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Chapter 1

Introduction

Recently, a lot of efforts have been devoted to quantum information science in
order to realize the fault-tolerant computation and communication. This, for ex-
ample, can be seen in a success of the experimental realization of quantum tele-
portation between photons and atoms [1]. In the experiment, it is a crucial step to
generate entanglement between polarization of light and cesium atoms by the use
of the quantum-mechanical Faraday rotation. Entanglement between polarization
of light and a rubidium atom was also generated in a more recent experiment [2].

Importance of photon-atom entanglement sheds fresh light on traditional quan-
tum-optical systems. Majority of the discussions about photon-atom entangle-
ment made in the literature may be concerned with nonstationary states with rapid
temporal oscillations of entanglement [3,4], which are not so useful for quantum-

information processing. Therefore, an important step for quantum-information



processing is to generate stationary entangled states in a coupled system of pho-
tons and atoms. Experimentally, this may require a series of “trial” operations
on “initially” prepared product state in order for it to approach the exact station-
ary state due to non-trivial interaction between photons and atoms, in general.
Accordingly, a question may naturally arise: what is an optimal procedure for it.

In this dissertation, we answer the above question by means of the method of
flow equations introduced by Wegner [5-7]. This method is a powerful tool for di-
agonalizing a given quantum-mechanical Hamiltonian in analogy with the theory
of renomalization group. It has widely been applied to a variety of problems in
condensed matter physics [8-13], nuclear physics [14-16], particle physics [17],
and quantum information [18]. The method of flow equations uses a continuous
unitary transformation depending on a single parameter, [ € [0, co), for the given
Hamiltonian. Then, the transformed Hamiltonian tends to become diagonalized
in the limit, [ — oo. Here, generalizing Wegner’s method and developing a new
theory, we show that the generalized method can offer a geometrically optimal
strategy for quantum-state engineering for realizing the stationary state in a wide
class of systems.

Therefore, it is our opinion that the method of flow equations has physical
meanings beyond just a tool for diagonalizing the Hamiltonian. In fact, it is
known in mathematics [19] that the method is closely related to the Jacobi al-
gorithm in matrix theory, which defines the steepest descent in the matrix space.
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This suggests that if the trial operations are efficient, they are almost on a trajec-
tory generated by the flow equations. Thus, it is meaningful to examine the flow
equation approach for quantum-optical systems of photons and atoms.

Furthermore, in the analyses of several physical examples, we became aware
of the fact that there seem to exist invariant quantities in the system of flow equa-
tions. This fact leads us to examine Noether’s theorem [20-22] in the context of
the flow equations.

Firstly, We consider the flow equation approach to establishiﬁg stationary en-
tanglement between light and matter [18]. The unitary operator appearing in this
approach is generically nonlocal one, which gives rise to the change of the de-
gree of entanglement. To illustrate it, we employ the Jaynes-Cummings model
of a two-level atom interacting with a monochromatic radiation field [23,24] and
perform its complete flow equation analysis. Although it is well known that this
particular model can be exactly solved by several other methods, the flow equation
approach is clearly more general than those and in fact is applicable to a wide class
of systems. In other words, the Jaynes-Cummings model we are going to treat here
is nothing but a prototype example for demonstrating the approach in a simple
manner. Also, we calculate the positive operator-valued measures (POVMs) for
the photons and atom and analyze flow of the entanglement entropies, which eval-
uate the degree of correlation in the photon-atom system. In addition, we present
a procedure for implementing the unitary operation appearing in the method.
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Secondly, we develop a new theory for the method of flow equations, which
generalizes the original Wegner’s method [25]. Then, we consider the flow of a
given quantum state through a submanifold of the projective Hilbert space com-
posed of rays [26] in the general context. Then, we discover a condition, under
which the corresponding flow becomes geodesic in the submanifold, indepen-
dently of specific “initial” conditions at [ = 0 [25]. This remarkable property is
illustrated by analyzing some physical examples. Therefore, it is shown that the
method of flow equations can provide us with the geometrically optimal procedure
for quantum-state engineering for generating stationary states.

Finally, we note that there exist invariant quantities with respect to /-evolution
in the class of exactly solvable systems. This may imply that the method of flow
equations admits the underlying continuous symmetry. Now, as well known, if the
action of a system is invariant under a continuous transformation of relevant vari-
ables up to the total derivative of a certain quantity, then there exists a conserved
quantity (i.e., an invariant). Here, we study the invariant quantity in the time-
dependent harmonic oscillator discovered by Lewis [27,28], following a manner
presented by Lutzky [29,30], who has shown how to derive the invariant based on
Noether’s theorem. This issue is, however, nontrivial in connection with the flow
equations, and needs further elaborations.

The present dissertation is organized as follows. The fundamental properties
of the Jaynes-Cummings model is described in Chapter 2. In Chapter 3, the basics
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of the method of flow equations is given, and some physical examples are ana-
lyzed. Then, the generation of stationary photon-atom entanglement is discussed
by perfoming the flow equation analysis of the Jaynes-Cummings model in Chap-
ter 4. There, POVMs and entanglement entropies for photons and atom are also
calculated. Additionally, a comment is made on implementing the unitary opera-
tion in the method. In Chapter 5, generalizing Wegner’ method, a condition, under
which the flow of a quantum state becomes geodesic in the submanifold of the
projective Hilbert space, independently of specific “initial” conditions at [ = 0,
is presented. This is illustrated by analyzing some physical examples. Finally, in
Appendix A, we explain in detail how to derive the invariant in the time-dependent

harmonic oscillator based on Noether’theorem.
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Chapter 2

Stationary photon-atom

entanglement

2.1 The Jaynes-Cummings model

Let us consider the system of a two-level atom interacting with a monochromatic
radiation field in the rotating wave approximation proposed by Jaynes and Cum-
mings [1,2]. Although this is a highly simplified model of the coupled system of
light and matter, remarkably it can experimentally be realized to generate single-
atom maser or micromaser in a cavity [3]. The Hamiltonian H of the system is
given by

w,

H= —2303 +wa'a + Aoya+o_al). (2.1)



o3, 04, and o_ are the operators of the two-level atom, and are defined as

og=le)e| =199l or=leXgl, o-=[g)el, (2.2)

where | g) and | e) stand for the normalized ground and excited states of the atom,

respectively. The operators in Eq. (2.2) fulfil the commutation relations:
[O’+,U_] = 03, [0'3,0:}:] = :l:20'i. (23)

Then, a and @ describe the creation and annihilation operators of the photon,

which satisfy the algebra:
[a,a'] =1, [a,a] = [al,a]. (2.4)

The physical coefficients wy, w, and A appearing in the Jaynes-Cummings Hamil-
tonian of Eq. (2.1) are the transition frequency between the ground and excited
states of the atom, the frequency of the single-mode photon, and the real coupling
constant between the photon and the atom, respectively. Here, Planck constant 7
is set equal to unity for the sake of simplicity. The Jaynes-Cummings Hamiltonian
in Eq. (2.1) includes the two interaction terms: one is the term described by, o, a,
which mean that the atom in> the ground state is excited by absorbing a photon,
the other is the term, o_a!, which mean that the atom in the excited state is in the
gréund state by radiating a photon. The interaction is schematically illustrated in

Fig. 1.
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| e) UAT-G’/\/\ photon| e) Ula;/' photon
| 9)

Fig. 1: The interaction of the Jaynes-Cummings Hamiltonian.

2.2 Stationary entangled states

| 9)

In this section, we compute the stationary states of the Jaynes-Cummings model.
Since the model is exactly solvable, it allows us to analytically discuss a variety
of phenomena such as the Rabi oscillation and quantum collapses/revivals. We
consider the Hamiltonian in Eq. (2.1) in matrix representation for obtaining the
stationary states. In the bases | e) | n)and| g) | n+ 1) (n = 0,1,2,...), the

Hamiltonian in'matrix representation, say H™, can be described as follows,

nw + ¢ An+1
H®W = . (2.5)
AWn+1l (n+1w—2
The eigenvalues of the matrix in Eq. (2.5) are obtained as
1 Q,
Ei(n)=w (n + —) + —, (2.6)
2 2
where
A=wy— w, 2.7
Qn = VA2 +4X2(n + 1), (2.8)

are the detuning factor between the transition frequency of the atom and the fre-
quency of the photon, and the Rabi frequency including the effect of the detuning
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factor, respectively. The corresponding eigenstates | n,+) and | n, —) for the

eigenvalues in Eq (2.6) are calculated to be
|, +) =un | €) [n) +un|g)|n+1), (2.9)
|n,=)=—vale€)[n)+un|g)|[n+1) (2.10)

forn =0,1,2,... with the probabilistic amplitude

1 A
Up = —=4 /1 + —, 2.11
7 o (2.11)
1 A
Up = —=¢/1— — 2.12
satisfying the condition of probability conservation
ul 402 =1. (2.13)

Particularly, in the limit of the exact resonance, A = 0, the stationary states for

n=20,1,2,... become
| n,+)am0 = %(I &) [n)+ | g) | n+1)), (2.14)
|7, —)aco = %(— le) [n)+ | g) | n+1)). (2.15)

2.3 Experimental realization of the Jaynes-Cummings

model

As mentioned above, the remarkable fact is that the Jaynes-Cummings model can
experimentally be realized in a cavity. This is schematically illustrated in Fig. 2.
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cavity

S /N
d d

€ 9

atom

Fig. 2: Experimental setup for the realization the Jaynes-Cummings model.
S is source of photon, whereas d. and d,, are detector of | e) and | g), resp-
ectively. The Jaynes-Cummings model is realized when the atom goes thr-

ough the cavity.

It may not be difficult to generate the single-mode photon. Then, the two-level
atom can be found to be the circular Rydberg state. This is, for example, the
exited state of valance electron of alkali metals with a sufficiently large principle
quantum number. In the case of rubidium, the corresponding principle quantum
number is about 50. The circular Rydberg state is defined as the state associated
with the orbital angular momentum quantum number [ = n — 1 and the magnetic
quantum number |m| = n — 1 in the principle quantum number n. The atom in
this state can transit from n <> n — 1 and |m| > |m| — 1, then approximately
can be seen to be the two-level atom. In fact, it is experimentally known that the

cesium atom is approximately the two-level one [4].
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Chapter 3

The method of flow equations

In recent years, much attention has been focused on Wegner’s method of flow
equations [1] (for reviews, see [2,3]). This method offers a powerful tool for di-
agonalizing a given quantum-mechanical Hamiltonian, which has been devised
in analogy with the theory of renormalization groups and has widely been ap-
plied to a variety of problems in condensed matter physics, nuclear and particle
physics. Examples include the effective Hamiltonian of the Anderson impurity
model [4], a Dirac particle in an external electromagnetic field [5], an effective
spin-spin coupling arising from spin-phonon chains [6], the Hubbard model for
high-temperature shperconductivity [7], the Tomonaga-Luttinger model for in-
teracting spinless electrons in one dimension [8], localized superfluidity [9], the
Lipkin-Meshkov-Glick model in nuclear physics [10], quantum phase transition

in the interacting boson model [11], light-cone quantum chromodynamics [12],
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electron-electron and electron-phonon interactions in the Hubbard-Holstein model
[13], and quantum information [14].

We devote this chapter to grasp the method of flow equations and analyze
some physical examples.

Let us consider d-dimensional quantum system whose Hamiltonian is given
by H. In general, the Hamiltonian is not diagonal for a naturally taken basis. To
diagonalize (or block-diagonalize) it for the basis, the method of flow equations
introduce a continuous unitary transformation U (1), which satisfies U()UT(l) =
Ut(1)U(1) = I, parametrized by [ € [0, 00). This transforms the original Hamil-
tonian H(0) = H to H(l) = U(I)HU*(l). The derivative of the transformed

Hamiltonian with respect to [ leads to

PO 1y, my) @

This is the flow equation. Here, in Eq. (3.1), the anti-Hermitian operator is intro-
duced as
du (1)

n(l) = —=U'@), (3:2)

which is called the generator. The differential equation in Eq. (3.1) determines the
flow of physical parameters contained in the original Hamiltonian in analogy with
the theory of renomalization group. Clearly, the generator should appropriately

be chosen for diagonalizing (or block-diagonalizing) the original Hamiltonian.
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3.1 Wegner’s choice for the generator
As a choice for the generator, Wegner proposed
ﬂ(l) = [Hd(l)7 Hod(l)]7 (33)

where Hy(l) and H,4(l) are the diagonal part and the off-diagonal part of the

transformed Hamiltonian, respectively. In fact, this choice yields the following

relation
d d
gm;# am | ) ) == 55260
d
==2 3 len(l) = Dl | HQ) | un)?,

(3.4)
where €, (1) is the nth eigenvalue of Hy(!) and | un) is nth eigenstate. This implies
that the off-diagonal elements of the transformed Hamiltonian tends to decay as
| increases due to the negativity of the right-hand side of Eq. (3.4) if Hy(l) is

nondegenerate.

3.2 Physical examples

In this section, we see how the method of flow equations is successfully applied
to quantum system by analyzing some examples.

Firstly, we consider the generalized harmonic oscillator. Hamiltonian H of the
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system is given by

H = wa'a + A’ + \a® + v, (3.5)
where af and a are the creation and annihilation operators obeying the algebra:
[a,al], [al,al] = [a,a] = 0. w (> 0) and v are real constants, whereas )\ is
complex. In particular, the condition, w > 2|)|, is to be satisfied. Here and
hereafter, & is set equal to unity. The unitary operator to be considered for this
system is

U(l) = exp — & (Da®), (3.6)

where the complex coefficient (/) is parametrized as

) =r(0e”™0 (0 <r(1),0< ¢(l) < 2m). (3.7)

Thus, the transformed Hamiltonian is given by

H(l) =U()HU' (1)

(3.8)
=w(l)a'a+ AD)a" + X\ (1)a® + v(l),
where the physical coefficients are defined as follows
w(l) = wcosh(2r(l)) — (Ae9® 4 A\*e=221)) sinh(2r(1)), (3.9)
NOE ()\ + X*e~“90) cosh(2r(1))
. . (3.10)
+ 5()\ — \remH0) —éwe_”‘i’(” sinh(2r(1)),

Lo e~ 220 sinh(2r (1)) + v. G3.11)

v(l) = wsinh?(r(1)) — 2(

18



Accordingly, the diagonal part Hy(l) and the off-diagonal part H,4(!) of the trans-

formed Hamiltonian in Eq. (3.8) are
Hy(l) = w(l)a'a + v(1), (3.12)
Hoa(l) = A(Da!® + 3*(1)a2. (3.13)
Using Eqgs. (3.12) and (3.13), we immediately obtain 7([) as

n(l) =[Ha(l), Hoa(1)]

(3.14)
=2w()[MD)a = \*(1)a?].
Furthermore, from Egs. (3.8) and (3.14), we get
[7(1), H(D)] = ~ 16w()| A() [’a’a
(3.15)
— 4a12(l))\(l)aT2 — 42 (DN*(1)a® — 8w(l)] A1) |
Then, the derivative of H([) in Eq. (3.8) with respect to [ leads to
dH(l) dw(l) ;  dA\1) 2  dX(l) ,  dv(])
= . .16
dl a ‘cta Yo Y (3.16)
Therefore, Egs. (3.15) and (3.16) yield the following set of flow equations:
d“;—gl) = —16w(l)| A1) |?, (3.17)
A0 _ 200, (3.18)
dl
d’;gl) = —8w()] A(1) |~ (3.19)
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These flow equations determine the flow of the physical parameters w(l), A({),
and v(l). Here, it is noted that there exists conserved quantities with respect to

l-evolution. Combining Eqgs. (3.17) and (3.18), we obtain
w?(l) = 4AD)]* = w?(0) — 4]A(0) %, (3.20)
or from Egs. (3.17) and (3.19),
w(l) — 2v(l) = w(0) — 2v(0). (3.21)

(These conserved quantities seem to be viewed as invariants in the method of flow

equations. See Appendix A.) The solutions of Egs. (3.17)-(3.19) are calculated to

be
w(l) = wh , (3.22)
Vw? — 4|\ exp(~8A21)
A(l) = A , (3.23)
\/w2 exp(8A2]) — 4|\)?
WD=% wA — Y4y (3.24)

\/w2 — 4|\)? exp(—8A2])

A =y/w? — 4\ (3.25)

In the limit, [ — oo, the physical coefficients in Egs. (3.9)-(3.11) are given by

with the definition of

w(oo) = A, (3.26)

A(oo) = 0, (3.27)



v(oo) = +v. (3.28)

Thus, the original Hamiltonian in Eq. (3.5), in fact, can be diagonalized.
Secondly, we analyse a spin in a constant external magnetic field B. The

Hamiltonian reads

H=S-B (3.29)
with the spin operator S = (S;, S,, S;) in an appropriate unit. The unitary opera-
tor to be considered is

U(l) = exp[o(1)S; — 0*5_] (3.30)

where Sy = S, £ 45, and the complex coefficient o (1) is parametrized as o (l) =
[0(1)/2)e=%® (0 < 6(1) < 7,0 < p(l) < 27) with #(0) = 0. The basic com-
mutation relations satisfied by the spin operators are as follows: [S,, Sy| = +54,

[S4,S_] = 28,. The transformed Hamiltonian is found to be

H()=U0)HUY(I)

(3.31)
= B()S: + B)S4 + B (D) S-,
where [3,(1) and §(!) are defined as
B.(1) =1(Bx — iB,)e"WUsin 0(1)
2 (3.32)
+ %(BgC +iB,)e~ U sin §(1) + B, cos 0(1),
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B() %(Bm —iB,)(1 + cos0(1))
_ %(Bz +iB,)(1 — cos 6(1))e~ 2% (3.33)
— —;—Bze_i“’(l) sin6(1),

respectively. Thus, the diagonal and the off-diagonal parts of the transformed

Hamiltonian in Eq. (3.31) are
Hy(l) = B.(1)S: (3.34)
and
Hoq(l) = B(1)Sy + B7(1)S- (3.35)
The generator 7([) for the present system is therefore calculated to be

n(l) = [Ha(l), Ho-a(1)]
= B.([B(1)S+ — B (1)S-].

Accordingly, the commutation relation between 7)([) in Eq. (3.36) and H ({) in Eq.

(3.36)

(3.31) is obtained as

[n(D), H(1)] = 4B.()|B1)*S; — B7(1)B(1) S+ — B2(1)B*(1)S-. (3.37)

Then, the derivative of H(() in Eq. (3.31) with respect to [ leads to

dH(l) _df.(l) ,  dB(l) dp*(l)
¥ i S, + 7l St + ai —=S_. (3.38)
Thus, we get the following set of flow equations:
%() = 46:(IBOF, (3.39)
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ap(l)

=g 080).

These Egs. (3.39) and (3.40) lead to the following conserved quantity,

B (1) +4|BM)[* = B7(0) + 4/8(0)|*.

(3.40)

(3.41)

(This is viewed as an invariant, again. See Appendix A.) The solutions of the flow

equations in Eqgs. (3.39) and (3.40) are found to be

B
= ‘\/ (|B| — B2) exp( 2|B|?l) + B?

and

IBI |B? —
|BJ? — B3(1 - exp(2|1‘3l2l))

respectively. Therefore, in the limit, | — oo, these solutions become

Thus, the original Hamiltonian in Eq. (3.29) can be diagonalized again.
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Chapter 4

Generation of stationary

photon-atom entanglement

As mentioned in Chapter 1, a crucial step for quantum-information processing
in photon-atom system is to generate stationars/ entangled states in the system.
Mathematically, this is nothing more than diagonalizing the system Hamiltonian.
Experimentally, however, given an initial state, it is generally hard to realize the
quantum operation that can immediately transform such a state of the coupled
system to the exact stationary state. Therefore, in reality, it is necessary to inquire
into a series of “trial” operations in order to approach the stationary state. Then,
the question is what constitutes a desirable strategy toward this end.

In this chapter, we answer the above question by means of the method of flow
equations [1-3] to establishing stationary entanglement between light and matter
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[4]. The unitary transformation operator appearing in this approach is generically
nonlocal, changing the degree of entanglement. Our idea is to use this method as
an optimal technique for quantum-state engineering. To illustrate it, we employ
the Jaynes-Cummings model of a two-level atom interacting with a monochro-
matic radiation field [5,6] and perform its complete flow equation analysis. The
Jaynes-Cummings model we are going to treat here is nothing but a prototype ex-
ample for demonstrating the approach in a simple manner. We also calculate the
positive operator-valued measures (POVMs) for the photons and atom, evaluate
the degree of stationarity, and analyze flow of the entanglement entropies. In ad-
dition, we present a procedure for implementing the unitary operation appearing

in the method.

4.1 The flow equation analysis of the Jaynes-Cummings

model

Let us apply the method of flow equations to the Jaynes-Cummings model. The

Hamiltonian reads
H= %03 +wala + Aoya + o_al) @.1)

The symbols appearing in Eq. (4.1) are defined in the same way as in Chapter 2.

h = 1 is set equal to unity for the sake of simplicity. In the present work, we limit
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our analysis to the off-resonant case. Therefore, the detuning factor, A = wy — w,

is nonvanishing, and here it is assumed to be positive:
A=wy—w>0. 4.2)

Here, it should be recalled that although this is a highly simplified model of
the coupled system of light and matter, it can experimentally be realized to gen-
erate single-atom maser or micromaser in a cavity [7]. Since the model is exactly
solvable, it allows to analytically discuss a variety of phenomena such as the Rabi
oscillation and quantum collapses/revivals. For the Jaynes-Cummings Hamilto-
nian in Eq. (4.1), we have constructed the following operator of the continuous

unitary transformation:

o0

U =) _[en@oro- | n)n | +bur(D)o-o4 | n)(n |
n=0 (4.3)

+n(Doy [ n){n+ 1]+, (D)o- | n+1)(n]].
Here, 8_;(l) = ¢X() [which turns out to be unity, later: see Eq. (4.28)] and
| n) = (n!)~12(a’)™ | 0) denotes the n-photon state with the normalized vacuum
state | 0), i.e., a | 0) = 0. The unitarity condition, U ()UT (1) = Ut(1)U(l), leads

to the following set of equations (n = 0,1,2,...):
o + (D = 1B (O + 02 (D = 1, (4.4)

lan (D) + [6(D)* = 1Ba () + 1) = 1, (4.5)

()8, (D) + Br(W)1a(l) = 0, an()(D) + B (1N3n(1) =0, (4.6)
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from wﬁich, it follows that
lon)* =182 (DF, (D = 18a(D)?

The “initial” conditions are
an(0) = Bn(0) =1, 7a(0) = 6,(0) =0,

and §_1(0) = 1. The transformed Hamiltonian is given by

o

H(l) =) [Au(Doso- | n)(n| + By (oo [n)(n |

Cn(oy | n)(n+1|+Cr(l)o- | n+1)(n|]
where

Wo

2
+ 21 o (DY) + o (D) (D],

An(l) =5 llon (O = a(OP] +wln + ()]

Bo(1) =5 16a (1) = 18 ()] + ol + 1. (1) ]

+ AR 1[Ba(D5(1) + ()8 (0)]

Wo

Cull) =5 lan()d7(1) = Ba(D)1a (D] + wBr (D (D)

+ AV + an (1) B (1) + va (D)2 ()],

4.7

(4.8)

4.9)

(4.10)

(4.11)

(4.12)

forn =0,1,2,..., and B_;(l) = —wy/2, provided that Eqs. (4.4)-(4.6) have

been used. Note that both A,,(!) and B, (l) are real. The “initial” conditions are

(4.13)



B,(0) = —%+w(n+1), (4.14)
Ca(0) = \Wn + 1. (4.15)

The diagonal part in Eq. (4.9) is given by
Hy(l) =Y [An(Doro_ | n)(n |+ Baor(l)o—os | n)(n|]. (4.16)

n=0

Accordingly, Wegner’s choice for the generator is calculated to be

n=0 (4.17)
[Cr(Dot [ n)(n+1]=Cr(l)o_ | n+1)(n ]

leading to

(1), HD)] =Y _[An(l) = Ba(D)]

n=0

{21C.(D*(o40- [ n)(n| —o_oy |n+1)(n+1)}
— [An(l) = Ba(D][o+Cn(l) [ n)(n + 1 | +0_Cy(l) | n+ 1)(n []}.
(4.18)

Therefore, dH (1) /dl = [n(l), H(l)] yields the following set of flow equations

(n=0,1,2,...,):

dA(;l(l) =2[Ax(1) = B.(D]ICa (D, (4.19)
dBdnl(l) = —2[A4n(l) = Ba()]ICa (D), (4.20)
d(iinl(l) = ~[4.() = B,(0]"Cu(0) 4.21)



From Eq. (4.21), it is obvious that the off-diagonal matrix elements in fact
decay as [ grows (note that because of the off-resonant condition in Eq. (4.2)).
From Egs. (4.15) and (4.21) as well as the realities of A, () and B, (1), Cy(l) also
turns out to be real. Here, it is noted that there exist conserved quantities with

respect to l-evolution. Egs. (4.19) and (4.20) lead to
Ap(l) + By(l) = As(0) + B (0), (4.22)

and Egs. (4.19)-(4.21) give
(An(l) = Ba(1))? +4C5(1) = (44(0) — B,(0))* + 4C7(0), (4.23)

forn = 0,1,2,.... (In the present solvable system, invariants quantities exist,
as expected. See Appendix A.) The exact solutions to these equations under the

“initial” conditions in Egs. (4.13)-(4.15) are

Ap() = w(n+ %) +§Ln(1), (4.24)

By(l) = w(n+ %) —%Ln(l), 4.25)
Qn A?

Call) = 24 1= 55 L2, (4.26)

forn = 0,1,2,..., where Q, = /A2 + 4)2(n + 1) is the Rabi frequency, and
L, (1) is given by

La(l) = = . 4.27)

V3 + (- 8) ewl-2020
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We note that without losing generality A, (!) is taken to be larger than B, (I). (If
A were taken negative, then the case A, (l) < B, (!) could be realized. This point
does not affect the subsequent discussion.)

Furthermore, the equalities, (1) = [dU (1) /dlJU1(l) and dU (1) /dl = n(1)U (1),
together with Eqgs. (4.4)-(4.8) and (4.17), lead to the fact that a,, (1), 5, (1),7x (1),

and d,,() are all real and satisfy the relations

awl®) =Bl W) = =D, Fal)=1. @28)

From these relations as well as Eqs. (4.4)-(4.7) and (4.28), the coefficients
appearing in the unitary operator in Eq. (4.3) are found to be given as follows

(n=0,1,2,...):

an® = 6n) = {2220 50 = = 0 )

where
~ A2 A2 A2
Lo- a0+ (1-5) (- Sn0). o

n

Recalling the off-resonant condition in Eq. (4.2), Egs. (4.24)-(4.26) respec-

tively converge, in the limit { — oo, to

Ap(o0) :w<n+%)+% = F,(n), (4.31)
By (00) =w(n + %)—% = E_(n), (4.32)
C,(00) = 0, (4.33)



with the energy eigenvalues, E. (n), corresponding to | E,) = Uf(co) | €) | n)
and| E_) = Uf(00) | g) | n+1). Eq. (4.33) explicitly shows that the Hamiltonian
is in fact exactly diagonalizable.

Closing this section, we point out that although the present flow equation
approach assumes the off-resonant case as in Eq. (4.2), the limiting quantities,
A, (00) and B, (o0) (which are the energy eigenvalues in the states, | €) | n) and

| ) | n+ 1), respectively) converge in the resonant limit, A — 0, to

An(o0) > w(n+ %) Wn T, (4.34)
By (00) — w (n + %) “AWn T, (4.35)

which are the correct results obtained by other methods [5, 6].

4.2 Positive operator-valued measures and subsys-

tems

In this section, we discuss the effects of the unitary operation by U(l) on the
subsystems, i.e., the photons and atom. We shall explicitly calculate the positive
operator-valued measures (POVMs).

Consider | ¥) =| e) | n) with (n # 0) , which is a natural “initial”’state to be
prepared since in a realistic experimental situation using a cavity the photons and
atom may initially be uncorrelated. The corresponding aensity matrix of the total
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system reads

Proal =| €){e | ® [ n){n |

Recalling the operation of U (I) on the Hamiltonian, H (1)

see the corresponding operation on the state to be

| T(0) =U'(D) | ¥)

Therefore, the above density matrix is transformed as

ptotal(l) = UT (l)ptotalU(l)-

(4.36)

= U()HU' (1), we

(4.37)

(4.38)

The reduced density matrices of the subsystems are given by ppnoton(l) =

TraompProal(!) and paom(!) = TrphotonProwr(!). The form in Eq. (4.36) allows us

to obtain the following Kraus representations [8]:

pphoton Z A | n ’I’L ’ AT( )
/L g’

o0

patom ZBm 6 | BT ( )

Here, {A;(1) }i=g. and { By, (1) }m=0,1,2,.. form POVMs

Z AI(l)Az(l) = Jphoton,
i B:n(l)Bm(l) = JLatom

m=0
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(4.39)

(4.40)

(4.41)

(4.42)



with I’s being the identity operators. Using Eqs. (4.3) and (4.36), they are explic-

itly calculated as follows:

A =G| U |e)
(4.43)

Zan ()3 | n)(n | + 10 (D)dig | 7+ 1){(n |].

Bu(l) = (m | UY(1) [ n)
= On—1040mpn-1 + [an(l)oro_ + Brn-1(1)0-0410mn + Yn(1)o_bmpni1.
(4.44)
These operators do not satisfy the unital conditions: 3°,_ e A(DAL() #
Tonotons Y o Bm (1) B}, (1) # Iyom. Accordingly, entropy, which will be discussed
in the next section, does not increase in general under the operations of these

POVMs [9-11]: that is, whether entropy increélses by the operations depends on

choice of a state to be transformed.

4.3 Entanglement entropies

As mentioned earlier, our idea is to use the method of flow equations as an optimal
technique for quantum-state engineering. This means that it is possible to measure
how quantum-state engineering makes a given “initial” state close to the stationary
state.

As well as the previous section, taking into account a realistic experimental
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situation using a cavity, a natural “initial” state is a product state. Since U (1) in Eq.
(4.3) is a nonlocal unitary operator, it necessarily creates entanglement between
the photons and atom. Then, it is of interest to quantify the degree of entanglement
in the engineered state as well as its closeness to the exact stationary state. Here,
we discuss this issue by analyzing the entanglement entropies.

The entanglement entropies are defined by the von Neumann entropies of the

subsystems:

Sphoton (l ) = '“Trphoton (l) [pphotonlnpphoton (l )] ) (445 )
Satom (l) - _Tratom (l) [patomlnpatom (l)] y (446)

where pphoton (1) and paom (1) are the reduced density matrices defined in the previ-
ous section. These are nonzero because | ¥(/)) in Eq. (4.37) is an entangled state

for [ > 0. From the Araki-Lieb inequalities‘ [12] in the present case,
| Sphoton(!) — Satom(1)| < Stotar (1) < vSphoton(l) + Satom(1), (4.47)
it follows that the entanglement entropies of the photons and atom are identical
Sphoton(!) = Satom (1) (4.48)
at each value of /, since Sy (1) vanishes because of purity of the total state in Eq.

(4.38). Therefore, henceforth we consider only Syom(1)-
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An explicit calculation yields

Swom(l) = —5+(D)ns. (1) — s (Dns_(1), (4.49)
su(l) = 1E 5 n() (4.50)
5 %[1 + Qé] (1=300), (4.51)

where L, () is given in Eq. (4.30).

— T — —

0175 |
0.15 }
0.125 |

0.1}

atom(l)

va 0.075 ¢
0.05 |
0.025 |

Fig. 1: Flow of the dimensionless entanglement entropy of the atom Syom(l) in terms of the
dimensionless variable 22 1.The values of the physical parameters used are n = 1, A = 1 [MHz],
A = 507 [kHz].

In Fig. 1, we show the flow of Syom(l). There, the values of the physical
parameters used are taken from real experiments [13,14]. One clearly appreciates
a monotonic behavior, exhibiting how the degree of entanglement increases as
the “initial” product state approaches the exact stationary state. It is of interest
to see that the convergence to the ma?(imum value, Saom(00), is fast. This might
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be understood as the fact that the flow equation offers the optimal strategy for
realizing the stationary state. The flow of Syom (/) can be also used for quantifying
the deviation of an engineered state from the stationary state.

Since | ¥(()) with a finite value of [ is not the stationary state, its time evolu-
tion makes the entanglement entropies oscillatory. To see this, we have calculated

the time evolution of Syom (I, t) for | ¥(l,t) = e *#? | W(1)). The result is

Swom(l,t) = —s4 (1, )Ins (I, ¢) — s_(I,)Ins_ (1, 1), (4.52)

(- cosQnt)Qﬁn [Qﬁ + \/(1 - Eg(z))(1 i %2) }

In Fig. 2, we present the plot of Syom(l, t). There, one sees how the oscillation

sx(l,t) = %{1 + Lo (1) cos Qut

decays as [ increases.
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Fig. 2: Time dependence of the dimensionless entanglement entropy Saom (I, t) for each value of
the dimensionless variable 2 1.The values of the physical parameters used are the same as those

in Fig. 1.

4.4 Comment on implementation of the unitary op-

eration

Finally, we discuss how to approximately implement the unitary operation appear-
ing in the method of flow equation for the Jaynes-Cummings model.

In a real experimental condition [13], A\/A = O(1073). Therefore, expanding
the coefﬁgients, a’s, B’s,7’s,and ¢ ’s in Eq. (4.3) with respect to A /A, we obtain

the following approximate expression:

U(l) ™~ Iphoton ® Iatom + (1 - e—AZl)§(0+a — O'_CLT). (454)

The above operator is linear in the photon field, and therefore it may not be
difficult to be implemented in terms of the quadrature operators. On the other
hand, for the atom operators, we note that the use of the Ramsey zone [15] yields
the transformation, | €) — (| e)+ | g))/v/2, which can be generated by the

following unitary operator:

1 , .
(0,0— +€Po_o+ + €%, +0_), (4.55)

R ¢ = NG
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where the phases satisfy the condition, § — ¢y = mmod(27). Therefore, we find

the atom operators to be given as follows:

1

oy = 5[\/§(Rw,o — Rox) — RroRox + Ltom), (4.56)
1

o_ = 5[\/§(Rw,0 + Roz) — ReoRox — Lutom)- (4.57)

Therefore, the unitary transformation of the flow equation can approximately
be implemented by making use of the quadrature operators of the maser photon

field and the Ramsey zone.
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Chapter 5

Optimal strategy for quantum-state

engineering

Wegner’s method [1-3] has been applied to many problems in quantum physics
[4-14] as mentioned in Chapter 3. Its inherent properties, however, do not seem to
be explored well. In this chapter, an interesting geometric property hidden behind
Wegner’s flow equations is revealed. It is our opinion that this method is more
than just a mathematical tool for diagonalizing a Hamiltonian. Firstly, we develop
anew theory for the method of flow equations, which generalize Wegner’s method
itself [15]. The original method of Wegner is a special case within this new frame-
work. Next, we consider the flow of a given quantum state through a submanifold
of the projective Hilbert space composed of rays explained below. Then, we dis-
cover a condition, under which the flow becomes geodesic in the submanifold,
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independently of specific “initial” conditions at [ = 0 [15]. This remarkable prop-
erty is illustrated by analyzing some physical examples. In this context the unitary
transformation in Wegner’s method is now shown to offer the optimal strategy for
quantum-state engineering in a wide class of systems (satisfying the condition

discovered here).

5.1 New theory for the method of flow equations

Let us recall the original method of flow equations. Wegner’s method employs a
continuous unitary transformation represented by the operator, U (), where [ €
[0, 00) is referred to as the flow parameter. U(l) transforms the original Hamilto-
nian H = H(0) to H(I) = U(I)HU'(l), which satisfies dH (I)/dl = [n(l), H(1)],
where 7)([) is the anti-Hermitian generator given by n(l) = [dU(1) /dl|JU*(l). Weg-

ner’s choice for 7(l) to diagonalize (or, block-diagonalize) the Hamiltonian reads
n(t) =n" (1) = [Ha(l), Hoa(1)], (5.1)

where Hy(l) and H, 4(1) stand for the diagonal and off-diagonal parts of H(l),
respectively.
Now, we consider a quantum system in a d-dimensional Hilbert space, where

d is either finite or infinite. Its unitary-transformed Hamiltonian, H ({), is decom-
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posed into two parts: H (1) = Hqa(l) + Hoq(l), where H, 4(l) is expressed as

A
)= _HEH() 1<A<d-1). (5.2)
Using the complete set of the normalized eigenstates of Hy(1), | tn),_; 5 4> W€
write them in the following forms:
d

= enll) | un)(un |, (5.3)

n=1

d
H3 () = Y IC2 O | i) un | +C5, (O | ) s [l (54)
n=1

where €() is the nth eigenvalue of Hy(l) and C,(;i)ia (1) ’s are the complex ex-
pansion coefficients. The nonzero index i, describes the off-diagonality and is
ordered without loss of generality as follows: 0 < 47 < 1y < +-- < i4. Itis
understood that C’T(l'fgz =0 (C,(la_)z-a ()=0)ifn+i,>d(n—1i, <1).

Here, we generalize Wegner’s method as follows. Instead of taking the whole

of Ho4(l), we employ only a single term, say H ((,ad) (1):

1) = [Ha(0), Hyd (1)) (5.5)
Clearly, Wegner’s choice is
A
n" (1) =Y n@(). (5.6)
a=1

It can be found after a straightforward calculation using Egs. (5.3)-(5.5) that the
corresponding generalized flow equation

aH()

q () (1), H(1)] (5.7)
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gives rise to

d d d d
dl Z ’(umlH(l)lunHZ:_aZei(Z)
m,n=1,m#n n=1 (58)

d
= =43 lensi () — e OPICL, OF,
n=1
implying that the off-diagonal elements of H([) tend to decay as [ increases. The
analysis based on 7(% (1) can yield the results obtained using " (/) by taking the
sum over the index a. The reverse is, however, not possible. In this sense, the

present method is regarded as a generalization of Wegner’s.

5.2 The flow of a quantum state on a submanifold of

the projective Hilbert space

Next, let us translate the flow of the Hamiltonian into the flow of a state. Given
a normalized state | U), the stationary Schrédinger equation reads H | ¥(00)) =
E | ¥(00)), where | ¥(1)) = UT(l) | ¥). As well known, two states different from
each other only by total phases are equivalent in quantum mechanics, and there-
fore a physical state is represented by a ray. Accordingly, the quantum-state space
is the projective Hilbert space that is generically a curved space. Eq. (5.7) deter-
mines the flows of the physical coefficients contained in the Hamiltonian, which
depend on the parameters appearing in the unitary operator. Let.us explicitly write
as follows: U = U(a), | ¥(a) = U'(a) | ¥), where a = (al,a?,...,aF). The
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set of parameters, o, defines a local coordinate on the submanifold of the pro-
jective Hilbert space. This submanifold is referred to as the quantum evolution
submanifold [16], on which a quantum state flows. Then, the Fubini-Study met-
ric [16-19] induced on this submanifold is, up to the second-order infinitesimals,
given by

ds®* =1— [(¥(a) | ¥(a+da))|* = g;j(a)da’dd’, (5.9)

where the metric tensor is expressed in terms of the anti-Hermitian operator G;(a) =

[0:U (a)]UT () (8; = 8/0ai;i = 1,2,..., k) as follows:

1

gij(a) = —5(¥ | Gi(a)Gj(@) + Gj(@)Gi(a) | ¥)
(5.10)

+ (W[ Gi(a) | U)NY | Gj(e) | T).
Here and hereafter, Einstein’s convention is understood for the repeated indices.
The equation for a geodesic curve parametrized by the arc length, «(s), is given by

h 1’ y _ . . 9
d*ah/ d52 + 'Y (da’/ds)(dod /ds) = 0, where T'% is Christoffel’s symbol defined

by Thij = gull; = (1/2)(8ign; + 0;9in — Ongij)-

Let us parametrize the curve by the flow parameter, instead of the arc length,

i.e., a(l), and consider the functional

lo
ﬂ@:/‘mumw, (5.11)

I

where

L@@:%:M%@mw (5.12)



and &' = dao‘(l)/dl. The quantity in Eq. (5.11) is the arc length in the interval

[l1, l2]. The variation of S with respect to (1) is calculated to be

5(‘;50[[?] = —423Xi, (5.13)
where
Xo= (200 o1 wyw | 2% 10 - | 5L | )
Sl 19— (@] wp)
(m{d" oo b+ [ ] 1) = 20w 5w )
~ 2w [ 0¥ | [ 7] |w>) (O | %)~ (@ | 7| ©?)
(5.14)
with
r=n) = LoD v10m) - came, 619
provided that the following relation has been used:
Y

We wish to prove that under a certain condition the generalized flow equation
in Eq. (5.7) defines a geodesic curve associated with the “initial state” | ¥) =| u,,)
, which is an eigenstate of Hy(l). (This is the state of relevance, because we are
considering the flow to an exact stationary state.) That is, we are going to show
that, under the condition foﬁnd later, the above X; vanishes for n = 7(® in Eq.
(5.5).
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Clearly, (u, | 7® | u,) and its derivatives with respect to [ and &* vanish. Fur-
thermore, it can be shown by using Egs. (5.3)-(5.5) that (u,, | [77(“)2, on'/ 80’?]
| up,) also vanishes. Therefore, X; for | ¥) =| u,,) and 7 = 7® is reduced to

dn@ onle)
Xi: n (a)2 n n : n
2 |19 | n | {25, 2L )

@ @2 (5.17)
ne n
(Un | dl | un)(un | XY | Un)-
This equation can be rewritten by using Eqs. (5.3)-(5.5) again as follows:
d
X, =4 (lDfi’i ?+ DR 6n,m+z-a>
m=1
re aD®, aD: 4D\ aD{" zd: .
dl  0ds dl 96 L=
Ay, I d|D oD, I°  AIDYP
n,m-+i v 5nm ) ’
( dl 26 e oo % + ek 7;21 e
(5.18)

where D,({Qia = (€nti, (1) — €n(l)) Cfﬁgia (I). The I-derivatives appearing in this
expression should be calculated from the generalized flow equation in Eq. (5.7).
It is also noted that o and ¢' are not independent in Eqgs. (5.17) and (5.18) any

more, since Eq. (5.5) has already been used.

5.3 Condition for the geodesic flow
In this section, we present our discovery. If the labels a and o’ satisfying

i # 20,31, (1<d < A) (5.19)
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can be taken for (%) (1), then sandwiching the flow equation in Eq. (5.7) by three

pairs, (u, | and | un_s, )s (Unti, | and | uy), (Unys, | and | u,_;, ), we have

(un | [ @ ZH(“ ] | Un_s,) =0, (5.20)

(Unsi, | { ZH }mn =0, (5.21)

(Unts, | l Z H (1 } | Un_i,) = 0, (5.22)
=1l,a'#a
respectively. And, correspondingly, we obtain the following sandwiched flow
equations:
(a)

dCZn D e @) -~ 0, (5.23)

daC l
il __ (e ) - el O 0, (524
(entin (1) + €nio (1) — 264(1)) CO()C, (1) = 0. (5.25)

It is mentioned that, from Eqgs. (5.23) and (5.24), the phases of C,(L“)(l) and

C(a)

nti, (1) are found to be independent of /. Case-A: If Cr(ba)(l) Cfﬂgz (I) = 0, then

X; in Eq. (5.18) obviously vanishes. Case-B: If C\(I) = 0 and Cfﬂﬁl (1) # 0 (or,
(1) = C, (1) # 0 and C), (1) = 0), then X, vanishes, due to the fact that
the phases of D{”(l) and D', (1) are independent of I. Case-C: If both C5" (1)
and C,(L'fzia (1) are nonzero, then Eq. (5.25) yields €, (1) + €p—i, (1) — 2¢,(1) = 0.
Combining the relation in Case-C with Egs. (5.23) and (5.24), we obtain a crucial

result that |C’£‘f£ia (1)| is proportional to |C{”) (1)|. And, this makes X; vanish again.
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Therefore, we conclude that the flow equation with the generator 7(®) (1) with
the label a satisfying the condition in Eq. (5.19) gives rise to the geodesic'ﬂow of
| u,), independently of a specific initial condition. This is the main result of the

present dissertation.

5.4 Physical Examples

In what follows, we illustrate our result by analyzing some physical examples.
The first example we consider is the generalized harmonic oscillator. The

Hamiltonian reads
H = wala + Aa® + Xa? + pal + p*a + v. (5.26)

Here, a' and a are the creation and annihilatio'n operators obeying the algebra:
[a,a'], [af,a’] = [a,a] = 0. w (> 0) and v are real constants, whereas A and
are complex. In particular, the condition, w > 2|}|, is to be satisfied. Here and
hereafter, 4 is set equal to unity. We analyze the following two cases: (i) u # 0,
A =0and (ii) u = 0, A # 0. In case (i), the Hamiltonian is transformed by the

displacement operator
U(l) = exp [z(1)al — z*(1)a] (5.27)

with the complex z([) satisfying z(0) = 0. For the normalized ground state, | 0),
satisfying a | 0) = 0, as the “initial state” at [ = 0, the flow of the state is along
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the coherent state. The corresponding Fubini-Study metric is Euclidean [16]:
o _ 1.9 2
ds® = §(dx + dp*) (5.28)

with the parametrization, z = (z + ip)/+v/2. Then, the condition in Eq. (5.19) .
is satisfied, and the flow is, in fact, geodesic: a straight line in the space with a

global coordinate (z, p). In case (ii), the squeezing operator

U(l) = exp E (g(l)aT2 - g*(z)ﬁ)} (5.29)

is to be considered, where the complex coefficient (1) is parametrized as (1) =
r(1)e240 (0 < r(1),0 < ¢(I) < 27). Accordingly, (a!,a?) = (r, ¢). The con-
- dition U(0) = I (with the identity operator I) leads to r(0) = 0. The initial state
is taken to be the number state, | n) = (n!)~*/2a!" | 0). The corresponding metric
is [16]:

ds* = %(n2 +n+ 1) [dr® + (sinh®2r) d¢?] (5.30)

which shows that the manifold is the Lobachevsky space. The transformed Hamil-

tonian is written as follows:
H() = wl)ata + AD)a® + X (1)a® + v(0). (5.31)

The coefficients appearing here depend not only on their original values at [ = 0

but also on £(!). In this case,

Hoq(l) = M(Dal” + X*(1)a? (5.32)
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is the one and only off-diagonal part. Therefore, the generator in Eq. (5.5) is

identical to Wegner’s choice
7" (1) = 2w() [A(l)afz Y (l)aQ] , (5.33)

and the condition in Eq. (5.19) is automatically fulfilled. The flow equation for
A(l) is given by
d\(1)

_ 2
EE =~ A0), (5.34)

showing that the phase of A(/) does not depend on /. Then, one can explicitly
find that Eq. (5.17) indeed vanishes. Comparing [dU (1) /dlJU*(l) with n" (1), we
obtain ¢(l) = const, which in fact turns out to make bo£h 0S/6r(l) and §S/6¢(1)
vanish, where S is the arc-length functional defined in terms of the above metric.
We also mention that the spectrum of Hy(l) = w(l)ata + v(I) is equally spaced,
and accordingly Case-C in the preceding section is realized. Thus, Wegner’s flow
is geodesic.

The second example is a spin-s, S = (S;, Sy, S.), in a constant external mag-

netic field B. The Hamiltonian reads
H=S-B (5.35)
in an appropriate unit. The unitary operator to be considered is

U(l)=explo(l)S; — 0*S_] (5.36)
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where Sy = S, £ 1S, and the complex coefficient o(!) is parametrized as o (l) =
[0(1)/2)e=#® (0 < 6(1) < 7,0 < () < 27) with #(0) = 0. The basic com-
mutation relations satisfied by the spin operators are as follows: [S,, Si] = +54,
[S4,S-] = 2S,. The local coordinate is given by (a!,a?) = (6, ). The initial
state is taken to be | m); (m = —s,—s + 1,...,0,...,s — 1, s), which satisfies

S, | m)s = m | m),. The metric is found to be given by [16]:
ds® = %(32 + 5 —m?) [d6? + (sin®0) d?] , (5.37)
which is of a sphere. The transformed Hamiltonian is written as
H(l) = B.()S. + B1)S + B*()S-. (5.38)

B.(1) is real, whereas (3(l) is complex. They depend not only on B but also on

o(1). The one and only off-diagonal part is
Hoq(l) = B(D)S+ + B°()S-, (5.39)
and so Wegner’s choice
n" (1) = B()[B(1)S+ — B*(1)S-] (5.40)

is employed. Therefore, clearly the condition in Eq. (5.19) is fulfilled. The flow
equation for 3(l) is

B _ _ga)80), (541)
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from which the phase of 3(!) is seen to be independent of /, and accordingly Eq.
(5.17) vanishes. Comparison of the above generator, n" (), with [dU (1) /dlJU (1)
yields ¢(I) = const, which leads to the fact that the variations of the arc-length
functional (S, calculated using the above metric) with respect to (1) and ¢(1)
vanish. Also, the spectrum of Hy(l) = (,(1)S, with s > 1 is equally spaced, and
so Case-C in the preceding section is realized. Thus, Wegner’s flow is geodesic
(i.e., the great circle).

The third example is the Jaynes-Cummings model [20], which describes a
two-level atom interacting with a single-mode radiation field. The Hamiltonian is
given by

1
H = 3003 +wa'a+ k(opa + o_al). (5.42)

Here, wy, w, and k are the transition frequency 6f the atom, the frequency of the
radiation, and the coupling constant, respectively. a' and a are the creation and
annihilation operators of the radiation field satisfying the same algebra as in the
first example. o’s are the operators of the atom, which are given in terms of the
orthonormal basis, the ground state | g) and the excited state | e), as follows:

oy =|e)gl|,o_ =|g)e]|, 03 =| e){e | — | g){g |. This model is known to be

exactly solvable. The associated unitary operator is

Ul) =Y [an(loro_ | n)(n | +Ba-r(D)o-oy | n)(n|
n=0 (5.43)

Yooy | n){n+1|4+6,(1)o_ | n+ 1){(n | ],
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where | n) = (n})~'/2a!" | 0) is the n-photon state (for the details of this unitary
operator, see Chapter 4). The unitarity of this operator leads to the conditions:
lnl? + |l? = 1, |aw| = |Bals || = |6a], and 0,62 + B2, = 0. From the
polar forms, o, = |a,|exp(if,, ) and so on, follows the condition on the phases:
0o, +05,—0,, —0s5, = (2m+1)m (m = 0,+1,+2,...). Here, we choose | e) | n)
as the initial state. |oy,|, 04,, 03,, and 6,,, form as a set of independent coordinate

variables. The metric is

d|an12

1 — |an|?

ds? — + lom (1 = | |?) (dba,, — db.,,)?, (5.44)

which does not seem to be the one of a familiar space. The 6, -dependence dis-
appears due to the above choice of the initial state. The transformed Hamiltonian
is

= [An(Doro_ | n)(n | +Bu1(l)o_0 | n)(n |
o (5.45)

Co(D)oy | n){n+1|4+Cr(Do- | n+1)(n | ],
and so

= [Callos [ n)(n+ 1] +Ci(Ho— | n+1)(n|], (5.46)

n=0
where the coefficients, A, (l)’s and B,_;(!)’s are real, and C,(l)’s turn out to
be also real (as can be seen from the flow equations). They are expressed in
terms of the physical coefficients contained in the original Hamiltonian as well

as the coefficients appearing in U ([) (for details, see Chapter 4). Let us consider
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Wegner’s choice:

= [An DICa(D(o4 [m){n+ 1] -0 |n+1)(n]). (547)

n=0

Then, we find that Eq. (5.17) vanishes. The flow equations give rise to

@6, (1)
il = 4
1l 0, (5.48)
0., (1)
n — 5.49
il 0, (5.49)

which explicitly make the variations of the arc-length functional with respect to
|an|, ba,,, and 6., all vanish. In addition, comparing n(l) = [Hq(l), Ho-a(l)] with
n" (1) above, we see that Case-B in the preceding section is realized. Thus, again

Wegner’s flow is geodesic.
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Conclusion

We have reviewed the fundamental property of the Jaynes-Cummings model and
the basics of the method of flow equations. Then, we have discussed the flow
equation approach as a novel technique of quantum-state engineering for estab-
lishing stationary photon-atom entanglement. To illustrate the approach, we have
employed the Jaynes-Cummings model as a prototype example and performed its
complete flow equation analysis. We have also calculated the positive operator-
valued measures for the photons and atom, evaluated the degree of stationarity,
and analyzed flow of the entanglement entropy. In addition, we have presented a
procedure for implementing the unitary operation associated with the flow equa-
tion.

Next, we have developed a new theory for the method of flow equations,
which generalizes Wegner’s method itself. Through this development, we have
found a condition, under which the corresponding flow of a quantum state be-

comes geodesic in a quantum evolution submanifold, independently of specific
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initial conditions at [ = 0. We have illustrated this by employing the generalized
harmonic oscillator, a spin in a constant external magnetic field, and the Jaynes-
Cummings model.

The present result implies that the method of flow equations is not just a math-
ematical tool for diagonalizing a Hamiltonian but provides the optimal strategy
in quantum-state engineering for realizing a stationary state from a given ini-
tial state in each of a wide class of systems. In fact, a formal solution, U(l) =
Pexp fol dI'n (I') with P, being Dyson’s “I-ordering” symbol, can be divided into
the product of many unitary operators, each of which defines a small translation
along the geodesic flow and may represent each quantum operation performed
experimentally. In the present study, we have discussed the metric structure and
associated geodesic nature of the flow of a state in a quantum evolution submani-
fold. Other basic quantities such as curvature are not explicitly treated here. How-
ever, curvature becomes relevant, for example, when the deviation of two geodesic
curves with different initial conditions at [ = 0 is considered. This kind of con-
siderations may cast further light on geometry of the method of flow equations.

Furthermore, we have noted that there exist invariant quantities with respect
to [-evolution in the class of exactly solvable systems. This may imply that the
method of flow equations admits the underlying continuous symmetry. This fact
leads us to examine Noether’s theorem in the context of the flow equations. This
issue is, however, nontrivial, and needs further elaborations.
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Finally, we have studied the invariant in the time-dependent harmonic oscilla-
tor based on Noether’s theorem. The topic discussed here nicely interconnects
dynamics of the tim;:—dependent harmonic oscillator, the concept of invariant,
Noether’s theorem and symmetry.

In the present dissertation, we have shown how the method of flow equa-
tions offers a useful approach for quantum-state engineering. We believe that
this method may be able to play a particularly key role in quantum-information

technology.
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Appendix A

Invariant of the time-dependent
harmonic oscillator derived from

Noether’s theorem

In the flow equation analyses of several physical examples, which are the gener-
alized harmonic oscillator, a spin in a constant external magnetic field, and the
Jaynes-Cummings model, we became aware of the fact that there seem to ex-
ist invariant quantities in the system of flow equations. This may imply that the
method admits the underlying continuous symmetry. Then, this implication leads
us to examine Noether’s theorem [1-3], which establishes a profound relation be-

tween a conservation law and a symmetry contained in a system, in the context of
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the flow equations. This issue is, however, nontrivial in connection with the flow
equations, and needs further elaborations.

Here, we consider the exact invariant of the time-dependent harmonic oscil-
lator given by Lewis [4,5], who has derived it by making use of the complicated

transformations of the variables for the action integral [6]

1
I=— fpda: (A.1)
2m

concerning a periodic orbit in the phase space. Then, Lutzky [7] has shown in
a transparent manner how to derive Lewis’invariant based on Noether’s theorem.
Existence of an invariant is of basic importance in dynamics, since it plays a role
of an integral of motion and puts a constraint, for example, on the initial condition.

In this appendix, we present a plain review [8] of the work in [7].

A.1 Exactinvariant of the time-dependent harmonic

oscillator

The Lagrangian of the time-dependent harmonic oscillator (with the unit mass)
reads

L(t) = =3? — —w?(t)z?, (A2)

where the over-dot stands for the differentiation with respect to time ¢, and w(¢) is
an arbitrary function of ¢t. The Hamiltonian associated with the above Lagrangian
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is

H(t) = %p2 + %wZ(t)xz, (A3)

where p = 0L /01 stands for the canonical momentum conjugate to the canonical
coordinate z. The time evolution of a quantity A = A(p, x, t) is given by [6]

dA _ 0A

= =5+ {H(D), Ao, < (A4)

where the subscript “0” indicates that the Poisson bracket is defined at “equal
time”. Explicitly, the equal-time Poisson bracket for physical quantities, A =

A(p,z,t) and B = B(p, z,t), is defined by

_ OA(p,x,t) 0B(p,z,t) 0A(p,x,t) 0B(p,x,t)
{4, Bl =—5_ o o e (A.5)

The equation of motion,
i+ w?(t)z =0, (A.6)
can be obtained from the Euler-Lagrange equation, d(0L/0%)dt — OL/0x = 0,
with (A.2) or the canonical equations, ¢ = 0H/0p and p = —0H/0z, with (A.3).
In Refs. [4, 5], Lewis has employed complicated transformations of the vari-
ables in Eq. (A.1) and obtained the following exact expression for the action

integral as an invariant:

I(t)—l( P I A7
=5 |(ep px)+p2, (A7)

where p = p(t) is an auxiliary variable satisfying

1
p+wi(t)p = s (A.8)
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Using Egs. (A.6) and (A.8), we find that I(¢) satisfies

dIe)  aI() -
2 = o {H(t),I(t)}o =0, (A.9)

which implies in view of Eq. (A.4) that () is in fact an invariant.

To see the physical meaning of the invariant, it may be helpful to consider the
situation when w(t) slowly changes in time. In such an adiabatic case, the time
derivative in Eq. (A.8) is negligible in the lowest-order approximation, yielding
pO(t) = w'_l/ 2(t)4. The higher-order effects can systematically be evaluated by
performing the expansion around p(®)(¢). For example, one can determine the
first-order correction p(!) (t) by substituting p(® + p() into Eq. (A.8) and solving
the linearized equation for p(!). The result is

p(t) = pO(t) + pV(t) + - -
1

(A.10)
3
= w Y2(t) + gw—7/2(t)a)(t) — 1—6w_9/2(t)w2(t) SRR
In the adiabatic limit, p(t) = w~'/2(t), the invariant in Eq. (A.7) becomes

I(t) = -g% | (A.11)

showing that it is the action variable (of the action-angle variables [6]).

A.2 Noether’s theorem

As mentioned earlier, Lewis has derived in [4] the exact invariant (A.7) by making
use of the complicated transformations of the variables for the quantity in Eq.
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(A.1). A more transparent approach has been elaborated by Lutzky [7], who has
derived the invariant by making use of Noether’s theorem. We devote this section
to reviewing this approach in detail.

Let us consider a generic action functional
S= / dtL(z, &, 1), (A12)

where the Lagrangian has explicit time dependence. Define the following genera-
tor of transformation:

G = €z, )2 + (2, 1) 2

. Al
ot ox’ A.13)

where £(x,t) and ((z, t) are some differentiable functions to be determined later.

The associated changes of the relevant variables are given as follows:

gt =€, (A.14)
b (dt) = d(6t) = Edt, (A.15)

Sgz = (, (A.16)

5o (5.4 dos g A7
GI'—(GEi—t $+£(G$)——§CE+C, (A.17)

where £ = 9¢/0t + £0€/dx and so on, that is, the over-dot denotes the total
derivative with respect to time. In Eq. (A.17), 6¢(d/dt) = —£d/dt is used, which

results from a simple relation: d¢(dt/dt) = 0. Therefore, the change of the action
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in Eq. (A.12) is calculated to be

56 = / Sc(dt)L + / dtdgL
(A.18)

/dt [&L+<—+(c i) 22 1€

If the integrand has the form of the total time derivative of some function, say

 f(at),
EL+ n—gL + (¢~ éo‘c)—a’? L (A.19)
X T

then the action is said to be invariant under the transformation generated by G.
Applying the above discussion to the Lagrangian in Eq. (A.2), we immediately

obtain

—wwéx? — winx — 1w %xz 3f

ot ot

(A.20)

or 20t 20z
This identical relation with respect to & (the equation of motion for x is not used

yet at this stage) yields the following set of equations:

wwér? + w?Cx + 1w 8§ + g—{ =0, (A.21)
g_i_ _ %% —0, (A.23)
%g—i = 0. (A.24)
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From Eq. (A.24), we see that £ = £(t), i.e., £ is independent of z. So, Eq. (A.23)

is integrated as

C(z,1) = %ﬁ(t)a: L), (A25)

where ¥ () is an arbitrary differentiable function of time. This allows us to rewrite

Eq. (A.22) in the form

of 8¢ 1y :
5= o 2§(t)x +¥(1), (A.26)

which gives rise to
f@) = i{f(t)ﬁ + Utz + oft), (A27)

where c(t) is an arbitrary function of time. Accordingly, Eq. (A.21) becomes
(wwé +w’€ + 1 §) 22+ (¥ + W)z + ¢ = 0. (A.28)

This identical relation for z leads to

€+ 402 + 4w =0, (A.29)
U + w20, (A.30)
¢=0. (A.31)
A simple choice
=0, c¢=0, (A.32)

69



makes Eqgs. (A.25) and (A.27) be
1.
C(a,1) = FE(t) (A33)

and
f@;ﬂ::ié@p?, (A.34)

respectively. On the other hand, Eq. (A.29) has the first integral
. 5 9
€€ — 55 + 28w =1, (A.35)

where c¢; is a constant, whose value can be controlled by rescaling £. Setting
cp = 2 and
£ = pA(t), (A.36)
we obtain the auxiliary Eq. (A.8).
Now, we are at the stage of deriving Noethér’s invariant. Recall that oS =

[dt f. From this and Eq. (A.18), we have

0—/dtf /dt{§L+C—+(C i )§£+€g§}

:/dt{(gj:—g) [%‘%<%)] v [(sfc—og—ﬁ—fmf]},

- [ [(gsc ~ Q% €L+ f]

(A.37)

where the equation of motion (i.e., the Euler-Lagrange equation) has been used.

Therefore, the invariant is found to be given by

1) = (€~ ()27 ~ €L+ . (A38)
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Finally, substituting Egs. (A.2), (A.33), (A.34), and (A.36) into Eq. (A.38) and
using Eq. (A.8), we finally obtain the exact invariant in Eq. (A.7) in terms of the

canonical variables.
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