifier Combination (MFC)

Chapter 5 also introduces a contribution based on multiple features and multi-
classifiers combination (MCC). Unlike the conventional methods of MCC, we used
various features which are separately fed to various classifiers then combine their
decisions by majority vote rule. Experimental results demonstrate that MFC is

effective in automated text classification.

6.3 Conclusions

This work proposes various techniques for improving automated text classification. Sta-

tistical analysis is provided to give an understanding on whether the proposed techniques

contribute to the improvement. Based on the measures of classification effectiveness and

the statistical analysis we can draw conclusions as follows.

(i).

(ii).

The relative frequency (RF) solves the problem of variation in text lengths as shown
in 3.3. Empirical study shows that normalizing the text length by use of RF is

practical and suitable to be applied in text classification.

. The power transformation solves the asymmetry of sample distribution by remov-

ing skewness and kurtosis. Relative frequency with power transformation (RFPT)
is better than the classical features, namely term frequency weighted by inverse
document frequency (TFIDF). Unlike TFIDF, RFPT have Gaussian-like sample
distribution properties. It turns out that RFPT improves the learning ability of

classification systems. Therefore, RFPT is better than its counterparts.

RFPT is robust even when noisy samples like OCR-generated texts are used.
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(iv).

(vii).

(viii).

Application of power transformation to TFIDF improves the symmetry of the sam-
ple by removing skewness and kurtosis. Consequently, improved classification ef-

fectiveness can be realized.

. The PCA+CDA algorithm improves text classification. The reason for improved

performance of text classification comes from the fact that the PCA+CDA algo-
rithm solves the problem of singularity of the within-class scatter matrix. This
problem occurs due to smaller sample size than its dimensionality. Other reasons
for improvements by the PCA+CDA algorithm are as follows. Firstly, it extracts
informative features for the classification process. Secondly, it reduces the dimen-

sionality, leading to improved learning efficiency of the classification algorithm.

. Integrated discriminant analysis (IDA) improves text classification. The improve-

ments are brought by a number of reasons. Firstly, it directly solves the problem
of singularity by effectively reducing the dimensionality. Secondly it maximizes
the between-class meanwhile minimizing the within-class documents, resulting in
a well optimized classification task. Thirdly, it extracts informative features for
the classification systems. Fourthly the reduced dimensionality leads to improved
learning efficiency of the classification system. Empirical results demonstrate the

effectiveness of this method.

The extension of discriminant analysis techniques to handle multi-label data works

well with improved classification performance.

The proposed function namely normalized-weighted metric for kNN is superior to
the conventional majority vote rule. This is because it gives more weight to close

samples than those which are far from the incoming sample.

. The proposed function for computing a posteriori probability from distance based

learning methods is superior to the conventional way of using distances in classifi-

cation decisions.

. The proposed multiple feature-classifier combination improves automated text clas-

sification.

6.4 Future Research

While this work proposes various techniques for improving text classification, further

improvement might be desirable. This section outlines the open research problems which

spur further investigation for more improvements in automated text classification (ATC).

The following items briefly describe the areas for future research:
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(i).

(ii).

(iv).

(vil).

Applications of text classification.

This study focused on machine learning in text classification in general. How-
ever, there are a number of applications that can pose different challenges if TC
techniques are shipped directly into them. It is therefore interesting to apply the
proposed techniques to applications, such as spam filtering and automated survey

coding to reveal the applicability of these techniques.

. Can class based term selection improve ATC further?

Term selection before applying the proposed techniques was done based on all words
in a given data set. It would be desirable to find out the effect of performing term
selection on a class-based (local) vocabulary list first before incorporating such a
list into a global vocabulary list. This remains to be an open research problem that

can be investigated in the near future.

Adoption of unsupervised learning methods.

With supervised learning, it requires that there must be manually classified exam-
ples, consequently, constraining organizations to hire experts to manually classify
learning samples. Possibly this area therefore can be a challenging task to be car-
ried out in the near future; and if unsupervised learning will give promising results,

it may lead to freeing organizations from making examples manually.

This work did not attempt to address the problem of imbalanced sample size. It

could be desirable to directly address this problem in future.

. Oversampling to address the problem of under-sampled data directly.

Oversampling methods have been applied in some fields to address the problem of
imbalanced sample size. Similar techniques can be applied with the objective of
mitigating the under-sampled problems before applications of the proposed tech-

niques.

. Research on automated multimedia categorization based on textual data contained

in the media. In addition, automated content based indexing of multimedia docu-

ments can pose challenges that can be addressed in somehow similar to this work.

Can the proposed techniques be applied to other languages?

The experimental data used in this work are documents written in English. It
would be of interest to use the techniques with other languages such as Swahili and

Japanese.

The list of open research problems may not be exhaustive. Therefore other questions

may be included for further research.
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