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ABSTRACT

In order to overcome the increase in breast cancer death rate, mammography which is
considered the most sensitive method for detection of early breast cancers has been
introduced for breast cancer screening in many advanced nations.  Clustered
microcalcifications which are present in 30%-50% of all cancers found in a mammography
are one of the important radiographic indications on mammograms. However, it is often
difficult for radiologists to detect clustered microcalcifications correctly because they are
very small and obscure. It is also difficult to differentiate between benign and malignant
clustered microcalcifications. With the concept of CAD (Computer-aided Diagnosis), it
is expected that radiologists' performance in the diagnosis of medical images will improve
by taking into account the analysis result of a lesion obtained from a computerized analysis
as a “second opinion.” Therefore, the purpose of this dissertation research is to develop a
computerized analysis for both a detection aid and a differentiation aid of clustered
microcalcifications on mammograms.

For a detection aid, we have developed a computerized detection method for indicating
a potential region of clustered microcalcifications on mammograms for radiologists. In the
computerized detection method, it is important to not only detect clustered
microcalcifications with high sensitivity but also segment individual microcalcifications
while maintaining their shapes because image features are extracted from the detected
clustered microcalcifications in the computerized analysis for a differentiation aid. For the
computerized detection method, therefore, we first constructed a novel filter bank with the
requirements for a perfect reconstruction by introducing the concept of a Hessian matrix for
classifying nodular structures and linear structures. A mammogram image is then
decomposed into several subimages for a second difference at scales from 1 to 4 by this

filter bank. The subimages for the nodular component (NC) and the subimages for the



nodular and linear component (NLC) are then obtained from analysis of the Hessian matrix
based on those subimages for second difference. Many regions of interest (ROIs) are
selected from the mammogram image. In each ROI, eight objective features are
determined from each of the subimages for NC at scales from 1 to 4 and the subimages for
NLC at scales from 1 to 4. A Bayes discriminant function with the eight objective features
is employed for distinguishing between abnormal ROIs with clustered microcalcifications
and normal ROIs without clustered microcalcifications. The region connecting the ROIs
classified as abnormal ROI is considered to be a potential region of clustered
microcalcifications. With the proposed detection method, sensitivity and a false positive
rate was 100.0% and 0.98 per image, respectively.

For the differentiation aid, we developed a computerized classification method for
providing radiologists the likelihood of histological classifications of clustered
microcalcifications and a computerized retrieval method for providing radiologists images
of lesions with known pathology similar to an unknown lesion. There are differences in
both the image features and the growth speeds among histological classifications of
clustered microcalcifications. In the computerized classification method, therefore, we
extracted six objective features from clustered microcalcifications on each of the follow-up
magnification mammograms (i.e. both current and previous magnification mammograms).
In identifying histological classification of clustered microcalcifications, the histological
classification of an unknown new case in question is assumed to be the same as that of the
nearest neighbor case which has the shortest Euclidean distance in a feature-space. The
feature-spaces for the nearest neighbor case consist of six objective features obtained from
the previous magnification mammogram (previous features), six objective features obtained
from the current magnification mammogram (current features), and the set of the six
previous features and the six current features. The classification accuracies with the six
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current features were higher than those with the six previous features. These classification
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accuracies were improved substantially by using the set of the six previous features and the
six current features. With the proposed classification method, the classification accuracies .
were 90.9% (10 of 11) for invasive carcinoma, 89.5% (17 of 19) for noninvasive carcinoma
of the comedo type, 96.0% (24 of 25) for noninvasive carcinoma of the noncomedo type,
82.6% (19 of 23) for mastopathy, and 93.3% (14 of 15) for fibroadenoma. In order to also
present radiologists similar lesions as a differentiation aid, we investigated four objective
similarity measures as an image-retrieval tool for selecting lesions similar to unknown
lesions in terms of radiologists’ visual perception. In the observer study, we confirmed
that the presentation of similar images can improve radiologists’ performance in the
differential diagnosis of clustered microcalcifications on mammograms.

The proposed computerized analysis for both detection aid and differentiation aid for
clustered microcalcifications achieves high detection performance and high classification
accuracies, and would help radiologists improve the diagnosis accuracy of clustered

microcalcifications at mammography in clinical practice.
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CHAPTER 1
INTRODUCTION

1.1 Breast Cancer

Breast cancer is one of the major health problems in woman in advanced nations.
Especially in the United States, it was estimated that more than 240,000 breast cancers
occurred among women in 2007 and that one of eight women has breast cancer during their
lives [1]. In Japan, both the disease rate and the mortality rate in breast cancer continue to
increase every year. It is estimated that about 35,000 breast cancers occur among women
in a year and that one of twenty women has breast cancer [2]. Breast cancer has had the
highest disease rate of all the cancers for Japanese women. Early diagnosis and early
treatment are very important to reduce breast cancer mortality [3].  Therefore,
mammography which is considered the most sensitive method for detection of early breast
cancers has been introduced to breast cancer screening in many advanced nations. Some
studies [4-6] of randomized clinical trials report that that periodic mammography screening
can reduce the breast cancer mortality.

Clustered microcalcifications and mass are the important radiographic indications
which might relate to breast cancer on mammograms [7, 8]. Although mass can be
recognized more clearly on an ultrasound image, it is difficult to obtain informatibn on
clustered microcalcifications from any modality except mammogram.  Clustered
microcalcifications are also present in 30%-50% of all cancers found at mammography [9,
10]. Therefore, it is very important to detect clustered microcalcifications accurately on
mammograms. However, 10%-30% of cancers are missed at breast cancer screening for
several reasons such as non-palpable lesions, radiologists' fatigue by repetitive tasks, and
technical limitations of mammograms [11-16]. It is also difficult for radiologists to

determine whether the detected lesion is benign or malignant. The positive predictive



value of mammography, i.e., the ratio of the number of breast cancers found to the number

of biopsies, is typically between 15% and 30% [17-19]. Unnecessary biopsies cause.

patients both physical and monetary problems.

1.2 Computer-aided Diagnosis
The concept of a computer-aided diagnosis (CAD) was invented as an approach for
improvement of radiologists' performance in the diagnosis of medical images [20-23].
CAD is defined as a diagnosis made by a radiologist who takes into account the analysis
result of a lesion obtained from a computerized scheme as a “second opinion.” It is
expected to improve the diagnostic accuracy and the consistency in the radiologists’ image
interpretation with CAD. In generally CAD, a computerized analysis for detection aid and

that for differentiation aid are used according to the purpose.

1.2.1 Computerized Analysis for Detection Aid

For the detection aid of clustered microcalcifications, many investigators have developed
computerized schemes [24-39] for identifying potential regions of clustered
microcalcifications on mammograms. Chan et al. [24, 25] developed a computerized
analysis based on a difference image technique in which a signal-suppressed image was
subtracted from a signal-enhanced image in order to remove structured background on the
mammogram. Li et al. [26] proposed using fractal background modeling, taking the
difference between the original image and the modeled image. Karssemeijer [27, 28]
developed a computerized analysis based on the use of statistical models and the general
framework of Bayesian image analysis.

Other researchers have developed a computerized scheme based on wavelet transform
[29, 30], which is a robust tool for image analysis, enhancement, and pattern recognition.

Wavelet transform is basically a filtering technique that represents images hierarchically on



the basis of scale or resolution. It also provides a powerful method for analyzing
high-spatial-frequency phenomena localized in space, and thus can effectively extract
information derived from localized high-frequency signals, such as those emitted by
microcalcifications. Strickland et al. [31, 32] used a discrete wavelet transform with
biorthogonal spline filters to detect microcalcifications. They computed four dyadic scales
and two additional interpolating scales, and applied a binary threshold-operator to all six
scales. The responses of the individual wavelet scales were then combined by a summing
rule, and the output was used to detect microcalcifications. Yoshida et al. [33, 34]
multiplied every scale by a weight factor and reconstructed an image by applying the
inverse transform in a discrete wavelet transform. The weights were determined by
supervised learning, using a set of training cases. Clarke et al. [35] and Qian et al. [36, 37]
applied a denoising to the image and then took the high-pass scale of a discrete wavelet
transform using spline wavelets. This resulted in a general edge detector that could locate
not only microcalcifications but also several other structures, such as film artifacts or lines.
Laine et al. [38, 39] applied several wavelet-type filter bank decompositions, such as the
dyadic wavelet transform. An adaptive enhancement operator was defined on the wavelet
coefficient scales. They obtained effective contrast improvement values for irregular
structures such as microcalcifications. The enhancement operator was defined separately

for each scale.

1.2.2 Computerized Analysis for Differentiation Aid
For differentiation aid of clustered microcalcifications, many investigators have also
developed computerized schemes [40-48] for estimating the likelihood of malignancy of
clustered microcalcifications on mammograms.  Jiang et al. [40] developed a
computerized method for extracting eight image features of clustered microcalcifications,

and they produced an estimate of the likelihood of malignancy by using an artificial neural



network. The classification performance of their computerized scheme was slightly
greater than that of radiologists. Chan et al. [41-43] developed a classification method .
using various feature classifiers with the combination of morphologic features and texture
features obtained from different views of the same clustered microcalcifications.
Nakayama et al [44, 45] extracted some objective features from clustered
microcalcifications by taking into account the image features that radiologists commonly
used for describing microcalcifications in order to distinguish between benign and
malignant clustered microcalcifications. Shen et al. [46] used 3 shape features, i.e.,
compactness, moments, and Fourier descriptors, to classify individual microcalcifications
by use of a nearest-neighbor classifier. Kallergi er al. [47] used the descriptors of
morphology of the individual calcifications and the distribution of the cluster. Leichter et
al. [48] evaluated the usefulness of objective features based on the shape of individual
microcalcifications and those based on the geometry of clustered microcalcifications.
Although the features based on the geometry was more useful than those based on the shape
in distinguishing between benign and malignant clustered microcalcifications, the
combination of both of features based on the shape and geometry provided a greater

classification performance.

1.3 Purpose of This Dissertation Research
The goal of this dissertation research is to develop a novel computerized analysis for
detection aid and differentiation aid of clustered microcalcifications on mammograms.

In the computerized analysis for detection aid, the detection performances of
computerized methods based on wavelet transform [31-39] were relatively higher than those
based on the other techniques described in the section of 1.2.1. These results may indicate
that the multi-resolution analysis based on wavelet transform is useful for detection of

microcalcifications because microcalcifications on mammograms present various sizes.



However, these computerized detection methods did not analyze the shape of the
microcalcifications in detail. Microcalcifications are nodular in structure, whereas normal
tissues such as blood vessels and mammary ducts are linear in structure. Therefore, we
consider that it might be possible to detect clustered microcalcifications more accurately by
introducing the shape information of individual microcalcifications into the multi-resolution
analysis. In chapter 2, we first construct a novel filter bank based on the concept of the
Hessian Matrix for classifying nodular structures and linear structures, and then develop a
computerized detection method for clustered microcalcifications based on objective features
obtained from the filter bank.

In study for differentiation aid, Jiang er al. [49] conducted observer performance
studies for classifying clustered microcalcifications as malignant or benign without and with
the computer output indicating the likelihood of malignancy. The radiologists’
performance was improved significantly when they used the computer output. This result
indicates that radiologists are able to use computer output as a second opinion to improve
their diagnostic accuracy. However, the performance level of the computerized scheme
was considerably greater than that of radiologists with the computer output. This result
appears to imply that it is difficult for radiologists to have complete reliance on the
computer output even if the computerized scheme has a high performance level. Making
clinical decisions for biopsy or follow-up on clustered microcalcifications by taking into
account possible histological classifications on magnification mammograms may reduce the
number of unnecessary biopsies because there are differences in the growth speeds among
histological classifications of lesions [7, 50]. Therefore, the likelihood of histological
classifications estimated by a computerized analysis would be useful to radiologists for their
decisions on patient management. In chapter 3, we develop a computerized classification
method for histological classifications of clustered microcalcifications based on differences

in both the image features and the growth speeds among histological classifications on



follow-up magnification mammograms (i.e. both current and previous magnification
mammograms).

Radiologists learn diagnostic skills by viewing many cases in their training and clinical
practice. Based on their experience and knowledge, they make diagnostic decisions on
new, unknown lesions in medical images. Therefore, it is expected that the presentation of
images of lesions with known pathology similar to a new, unknown lesion would be useful
for radiologists in the differential diagnosis of the unknown lesion. In chapter 4, we
investigate four objective similarity measures as an image-retrieval tool for selecting lesions
similar to unknown lesions in terms of radiologists’ visual perception. In chapter 5, we
confirm that the presentation of similar images can improve radiologists’ performance in the

differential diagnosis of clustered microcalcifications on mammograms.



CHAPTER 2
COMPUTERIZED DETECTION METHOD OF
CLUSTERED MICROCALCIFICATIONS

In the computerized detection method, it is very important to not only detect clustered
microcalcifications accurately but also segment microcalcifications while maintaining their
shapes because image features such as size and shape irregularity of each microcalcification
are used in the computerized analysis for differentiation aid. Therefore, we constructed a
novel filter bank having three important features: i) it could enhance the nodular component
in image; ii) it could enhance the nodular and linear component in image; and iii) it could
reconstruct an original image from the decomposed subimages of the original image. The
nodular feature (N feature) at each scale from 1 to 4 and the nodular and linear feature (NL
feature) at each scale from 1 to 4 are determined by the subimages for nodular component
(NC) at scales from 1 to 4 and the subimages for nodular and linear component (NLC) at
scales from 1 to 4. We then investigated the effectiveness of the N features and the NL
features for detecting clustered microcalcifications. Finally, we evaluated the detection

performance by applying the proposed detection method to 600 mammograms.

2.1 Materials
Our database consists of 1200 standard-view (cranio-caudal view and medio-lateral-oblique
view) mammograms obtained from 300 patients in the DDSM (Digital Database for
Screening Mammography, University of South Florida) [51]. Six hundred and ten
clustered microcalcifications (239 malignant lesions and 371 benign lesions) are included in
603 of the 1200 mammograms. The remaining 597 images are normal mammograms
without clustered microcalcifications. All mammograms were digitized to a pixel size of

0.0435 mm x 0.0435 mm and a 12-bit gray scale by use of a laser scanner. In order to train



Digitized mammogram
v
Decomposition of original image with filter bank
v
Selection of ROIs
v
Extraction of eight features
v
Distinction of ROIs with Bayes discriminant function

v
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Figure 2.1:  Schematic diagram of the proposed detection method for clustered
microcalcifications on mammograms.

and evaluate the proposed detection method, we divided our database into a training set and
a test set. Each set included 600 mammograms obtained from 150 patients. The total
number of clustered microcalcifications is 300 in the training set, and 310 in the test set,

respectively.

2.2 Overall Scheme for Detection of Clustered Microcalcifications
Figure 2.1 shows a schematic diagram of the proposed detection method of clustered
microcalcifications on mammograms. Mammogram image is first decomposed into
several subimages at different scales from 1 to 4 by a novel filter bank (section 2.3).
These subimages are the horizontal subimage for second difference in the vertical direction,
the vertical subimage for second difference in the horizontal direction, and the diagonal
subimage for first difference in the vertical direction followed by first difference in the
horizontal direction. The subimages for NC and the subimages for NLC are obtained from
analysis of the Hessian matrix based on those subimages for the differences. Many

regions of interest (ROIs) of 5 mm x 5 mm are then selected from the mammogram image



automatically. In each ROI, eight features are determined from the subimages for NC at
scales from 1 to 4 and the subimages for NLC at scales from 1 to 4 (section 2.4). A Bayes
discriminant function with these eight features is employed for distinguishing among
abnormal ROIs with clustered microcalcifications and two different types of normal ROIs
without clustered microcalcifications (section 2.5). The region connecting the ROIs
classified as abnormal ROI is considered to be a potential region of clustered
microcalcifications.

A 115 x 115 matrix (approximately 5 mm x 5 mm) is chosen as the ROI size because
the clustered microcalcifications are defined as a region containing more than three
microcalcifications per 5 mm x 5 mm area in clinical practice [7]. When the ROIs are
selected at intervals of 5 mm so as to border on the adjacent ROIs, some clustered
microcalcifications may be divided across two or more ROIs. These clustered
microcalcifications might be not detected correctly because each ROI includes only the
information on the divided cluster. Therefore, it is necessary to select ROIs at a shorter
interval so that the center of clustered microcalcifications will be at the center of one of the
ROIs. Although we must select ROIs at intervals of 1 pixel (0.0435 mm) to analyze a
mammogram in detail, there are no large differences between adjacent ROIls selected at
intervals of 1 pixel. It will also take much time to analyze redundant ROIs. In this study,
therefore, we select the ROIs at intervals of 23 pixels (approximately 1 mm) so that one

ROI would overlap with the adjacent ROIs.

2.3 Filter Bank for Detection of Nodular Components and Linear Components
2.3.1 Hessian Matrix Classifying Nodular Structures and Linear Structures

~ For the distinction between clustered microcalcifications and normal tissues on

mammograms, it would be important to enhance both nodular components, such as

microcalcifications, and linear components, such as blood vessels and mammary ducts.



The concept of the second derivative is well known as an enhancement technique for these

components. The values of the second derivatives for the nodular structure in all , °

directions become negative. On the other hand, the value of the second derivative for the
linear structure becomes zero in the direction of the axis of the linear structure, whereas it
becomes negative in the other directions. Therefore, the filters based on the second
derivatives are often used for the detection or the enhancement of the nodular structure and
the linear structure. Shimizu et al. [52, 53] defined a minimum directional difference filter
(Min-DD Filter) based on the smallest value of the second derivatives in all directions, and
a maximum directional difference filter (Max-DD Filter) based on the largest value of the
second derivatives in all directions. They then applied the Min-DD Filter to detect large
lung nodules in chest X-ray images.

On the other hand, the smallest value and the largest value of the second derivatives in
all directions can be calculated approximately by the small eigenvalue A, and the large
eigenvalue A, of the Hessian matrix because the second derivative of the function f(x,y)

in an arbitrary direction ¢ is given by

2 2 2
Z—{0052«9+2%c0595in9+%sin29
X X
o’ f o'f (D
. .\ o’ axay |cosO
=(cosé sin@ o f oif [sin&}
Ox0y 6y2

Details are shown in the Appendix I. Therefore, the following formulas indicate the

conditions that the two eigenvalues A, and A, must satisfy for a nodular structure and a
linear structure, respectively:

for a nodular structure: 4, =4, <0, 2)

for a linear structure: 4, <0, A, =0. 3)
Li et al. [54] and Sato et al. [55, 56] enhanced the nodular component and the linear

component in three-dimensional medical images by analyzing the eigenvalues of the

10



three-dimensional Hessian matrix.

2.3.2 Filter Bank for Detection of Nodular Components and Linear Components
As we described in the previous section, the nodular component and the linear component
can be enhanced by using the value of the second derivative or the eigenvalue of the
Hessian matrix. Although lung nodules have various sizes, the length of the filter for the
second derivative was constant in the Shimizu’s method [53]. Therefore, it might be
possible to enhance nodular structures and linear structures more accurately by using filters
for the second derivative with various sizes. In addition, it might be necessary to properly
shape the nodular structure and the linear structure using a smoothing operator, because the
second derivative is usually influenced by noise. These issues are solvable with a filter
bank which consists of high-pass filters and low-pass filters of various lengths. Once
clustered microcalcifications are detected, the next problem is to determine whether the
detected lesion is benign or malignant. Many investigators have developed computerized
analysis for distinguishing between benign and malignant clustered microcalcifications
[40]-[48]. In these computerized analyses, it is important to segment microcalcifications
while maintaining their shapes because image features such as size and shape irregularity
are used to estimate the likelihood of malignancy for clustered microcalcifications. This
issue was not taken into account in Li’s and Sato’s methods [54-56]. This issue is solvable
by use of a filter bank that satisfies the requirement for perfect reconstruction. Therefore,
we introduced the concept of the Hessian Matrix into a filter bank that satisfies the
requirement for perfect reconstruction.

Figure 2.2 shows a two-channel filter bank. The analysis bank on the left has a
lowpass filter H,(z), a highpass filter H, (z), and a downsampling operator (¥ 2) which
removes the odd-numbered components after filtering. The synthesis bank on the right has

a lowpass filter F,(z), a highpass filter F, (z), and an upsampling operator (12) which
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Figure 2.3: Filter bank for the one-dimensional discrete wavelet transform at scales from 1
to 3.
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Figure 2.4: Filter bank without sampling operators at scales from 1 to 3.

inserts a zero in the odd components. The filter bank for the one-dimensional discrete
wavelet transform is usually given by iterating the lowpass channel of the two-channel filter
bank, as illustrated in Fig. 2.3. For the perfect reconstruction with an /-step delay, the

filters of the two-channel filter bank must satisfy the following conditions [57]:
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H,(-2)F, (&) + H,, (~)F, (2) =0, @

H,(2)F,(2)+ H, (2)F, (z) =2z, %)
where F,(z)=H,(-z) and F,(z)=-H,(-z) . This filter bank performs a discrete
biorthogonal wavelet transform. For a discrete orthogonal wavelet transform, the
following condition must be satisfied in addition to the above conditions [57]:

H,(2)=-z"H, (-z™), ©)
where the overall system delay is /=N. Therefore, it is very difficult to give the filters
for the Hessian matrix in a filter bank based on a discrete orthogonal wavelet transform with
the perfect reconstruction. The analysis bank of these filter banks divides the input signal
into two channels of two half-length outputs decimated by the downsampling operator.
Together, these filter banks make up the maximally decimated filter bank [57]. The
maximally decimated filter bank is usually used for image compression or transmission,
because the length of the output signal obtained from the analysis bank is equal to the
length of the input signal. However, we consider that the maximally decimated filter bank
is not always useful for image analysis because details of the image are decimated by the
downsampling. Therefore the filter bank without sampling operators is employed for
detection of clustered microcalcifications. We can remove eq.(4) and eq.(6) from the
perfect reconstruction conditions by using the filter bank without sampling operators. The
condition for perfect reconstruction is given by only:

H, (2)F,(2)+ Hy (2)Fy (2) =1. (M
Equation (5) changes to eq. (7) because the filter bank without sampling operators does not
have the delay. Figure 2.4 shows the filter bank without sampling operators. Although
2j is usually employed for the order of z at scale j, we employ ; in order to obtain

details of the change of microcalcifications along the increase of scales.

Figure 2.5 shows the filter bank for the two-dimensional wavelet transform. S, f is

an original image. The smoothed subimage S,f is obtained by successive applications
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Figure 2.5: Filter bank for the two-dimensional wavelet transform.
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Figure 2.6: Filter bank for two-dimensional wavelet transform, which is the equivalent
representation of the filter bank in Fig. 2.5.

of the vertical low-pass filter followed by the horizontal low-pass filter. The horizontal
subimage W,” f is obtained by applying the vertical high-pass filter followed by the
horizontal low-pass filter. The vertical subimage W,” f is obtained by applying the
vertical low-pass filter followed by the horizontal high-pass filter. The diagonal subimage
w.° f is obtained by applying the vertical high-pass filter followed by the horizontal
high-pass filter.

The filter bank in Fig. 2.6 shows the equivalent representation of the filter bank in Fig.

2.5. The filter bank satisfies the perfect reconstruction even if we move some filter in the
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Figure 2.7: Filter bank obtained by changing the order of some filters of the filter bank in
Fig. 2.6.
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Figure 2.8: Filter bank obtained by iterating the lowpass channel of the filter bank in Fig. 2.7.

synthesis bank to the analysis bank because the filters are applied to the horizontal direction
and the vertical direction independently. We obtain the filter bank in Fig. 2.7 by. changing

the order of some filters of the filter bank in Fig. 2.6. Note that S,f, W,” f, and
w/ f in Fig. 2.6 are not equivalent to S, f, W," f,and W,” f in Fig. 2.7. In order

to obtain each element of the Hessian matrix from this filter bank, H,(z) and F,(z) are

given by
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Figure 2.9: Subimages obtained from the analysis bank of the novel filter bank by input of
an abnormal ROI with clustered microcalcifications.

H,(z)= %(—zl +z7), ®)

FH(z)zé(zl—z‘l), )

as new wavelet basis. H,(z) and F,(z) are the filters for the first difference.

Therefore, H,(z)F,(z) is the filter for the second difference, which is given by

H, (), (2) = (22 +2-27). (10)
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Figure 2.10: Subimages obtained from the analysis bank of the novel filter bank by input of
a normal ROI with blood vessels.

The horizontal subimage W, f is the second difference in the vertical direction of the
original image. The vertical subimage W,” f is the second difference in the horizontal
direction of the original image. The diagonal subimage W,” f is the first difference in
the vertical direction followed by the first difference in the horizontal direction of the
* original image. These subimages W,” £, W, f, W,” f, correspond to the elements of

the Hessian matrix. Because the condition for perfect reconstruction in the filter bank
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without sampling operators is H, (2)F,(z)+ H,(2)F, (z) =1, the other filter H, (z)F,(z)
is given by
H,(F, () =5 +2+57), an

where H,(z)F,(z) is the filter for the smoothing operator. By applying the smoothing
filter to the original image S f , the smoothed subimage S, f at the next scale, i.e., the
scale of 1, is obtained. The multi-resolution representation is obtained by iterating the
lowpass channel of the filter bank, as shown in Fig. 2.8. This multi-resolution
representation can remove noises and properly shapes the nodular structure and the linear
structure. In this filter bank, H, (z), F,(z), H,(2)F,(z),and H,(z)F,(z) atscale j

are given as

HH(z)%‘(—zf +z7), (12)
F,(z)= %(zf -z, (13)
H, (), (@) =5 (2" +2-27), (14)
H,(2)F,(2) =%(zzf +2+27Y). (15)

Figures 2.9 and 2.10 show the subimages obtained from the analysis bank of the novel filter

bank by input of an abnormal ROI with clustered microcalcifications and a normal ROI

with blood vessels, respectively. In the filter bank of Fig. 2.8, NC,(x,y) (the subimage
for NC at scale ;) is defined by the absolute value of the large eigenvalue A, of the

Hessian matrix at scale j. Here, the pixels that are A, >0 are given as zero because the

eigenvalues for the nodular structure tend to become negative. NLC (x,y) (the subimage
for NLC at the scale ;) is defined by the absolute value of the small eigenvalue A, of the

Hessian matrix at the scale j. Here, the pixels thatare A >0 are given as zero.

2.3.3 Fundamental Characteristics

18
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Figure 2.11: Fundamental characteristic of the absolute values of the small eigenvalue and
large eigenvalue. (a) Artificial data consisting of three nodular models and three linear
models with different pixel values and widths; (b) line profiles of the pixel value for artificial
data; (c) line profiles of the large eigenvalue for artificial data; and (d) line profiles of the
small eigenvalue for artificial data.

In order to investigate the fundamental characteristics of the subimages for NC and the

subimages for NLC, we performed the simulations using two sets of artificial data. We

used three nodular models and three linear models in Fig. 2.11(a). The pixel values at
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each center of the nodular models are 20, 40, and 40, whereas those of the linear models are

20, 40, and 40.  The diameters of the nodular models are 20 pixels, 20 pixels and 40 pixels,.

whereas the widths of the linear models with the length of 100 pixels are 20 pixels, 20
pixels, and 40 pixels. Figure 2.11(b) shows the line profiles on each center of the nodular
models and linear models.

Figure 2.11(c) shows the line profiles of the large eigenvalue of the Hessian matrix for
these models. Although the large eigenvalues near the edges of the nodular models and
linear models were positive, most of the large eigenvalues for nodular models were negative.
However, the large eigenvalues for linear models were not less than zero. When the pixel
value at the center of the model doubles, the absolute values of the large eigenvalue also
double. This is because these eigenvalues correspond to the values of second derivatives.
The absolute values of the large eigenvalues at a coarser scale were larger than those at a
finer scale when the diameter of the nodular model was increased. This indicates that the
size of the nodular model can be estimated by comparing the absolute values of the large
eigenvalues of each scale. Therefore, we can detect nodular components such as
microcalcifications by using the absolute values of large eigenvalues at each scale. Here,
the pixels that had large eigenvalues 1, >0 were given as zero.

Fig. 2.11(d) shows the line profiles of small eigenvalues of the Hessian matrix for
nodular models and linear models. Although the small eigenvalues near the edges of the
nodular models and linear models were zero, most of the small eigenvalues for the nodular
models and linear models were negative. The fundamental characteristics which depended
on the pixel value and the diameter of models were the same as the characteristics of the
large eigenvalues.  Therefore, we can detect both nodular components, such as
microcalcifications, and linear components, such as blood vessels and mammary ducts, by
using the absolute value of the small eigenvalues at each scale. Here, the pixels that had

small eigenvalues A, >0 were given as zero.
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Figure 2.12: Subimages for NC and for NLC, which were obtained from an abnormal ROI
with clustered microcalcifications, a normal ROI with blood vessels, and a normal ROI
without blood vessels.

2.4 Extraction of Features for Detection of Clustered Microcalcifications

We determined eight features for distinguishing among abnormal ROIs with clustered

microcalcifications and two different types of normal ROIs without clustered
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Figure 2.13: Cumulative histograms for three types of ROI. (a) Cumulative histogram
obtained from the subimage adding NCs at scales from 1 to 4 and (b) cumulative histogram
obtained from the subimage adding NLCs at scales from 1 to 4.

microcalcifications (normal ROIs with blood vessels and normal ROIs without blood
vessels). These eight features are extracted from the subimages for NC at scales from 1 to
4 and the subimages for NLC at scales from 1 to 4. Fig. 2.12 shows the subimages for NC
and the subimages for NLC, which were obtained from an abnormal ROI with clustered
microcalcifications, a normal ROI with blood vessels, and a normal ROI without blood
vessels. As shown in the subimages for NC, some pixel values for the abnormal ROI were
higher than those for the two normal ROIs. As shown in the subimages for NLC, some
pixel values for the normal ROI without blood vessels were lower than those for the
abnormal ROI and the normal ROI with blood vessels. Figure 2.13 shows the cumulative
histograms of the subimages for NC and the subimages for NLC. These cumulative
histograms were obtained from the subimage adding NCs at scales from 1 to 4, and the
subimage adding NLCs at scales from 1 to 4. Each of these cumulative histograms was

also an average of the cumulative .histograms of 30 abnormal ROIs with clustered
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microcalcifications, 30 normal ROIs with blood vesséls, and 30 normal ROIs without blood
vessels which were randomly selected from the database. Large differences appeared
among the three types of ROI in the pixel value higher than 97% of these cumulative
histograms. This implies that the ratio of the total area of all microcalcifications included
in an ROI to the area of an ROI was approximately 3%. Therefore, the nodular feature (N
feature) at each scale from 1 to 4 is determined by the average value of the pixel values
higher than 97% of the cumulative histograms of the subimage for NC at each scale from 1
to 4. The nodular and linear feature (NL feature) at each scale from 1 to 4 is also
determined by the average value of the pixel values higher than 97% of the cumulative

histograms of the subimage for NLC at each scale from 1 to 4.

2.5 Evaluation of Detection Performance
In order to detect clustered microcalcifications, we employed the Bayes discriminant
function [58] for distinguishing among three classes o, (i =1,2,3). Classes ®,, ®,,and
®, correspond to the abnormal ROI with clustereci microcalcifications, the normal ROI
with blood vessels, and the normal ROI without blood vessels, respectively. We first
trained the Bayes discriminant function by using three different types of ROI selected from
the training set. These ROIs are 300 abnormal ROIs with clustered microcalcifications,
300 normal ROIs with blood vessels, and 300 normal ROIs without blood vessels.
Abnormal ROIs are selected so that the centers of clustered microcalcifications would be
coincident with the centers of the ROIs. Normal ROIs are randomly selected from normal
mammograms that do not include clustered microcalcifications. In each of these three
classes, N features and NL features at scales from 1 to 4 which are determined from each of
these ROIs are used for calculating the mean vector m, and the covariance matrix 3 ,.

The mean vector m, and the covariance matrix 3., are defined as
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m,=— X x, (16)
ni XEX;

2 =L s om)E—m) (17
n, Xey;

Here, n, and y, are the number of samples and the sample set in class o, ,

respectively. The probability density function for each of the three classes is assumed to
be in normal distribution, whereas the prior probabilities are assumed to be equal. This is

because the mammograms are clinical data. Therefore, the Bayes discriminant function

for distinguishing among the three classes w, (i =1,2,3) is given by

£, == Gr=mY T (x~m) - T logE | (1)
where |5 is the determinant. We then selected the ROIs at intervals of approximately 1

mm in the test set. In order to distinguish among the three types of ROI, eight features
determined from selected ROIs areinputted to the Bayes discriminant function as the
feature vector x . The Bayes discriminant function g,(x) outputs three values
indicating the likelihood of each class. The class yielding the largest output value was
considered to be the result of the distinction among the three types of ROI. Regions
connecting the ROIs which are classified as abnormal are considered to be potential regions
of clustered microcalcifications.

The free-response receiver operating characteristic (FROC) curve [59] is usually used
to summarize quantitatively the detection performance of the computerized scheme. An
FROC curve is a plot of the true-positive fraction (TP) achieved by a computerized
detection method versus the average number of false positives (FPs) per image varied over
the continuum of the decision threshold. An FROC curve provides a comprehensive
summary of the trade-off between detection sensitivity and specificity. However, it is not
easy to calculate an FROC curve in the present context because the Bayes discriminant

function outputted three values indicating the likelihood of each class. Therefore, we first
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multiply the output value g, (x), indicating the likelihood of an ROI with a clustered
microcalcifications, by various coefficients before comparing g, (x), g,(x), and g,(x).
The ROI is then considered as abnormal when g, (x) is the highest value of the three
output values. When a center of the region connecting the ROIs which are classified as
abnormal is within a true cluster determined by an experienced radiologist, this region is
considered to have been “truly” detected. When a center of the connecting region is not
within a true cluster, this region is considered a false positive. In this study, the coefficient
is varied from 0.5 to 1.5 by the unit of 0.02. This range of the coefficient is determined
empirically to detect all clustered microcalcifications in the test set. By using this method,
we obtain the relationship between TP and FPs per image varied over the continuum of the

coefficient.

2.6 Results and Discussion
2.6.1 Usefulness of Eight Features
In order to investigate the usefulness of the used features for distinguishing among three
classes, we showed the relationship between N features and NL features at scales from 1 to
4 as shown in Fig. 2.14. These N features and NL features were determined from 300
abnormal ROIs with clustered microcalcifications, 300 normal ROIs with blood vessels, and
300 normal ROIs without blood vessels which were used for training the Bayes
discriminant function in the section 2.5. The N features for abnormal ROIs with clustered
microcalcifications at all scales tended to be larger than those for normal ROIs with and
without blood vessels because individual microcalcifications were generally nodular in
structure. The NL features for normal ROIs without blood vessels at all scales tended to
_ be smaller than those for abnormal ROIs with clustered microcalcifications and normal
ROIs with blood vessels. Although N features and NL features for abnormal ROIs with

clustered microcalcifications decreased greatly at scales between 2 and 3, those for normal
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Figure 2.14: Relationship between N features and NL features (a) at scale 1, (b) at scale 2, (c) at
scale 3, and (d) at scale 4.

ROIs with and without blood vessels did not decrease greatly at any of the scales.

This

appears to imply that most of the microcalcifications are of a size corresponding to the

width of the filter at scale 2. The difference among the three types of ROIs was small in N

features and NL features at scale 4. This implies that N features and NL features at scale 5

might not be useful for distinguishing among the three types of ROI.

For detecting

clustered microcalcifications, many investigators have developed computerized schemes
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Table 2.1: Tests for univariate equality means.

Wilk's lambda F value p value

N feature at scale 1 0.708 185.20 p <.001
N feature at scale 2 0.521 412.78 p <.001
N feature at scale 3 0.584 319.56 p <.001
N feature at scale 4 0.602 282.23 p <.001
NL feature at scale 1 0.832 135.65 p <.001
NL feature at scale 2 0.575 372.22 p <.001
NL feature at scale 3 0.665 258.09 p <.001
NL feature at scale 4 0.727 206.51 p <.001

based on the distinction between clustered microcalcifications and normal tissue.
However, in the relationship between N features and NL features, large differences
appeared between normal ROIs with blood vessels and normal ROIs without blood vessels.
Therefore, we consider that it might be possible to detect clustered microcalcifications more
accurately by distinguishing among the abnormal ROIs with clustered microcalcifications,
the normal ROIs with blood vessels, and the normal ROIs without blood vessels. In
addition, the detection performance of the computerized scheme using N features and NL
features at different scales might be higher than those using an N feature and an NL feature
at one scale, because the differences appeared among the three types of ROI at each scale.
Table 2.1 shows the results of tests for univariate equality of group means. These
results were calculated by using the objective features in Fig. 2.14. Wilk's lambda [60] for
the N feature at scale 2 was smaller than that for any other feature. The F-value [60] for
the N feature at scale 2 was also larger than that for any other feature. This result would

indicate that the N feature at scale 2 made a larger contribution for distinguishing among the
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Table 2.2: AUCs for each individual feature in the discriminant of abnormal and normal
ROlIs.

AUC

N feature at scale 1 0.841
N feature at scale 2 0919
N feature at scale 3 0.916
N feature at scale 4 0.897
NL feature at scale 1 0.687
NL feature at scale 2 0.850
NL feature at scale 3 0.728
NL feature at scale 4 0.722

three types of ROIs. The NL fe.ature at scale 1 made some contributions to the
classification. This was because the NL feature at scale 1 was influenced strongly by noise.
However, the contribution of the NL feature at scale 1 reached the level of statistical
significance (p < .001). Therefore, the eight features were statistically significant for
distinguishing among the three types of ROIs.

Table 2.2 shows the areas under the receivers operating characteristic curve (AUCs)
[59] of individual features for distinguishing between abnormal ROIs and normal ROls.
This AUC was calculated by use of the features in Fig. 2.14. The AUC for the N feature at
scale 2 was larger than that for any other feature. This result would indicate that the N
feature at scale 2 made a larger contribution for distinguishing between the two types of
ROIs. The AUCs for NL features were smaller than those for N features because both
abnormal ROIs with clustered microcalcifications and normal ROIs with blood vessels
included linear components. Therefore, NL features might be more effective when they

are used for distinguishing the three types of ROIs.
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2.6.2 Performance of Detection

Figure 2.15 shows the relationship between TP and FPs obtained by applying the Bayes
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discriminant function with eight features to 600 mammograms in the test set. For

detecting clustered microcalcifications, many investigators have developed computerized .

schemes using only the objective features related to the nodular structure. Therefore, in
order to investigate the usefulness of NL features, the relationship between TP and FPs for
the Bayes discriminant function with four features, i.e., all features except the NL feature, is
also shown in Fig. 2.15. The detection performance of the Bayes discriminant function
with eight features was much higher than that of the Bayes discriminant funcﬁon with the
four N features. The points at which the blood vessels intersect tended to become nodular
in structure. Therefore, they were detected as FP candidates in the other computerized
schemes for the detection of clustered microcalcifications. This result would indicate that
the number of these FP candidates was reduced by identifying the ROI with blood vessels.
Many investigators have also developed computerized schemes based on the distinction
between clustered microcalcifications and normal tissue. Therefore, in order to investigate
the usefulness of distinguishing among three different types of ROlIs, the relationship
between TP and FPs for the Bayes discriminant function for distinguishing between
abnormal ROIs and normal ROIs is also shown in Fig. 2.16. The detection performance of
the Bayes discriminant function for distinguishing among three types of ROIs was higher
than that of the Bayes discriminant function for distinguishing between two types of ROls.
This result indicates that the detection performance was improved by distinguishing among
three different types of ROIs.

The proposed detection method based on the Bayes discriminant function with eight
features for distinguishing among three types of ROIs identified 310 of the 310 clustered
microcalcifications in the test set, yielding a sensitivity of 100.0% and a FP rate of 0.98 per

mammogram.
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CHAPTER 3
COMPUTERIZED CLASSIFICATION METHOD FOR
IDENTIFYING HISTOLOGICAL CLASSIFICATIONS OF
CLUSTERED MICROCALCIFICATIONS

Making clinical decisions for biopsy or follow-up on clustered microcalcifications by taking
into account possible histological classifications on magnification mammograms would
reduce the number of unnecessary biopsies [7, 50]. For example, patients with clustered
microcalcifications associated with invasive carcinoma that may metastasize to other organs
must undergo biopsy immediately. Patients associated with noninvasive carcinoma of the
comedo type that grows rapidly must undergo biopsy or immediate follow-up at a very short
interval of one month. Patients associated with noninvasive carcinoma of the noncomedo
type with lower risk than the comedo type should also have follow-up at a short interval of
three months. Patients associated with mastopathy and fibroadenoma of benign breast
lesions should have follow-up at a relatively long interval of six months. Therefore, the
computerized analysis for estimating the likelihood of histological classifications on
clustered microcalcifications would be helpful to radiologists for their decisions on patient
management.

In this chapter, we develop a computerized classification method for histological
classification of clustered microcalcifications in order to assist radiologists’ interpretation as
a “second opinion.” There are differences in both the image features and the growth speed
among histological classifications of clustered microcalcifications. In the computerized
classification method, therefore, we extract six objective features from clustered
microcalcifications on each of follow-up magnification mammograms (i.e. both current and
previous magnification mammograms). We show that the differences in growth speed

among histological classifications are reflected in the six objective features used in the
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proposed classification method. We then evaluate the potential contribution of the
follow-up mammograms in the computerized classification method for estimating the .

likelihood of histological classifications on clustered microcalcifications.

3.1 Materials

Our database consists of current and previous magnification mammograms obtained from
93 patients before and after three-month follow-up examination at the Breastbpia Namba
Hospital, Miyazaki, Japan. It includes 55 malignant clustered microcalcifications (11
invasive carcinomas, 19 noninvasive carcinomas of the comedo type, and 25 noninvasive
carcinomas of the noncomedo type) and 38 benign clustered microcalcifications (23
mastopathies and 15 fibroadenomas). The histological classification of all clustered
microcalcifications was proven by stereotaxic core needle biopsy after a three-month
follow-up examination. Informed consent was obtained for the research use of each
patient’s mammograms. Figure 3.1 shows a current magnification mammogram and the
corresponding previous magnification mammogram in each of the five histological
classifications. It should be noted that the change in visual image features of the clustered
microcalcifications in invasive carcinoma and noninvasive carcinoma of the comedo type
are larger than those in the other lesions.

The magnification mammograms were acquired with a Kodak MinR-2000 screen/film
system. The magnification factor of the magnification mammograms was 1.8. The
mammographic x-ray system included an x-ray tube with a 0.1 mm focal spot and a
molybdenum anode, a 0.03-mm-thick molybdenum filter, and a 5:1 reciprocating grid.
These mammograms were digitized to a 512x512 matrix size with a 0.0275 mm pixel size
and a 12-bit gray scale by use of an EPSON ES-8000 digitizer (optical resolution 800x1600

dpi, optical density range 0.0-3.3D).
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Previous image Current image

Invasive carcinoma

Noninvasive carcinoma of
the comedo type

Noninvasive carcinoma of
the noncomedo type

Mastopathy

Fibroadenoma

Figure 3.1: Example of current images and the corresponding previous image in each
histological classification.

3.2 Segmentation of Microcalcifications and Definition of Cluster Margin

For segmentation of individual microcalcifications within a cluster on magnification

33



(a) Original image (b) Enhanced image (c) Segmented image
for calcifications for calcifications

Figure 3.2: Illustration of microcalcification segmentation by a novel filter bank and a
threshold technique. (a) Original image, (b) enhanced image for microcalcifications, and (c)
segmented image for microcalcifications.

(a) Segmented (b) Candidate for clustered (c) Cluster margin
calcifications microcalcifications

Figure 3.3: Illustration of definition of cluster margin, (a) segmented microcalcifications, (b)
candidate for the cluster margin, and (c) cluster margin.

mammograms, we first enhance the microcalcifications by use of the novel filter bank in
section 2.3. The microcalcifications are enhanced while maintaining their shape by use of
this filter bank, as shown in Fig. 3.2(b). A gray-level thresholding technique [61] is then
applied to the enhanced image, as shown in Fig. 3.2(c). The binary image for
microcalcifications is obtained at a threshold level of a 600 pixel value which is determined

empirically to segment all microcalcifications in 186 magnification mammograms. All
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detected regions at the threshold level of 600 are considered to be microcalcifications.

In order to obtain information about the shape of the distribution of clustered
microcalcifications, the margin of a cluster is automatically determined by using a computer.
We first draw circles with a diameter of 20 pixels at the center of gravity of each
microcalcification, as shown in Fig. 3.3(b). The center of gravity of each
microcalcification is calculated from the region of the segmented microcalcifications. The
region connecting the circles is considered to be a candidate for a cluster margin.
However, some circles for each microcalcification within a cluster were not connected,
when the diameter of the circles was too small. Therefore, the diameter is increased from
20 to 60 pixels until all circles within a cluster are connected, thus yielding a candidate for a
cluster margin. The shape of the candidate for the cluster margin strongly depends on the
locations of individual microcalcifications. The shape of the margin cannot be estimated
accurately because there are some indentations in the candidate for the cluster margin, as
shown in Fig. 3.3(b). We apply a binary morphologic closing operator [62] to the
candidate for smoothing the shape of the cluster margin. The structure element for the
binary morphologic closing operator is given by the circle with half the diameter of the
circle which is used for determining the candidate for the cluster margin. The edge of the
smoothed binary image is determined as the cluster margin.

Although, in this study, we use only magnification mammograms acquired with MLO
positioning, there would be a small position variation at each acquirement of the
magnification mammograms. Therefore, even if each image contains the same clustered
microcalcification, visual image features may be slightly different in each magnification
mammogram. This is an important issue in the consistency between objective features of
clustered microcalcifications extracted from the current and the previous magnification
mammograms. However, in our previous study, we confirmed that the objective features

of clustered microcalcification extracted from MLO magnification mammogram were
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nearly similar to those extracted from CC magnification mammogram [63]. Therefore, we

consider that the extracted features are little influenced from this position variation.

3.3 Extraction of Six Objective Features

Clustered microcalcifications associated with invasive carcinoma tend to be very
heterogeneous in terms of microcalcifications’ sizes and pixel values [7, 8, 50]. Their
shape is generally a rodlike/branching pattern. The edges of their distribution are
commonly irregular, because invasive carcinoma invades interstitial tissue. Clustered
microcalcifications associated with noninvasive carcinoma also tend to be heterogeneous.
However, there are some differences in the shape between the comedo type and the
noncomedo type of noninvasive carcinoma. Microcalcifications for the comedo type tend
to be in a rodlike/branching pattern, whereas those for the noncomedo type tend to be in a
linear/branching and granular/punctate pattern [7, 64, 65]. The distribution of
microcalcifications of the comedo type is likely to become linear and branching pattern in
the direction toward the nipple, because they are guided by the course of the duct [7, 8, 50].
Clustered microcalcifications associated with a benign lesion are commonly uniform in
microcalcifications’ size and pixel values; they tend to have round patterns.

We selected six objective features on clustered microcalcifications to distinguish
among five different types of histological classifications. These objective features were:
(1) the variation in the sizes of microcalcifications within a cluster, (2) the variation in pixel
values of microcalcifications within a cluster, (3) the shape irregularity of
microcalcifications within a cluster, (4) the extent of linear and branching distribution of
microcalcifications, (5) the distribution of microcalcifications in the direction toward the
nipple, (6) the number of microcalcifications within a cluster. These features are frequently

used for describing microcalcifications.
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3.3.1 Variation in Sizes of Microcalcifications
The variation in the sizes of microcalcifications within a cluster is determined by the
relative standard deviation in the areas of microcalcifications within a cluster. The area of
each microcalcification is determined by the number of pixels within the segmented
microcalcification. Although standard deviation is frequently used for quantifying the
variation in sizes, standard deviation becomes large when the sizes of the
microcalcifications within a cluster are large. Because the size information of
microcalcifications alone is not directly related to the likelihood of malignancy [7, 8, 50],
we use the relative standard deviation to quantify the variation in the sizes of
microcalcifications within a cluster. In order to demonstrate the usefulness of the relative
standard deviation, we compared the relative standard deviation and the standard deviation
in determining the variation in the sizes of microcalcifications, as shown in Fig. 3.4, where
these values were normalized by using the mean value and the standard deviation of all
cases in the database. When the standard deviation was used, the distributions for
malignant cases extensively overlapped with those for benign cases. Thus, it is very
difficult to distinguish between them. However, when the relative standard deviation was
used, the variations in the sizes for malignant cases tended to be greater than those for

benign cases.

3.3.2 Variation in Pixel Values of Microcalcifications
The variation in pixel values of microcalcifications within a cluster is determined by the
standard deviation for the pixel values of microcalcifications. The pixel value of each
microcalcification is defined l;y the mean value of the five largest pixel values on the
segmented microcalcification in the original image. Because the pixel values of
microcalcifications is likely to be related to the likelihood of malignancy [7, 8, 50], we use

the standard deviation to quantify the variation in pixel values of microcalcifications.
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Figure 3.4: Comparison between the relative standard deviation and the standard deviation
in determining the variation in the sizes of microcalcifications.

Figure 3.5 shows a comparison between the standard deviation and the relative standard
deviation in determining the variation in the pixel values of microcalcifications. When the
standard deviation was used, the variations in the pixel values for malignant cases tended to

be larger than those for benign cases.

3.3.3 Shape Irregularity of Microcalcifications
In order to define the shape irregularity of microcalcifications within a cluster, we employed
two kinds of irregularity indices for each microcalcification. One irregularity index for
each microcalcification is defined by the standard deviation of the 16 shape factors, as

shown in Fig. 3.6. Sixteen shape factors consist of 8 minimum distances and 8 maximum
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Figure 3.5: Comparison between the standard deviation and the relative standard deviation
in determining the variation in pixel values of microcalcifications.

distances between the center of the segmented microcalcification and the edges of the
segmented microcalcification. The minimum distance and the maximum distance are
obtained in each of 8 regions located at intervals of 45 degrees. The standard deviation of
these 16 shape factors is used for identifying irregular microcalcifications. For a round
microcalcification, all 16 shape factors would have similar values, and thus the standard
deviation would be small. For an irregular (linear and branching pattern)
microcalcification, some of the '16 shape factors have large values, whereas others have
small values; therefore, the standard deviation would be large. Another irregularity index
of each microcalcification was evaluated by use of the degree of irregularity (1-P/N; P =

perimeter of the circle with the same area as the microcalcification, N = length of the
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(a) Minimum distances (b) Maximum distances

Figure 3.6:  Illustrations of the definition of the shape factors for individual
microcalcifications. (a) Eight shape factors are the minimum lengths of the distance, and (b)
eight shape factors are the maximum lengths of the distance between the center-of-
microcalcification pixel and the edges of microcalcification in eight regions separated by
forty-five degrees.

microcalcification outline) which is generally used for quantifying the irregularity in the
shape [66].

The shape irregularity of microcalcifications within a cluster is defined by the mean
value of the five largest irregularity indices of individual microcalcifications within a cluster.
Figure 3.7 shows a comparison of two shape irregularities of microcalcifications within a
cluster, which was obtained from the standard deviation of the 16 shape factors and the
degree of irregularity. When the standard deviation of the 16 shape factors was used as a
basis for the irregularity index, the shape irregularities for malignant cases tended to be
larger than those for benign cases. Because the length of the microcalcification outline
could not be determined accurately for small microcalcifications, the reliability for the

degree of irregularity is somewhat uncertain. Therefore, we use only the standard
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Figure 3.7: Comparison of two shape irregularities of microcalcifications within a cluster.

deviation of the 16 shape factors for evaluation of the irregularity index of each
microcalcification and the shape irregularity of clustered microcalcifications in the

following sections.

3.3.4 Extent of Linear and Branching Distribution of Microcalcifications
The extent of the linear and branching distribution of microcalcifications cluster is
evaluated by use of the standard deviation of the 16 shape factors. Note that the 16 shape
factors are applied to the clus\ter margin defined in section 3.2, instead of individual
. microcalcifications as described in section 3.3.3. The 16 shape factors consist of 8

minimum distances and 8 maximum distances between the center of a cluster and the edges

of a cluster, as shown in Fig. 3.8. The minimum distance and the maximum distance are
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(a) Minimum distances (b) Maximum distances

Figure 3.8: Illustrations of the definition of the shape factors for a cluster margin. (a) Eight
shape factors are the minimum lengths of the distance, and (b) eight shape factors are the
maximum lengths of the distance between the center of the cluster and the edges of the
cluster in eight regions separated by forty-five degrees.

obtained from each of 8 regions located at intervals of 45 degrees in the cluster margin.

3.3.5 Distribution of Microcalcifications in Direction toward Nipp]e
To determine the measure for the distribution of microcalcifications in the direction toward
the nipple, we define the average distances to a main straight line and a sub-straight line as
shown in Fig. 3.9. The main straight line is drawn from the center of the nipple to the
center of a cluster. The average distance of microcalcifications to the main line is given by
the average distance from each center of microcalcifications to the main straight line.
Note that the unit of this distance is the pixel of the digitized mammogram. The
sub-straight line is a line perpendicular to the main straight line at the center-of-cluster pixel.
The average distance of microcalcifications to the sub-straight line is given by the average

distance from each center of microcalcifications to the sub-straight line. The measure for
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Main straight line

Sub-straight line

Figure 3.9: Illustration of a main straight line and a sub-straight line for determining the
distribution of microcalcifications in the direction toward the nipple. The main straight line is
drawn from center of nipple to center of cluster. The sub-straight line is perpendicular to the
main straight line at the center-of-cluster pixel.

the distribution of microcalcifications in the direction toward the nipple is determined by
the ratio of the average distance for the sub-straight line to the average distance for the main
straight line. If the distribution of microcalcifications is extended toward the nipple, the
average distance for the main straight line would have a small value, whereas the average
distance for the sub-straight line would have a large value. Therefore, the ratio of the
average distance for the sub-straight line to the average distance for the main straight line

would be large.

3.3.6 Number of Microcalcifications

The number of microcalcifications within a cluster is determined by the number of the

segmented microcalcifications within a cluster in section 3.2.
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34 Determination of Histological Classification
For determining the histological classifications of clustered microcalcifications, the nearest .
neighbor case is identified by the Euclidean distance in the previous and current
feature-space which consisted of six objective features obtained from the previous
magnification mammogram (previous features) and six objective features obtained from the
current magnification mammogram (current features). The histological classification of an
unknown new case in question is assumed to be the same as that of the nearest neighbor
case which has the shortest Euclidean distance in our database: the validity of this

assumption is examined in this study.

3.5 Results and Discussion
3.5.1 Usefulness of Six Objective Features

Figure 3.10 shows comparisons between the current features and the previous features in
each of six objective features. The six objective features in malignant lesions tended to
increase over the three-month follow-up examination, whereas those in benign lesions
tended to be almost constant or decrease. These results were consistent with the
differences in growth speed among histological classifications in clinical experience [64,
65]. The findings of the five objective features excluding the number of
microcalcifications also corresponded to the radiologic finding [7, 50] of clustered
microcalcifications in each histological classification. Although, on the other hand,
clustered microcalcifications associated with malignant lesions tend to have many
microcalcifications, this radiologic finding did not appear in this study. This cause might
be because we used only clustered microcalcifications in which the extent of the distribution
was small (i.e. the extent was less than 1.5 cm x 1.5 cm).

Table 3.1 shows the results of tests for univariate equality of group means for each

objective feature in each of the current features and the previous features. The Wilk’s
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Table 3.1: Tests for univariate equality of group means for each objective feature in each of
the current features and the previous features.

Previous features (n = 93) Current features (n = 93)
Correlation
S Wilk’s Wilk’s coefficient
Objective features lambda F value p value lambda F value p value
Variation in size 0.68 8.26 <0.001 0.52 21.03 <0.001 0.34
Variation in
. 0.70 7.16 <0.001 0.60 14.39 <0.001 0.32
pixel values
Shape irregularity 0.60 14.68 <0.001 0.48 24.75 < 0.001 0.35
Extent of linear and
branching distribution 0.73 529 <0.001 0.62 12.86 < 0.001 0.40
Distribution in direction 0.65 1054 <0.001 0.59 1517 <0.001 051
toward the nipple
Number of 0.74 5.23 <0.001 £0.69 7.64 <0.001 0.75
microcalcifications

lambdas [60] for the current featurés were smaller than those for the previous features,
whereas the F values [60] for the current features were larger than those for the previous
features. These results would indicate that the difference in each objective feature among
the five histological classifications became larger over the three-month follow-up
examination. For the number of microcalcifications, the Wilk’s lambdas were larger than
any other objective features, and the F values were smaller than the other objective features.
The correlation coefficient for the number of microcalcifications was also high between the
current feature and the previous feature. These results indicated that the number of
microcalcifications did not have properties which would be useful to be applied for a
classifier like a Linear Discriminant Analysis [67]. However, the p values for all objective
features reached the level of statistical significance. Therefore, these twelve objective
features were statistically significant for determining the histological classifications of

clustered microcalcifications.
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Table 3.2: Comparisons of the classification accuracies obtained by the Nearest neighbor
criterion and the Modified Bayes discriminant function with the six current features, the six
previous features, and the set of the six previous features and the six current features..

Classification accuracy

With six previous features With six current features s .
. . ; . With six previous features
including the number of including the number of ;
. ; . . X . and six current features
microcalcifications microcalcifications
Pathological diagnosis MBDF NNC MBDF NNC MBDF NNC
Invasive carcinoma 6 7 7 8 10 10
(11) (54.5%) (63.6%) (63.6%) (72.7%) (90.9%) (90.9%)
N‘z)’;‘:‘h":zg;gggct‘“"?a 10 11 13 13 16 17
(19) yP (52.6%) (57.9%) (68.4%) (68.4%) (84.2%) (89.5%)
Nemasne reoms 16 1 18 18 2 2
@5) yP (64.0%) (68.0%) (72.0%) (72.0%) (84.0%) (96.0%)
Mastopathy 15 15 16 17 17 19
(23) (65.2%) (65.2%) (69.6%) (73.9%) (73.9%) (82.6%)
Fibroadenoma 11 10 11 11 13 14
(15) (73.3%) (66.7%) (73.3%) (73.3%) (86.7%) (93.3%)

3.5.2 Classification Performance
Table 3.2 shows the classification accuracies obtained by the nearest neighbor criterion
(NNC) and the Modified Bayes discriminant function (MBDF: see Appendix II) [68-70]
based on a leave-one-out testing method [67]. In this method, the training was carried out
for all except one case in the database; the case not used for training was used for testing
with the trained MBDF. This procedure was repeated until every case in our database had
been used once. The MBDF can reduce the estimation error of higher-order eigenvectors
in the Bayes discriminant function. For the construction of the NNCs and the MBDFs, we
used the six previous features, the six current features, and the set of the six previous
features and the six current features. The classification accuracies with the six current
features were higher than those with the six previous features in both the NNCs and the

MBDFs. These classification accuracies were improved substantially by using the set of
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Table 3.3: Comparisons of the classification accuracies obtained by the Nearest neighbor
criterion and the Modified Bayes discriminant function with the five current features, the five
previous features, and the set of the five previous features and the five current features.

Classification accuracy

With five previous features With five current features . .
! X With five previous features
excluding the number of excluding the number of
. . . . . . and five current features
microcalcifications microcalcifications
Pathological diagnosis MBDF NNC MBDF NNC MBDF NNC
Invasive carcinoma 6 6 8 8 9 9
an (54.5%) (54.5%) (72.7%) (72.7%) (81.8%) (81.8%)
NO‘;‘SIV*’S‘VG cgr Ct“‘"ma 11 11 13 13 16 17
otthe CE’]“; © type (57.9%) (57.9%) (68.4%) (68.4%) (84.2%) (89.5%)
Ng:‘;“‘l’l"“m carcinoma 15 16 17 17 19 21
of'the noncomedo type 60.0%) (64.0%) (68.0%) (68.0%) (76.0%) (84.0%)
(25)
Mastopathy 15 15 15 16 17 18
23) (65.2%) (65.2%) (65.2%) (69.6%) (73.9%) (78.3%)
Fibroadenoma 11 10 11 11 13 13
(15) (73.3%) (66.7%) (73.3%) (73.3%) (86.7%) (86.7%)

the six previous features and the six current features. The classification accuracies
obtained with the NNCs were higher than those obtained with the MBDF. This reason
would be that the MBDF was not trained optimally because the number of samples was
small compared to the number of the used features.

In order to investigate the usefulness of the number of microcalcifications, Table 3.3
shows also the classification accuracies obtained by the NNCs and the MBDFs with the five
current features excluding the number of microcalcifications, the five previous features
excluding the number of microcalcifications, and the set of the five previous features and
the five current features. The classification accuracies with the NNCs were the same or
higher as those with the MBDFs. Although both the classification accuracies with the

NNCs and those with the MBDFs were also improved by adding the number of
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Table 3.4: Classification results obtained by the Nearest neighbor criterion with the set of
the six previous features and the six current features.

Computer output

Invasive Noninvasive Noninvasive
Pathological diagnosis . carcinoma of carcinoma of Mastopathy Fibroadenoma
carcinoma comedo type noncomedo type
Invasive carcinoma 10 | 0 0 0
(11) (90.9%) 9.1%) (0.0%) (0.0%) (0.0%)
Noninvasive carcinoma
1 17 1 0 0
f dot
0 °°'?f9)° ype (5.3%) (89.5%) (5.3%) (0.0%) (0.0%)
Noninvasive carcinoma
0 1 24 0 0
f dot
° noncz’;s“;‘ gl (0.0%) (4.0%) (96.0%) (0.0%) (0.0%)
Mastopathy 0 0 2 19 2
23) (0.0%) (0.0%) (8.7%) (82.6%) (8.7%)
Fibroadenoma 0 0 0 1 14
(15) (0.0%) (0.0%) (0.0%) (6.7%) (93.3%)

microcalcifications, the improvement in the NNCs tended to be larger than that in the
MBDFs.

Table 3.4 shows the classification results obtained by the NNC with the set of the six
previous features and the six current features. The classification accuracies of histological
classifications were 90.9% (10/11) for invasive carcinoma, 89.5% (17/19) for noninvasive
carcinoma of the comedo type, 96.0% (24/25) for noninvasive carcinoma of the noncomedo
type, 82.6% (19/23) for mastopathy, and 93.3% (14/15) for fibroadenoma.

Figure 3.11 shows an example of identification results of a nearest neighbor case for
each of the five histological classifications as shown in Fig. 3.1. It might be that the

nearest neighbor cases are similar to cases in Fig. 3.1.

49



Previous image Current image

Invasive carcinoma

Noninvasive carcinoma of
the comedo type

Noninvasive carcinoma of
the noncomedo type

Mastopathy

Fibroadenoma

Figure 3.11: Example of identification results of a nearest neighbor case for each of the five
histological classifications as shown in Fig. 3.1.
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CHAPTER 4
COMPUTERIZED RETRIEVAL METHOD FOR SIMILAR
IMAGES OF CLUSTERED MICROCALCIFICATIONS

In the interpretation of medical images, radiologists attempt to make diagnostic decisions
based on the medical knowledge derived from viewing many clinical images over the years
through education, training, and clinical practice. It is commonly known that, when a
radiologist encounters a new, unknown case in daily clinical work, he/she may occasionally
search for clinical images with known pathology similar to that of the unknown case by
reviewing images in previous clinical cases, teaching files, and textbooks. Therefore, the
presentation of similar images would be useful and would have the potential to improve
radiologists’ performance in the differential diagnosis of lesions in clinical images [72-75].
In order to develop a useful tool for selecting similar images to be used as a diagnostic
aid, many investigators have studied content-based or feature-based image-retrieval
methods [76-88]. However, these retrieval methods do not take into account radiologists’
subjective impression of similarity when two images are compared. If retrieved images
were not really similar to an unknown lesion visually for clinical purposes, they would not
be useful for radiologists in the differential diagnosis of the unknown lesion. Therefore, Li
et al. [89] and Muramatsu et al. [90-94] proposed a psychophysical similarity measure, as
an image retrieval tool, which was determined by use of an artificial neural network (ANN)
for learning the relationship between radiologists’ subjective similarity ratings and the
objective features of lesions. They showed that the correlation coefficients (» = 0.72, 0.74,
and 0.71 for nodules on low-dose CT, and masses and clustered microcalcifications on
mammograms, respectively) between radiologists’ subjective similarity ratings and
psychophysical similarity measures were greater than those (* = 0.60, 0.60, and 0.58 for

nodules on low-dose CT, and masses and clustered microcalcifications on mammograms,
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respectively) between radiologists’ subjective similarity ratings and objective similarity
measures based on the Euclidean distance in feature space that was frequently used in many .
studies. Their results indicated that similar images selected based on the psychophysical
similarity measures would be more similar in terms of radiologists’ visual perception than
those selected based on the Euclidean distance in feature space. However, it appears that
the psychophysical similarity measures were not highly accurate as a reliable objective
similarity measure for selecting similar images, because the correlation coefficients were
less than 0.80, i.e., they were not extremely high.

In this study, therefore, we investigate new objective similarity measures based on both
the Euclidean distance in feature space and the psychophysical similarity measure. In
order to evaluate the usefulness of these measures, we select pairs of masses and pairs of
clustered microcalcifications on mammograms by using four different measures. We
conduct two observer studies based on a two-alternative forced-choice (2AFC) method [95]
for mass pairs and for calcification pairs, for comparison of subjective similarities in terms

of radiologists’ visual perception on pairs of images selected by use of different measures.

4.1 Materials and Methods
The use of the following database and the participation of radiologists in the observer study
were approved by the Institutional Review Board at the University of Chicago. Informed
consent for this observer study was obtained from all observers.

In this study, we investigate four objective similarity measures (A, B, C, and D) based
on the Euclidean distance in feature space and the psychophysical similarity measure
determined by the ANN. In Muramatsu’s studies [90, 93, 94], fifty images including 25
benign and 25 malignant lesions were first selected as representative lesions for both mass
and calcification studies by an attending breast radiologist to include various sizes and types

of lesions. Three hundred pairs were created by the combination of each representative
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lesion and six images (3 benign and 3 malignant lesions) selected subjectively by consensus
of three investigators to include pairs with a wide range of similarities. Ten breast
radiologists provided their subjective similarity ratings for the 300 mass pairs and the 300
calcification pairs. For specific image features considered in both the Euclidean distance
and the ANN, we employ the combination of six and seven objective features for masses
and clustered microcalcifications, respectively, which provide the highest correlation
coefficients between the average subjective similarity ratings and psychophysical similarity
measures [90, 93, 94]. The six features for masses include the degree of irregularity, the
full width at half maximum of a cumulative modified radial gradient histogram, the radial
gradient index, the minor—to-nﬂajor—axis ratio of an ellipse fitted to the outline of the mass,
the edge contrast, and the standard deviation of pixel values [90, 94]. On the other hand,
the seven features for clustered microcalcifications include the circularity of the cluster, the
number of microcalcifications per unit area, the mean effective diameter of
microcalcifications, the standard deviation of the effective diameters of microcalcifications,
the mean contrast of microcalcifications, the standard deviation of contrasts of
microcalcifications, and the standard deviation of the shape irregularities of
microcalcifications [93, 94]. Measures A and B are based on the Euclidean distance in
feature space and the psychophysical similarity measure, respectively. Measure C is the
sequential combination of B and A, which is derived first based on the psychophysical
similarity measure and then the Euclidean distance in feature space, whereas measure D is
the sequential combination of A and B, which is derived based on the Euclidean distance in

feature space and then the psychophysical similarity measure.
4.1.1 Databases

To compare the usefulness of four different measures as an image-retrieval tool, we use

pairs of masses and pairs of clustered microcalcifications on mammograms which were

53



obtained from the Digital Database for Screening Mammography (DDSM) developed by

the University of South Florida [S1]. Our database for masses consists of 1,568 regions of ,

interest (ROIs), including 840 benign and 728 malignant masses [94]. The size of the ROI
is 5 cm by 5 cm (pixel size 100 pum), centered at each mass. On the other hand, our
database for clustered microcalciﬁcaﬁons consists of 1,101 ROIs, including 644 benign and
457 malignant clustered microcalcifications [94]. The size of the ROI is 3 cm by 3 cm
(pixel size 50 um), centered at each clustered microcalcification. All lesions were proved
by biopsy. The contrast and the density level in each ROI were manually adjusted to an

appropriate level by an attending breast radiologist.

4.1.2 Selection of Pairs of Images
The pairs of images for masses and those for clustered microcalcifications are selected for
each of the observer studies by use of the method described below. We first remove 300
ROIs used for training the ANN [90, 93, 94], which is then applied to the determination of
psychophysical similarity measures for all of pairs of images used in this study. One
hundred ROIs are selected randomly from the remaining ROIs (1,268 and 801 for masses
and clustered microcalcifications, respectively) such that only one ROI is selected from the
same patient. For the selected 100 ROIs, 4,950 pairs are created by all possible
combinations of two different ROIs. Pairs of ROIs with the highest similarity measures
are then selected for an observer study by use of four different measures. For measure A,
five pairs with the five highest similarity measures based on the Euclidean distances in
feature space are selected from the 4,950 pairs. For measure B, five pairs with the five
highest psychophysical similarity measures are selected ffom the 4,950 pairs. For measure
C, a pair with the highest psychophysical similarity measure is pre-selected in 99 pairs
created by the combinations of one ROI and the other 99 ROIs. This procedure is repeated

for all of the selected 100 ROIs. Subsequently, five pairs with the five highest similarity
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measures based on the Euclidean distances are selected from the pre-selected 100 pairs.
For measure D, a pair with the highest similarity measure based on the Euclidean distance is
pre-selected in 99 pairs created by the combinations of one ROI and the other 99 ROlIs.
This procedure is repeated for all of the selected 100 ROIs.  Subsequently, five pairs with
the five highest psychophysical similarity measures are selected from the pre-selected 100
pairs. Here, five pairs for each measure are selected such that the same ROI is not selected

again as another ROI in different pairs obtained with the same measure.

4.1.3 Observer Study

We conduct two observer studies for 20 mass pairs and for 20 calcification pairs, for
comparison of subjective similarities-in terms of radiologists’ visual perception on pairs of
ROIs selected by use of the 4 different measures. The 2AFC method, known as a paired
comparison method, is employed in the observer study because it is a sensitive method for
the distinction of a small difference in the comparison of two similar patterns [94]. In the
observer study, two pairs of lesions are displayed on 'a high-resolution liquid-crystal-display
monitor (MES511L/P4, 21.3 in., 2048 by 2560 pixels, 410 cd/m2 luminance; Totoku Electric
Co., Ltd.) with one pair above and another pair below, as shown in Fig. 4.1. The observer
is asked to compare the similarity of the two pairs and to select the pair considered more
similar than the other pair. During the observer study, each pair is compared to all of the
other 19 pairs one by one. The frequency with which a pair is selected as the more similar
pair is considered as the subjective similarity ranking score for the pair; the maximum and
the minimum score would be 19 and zero, respectively. The subjective similarity ranking
scores indicate the relative rankings of similarities among the 20 pairs selected by four
different measures.

Six observers, including three attending breast radiologists and three breast-imaging

fellows, participate independently in the observer study. The instructions to the observers
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Caae 121482

Figure 4.1: Observer interface for obtaining subjective similarity ranking scores based on the
2AFC method.

included: 1) The purpose of this study is to obtain experimental data for subjective
impression of similarity for pairs of masses (and pairs of clustered microcalcifications in the
second session) on mammograms selected by four computerized methods.  2) Two pairs of
images are displayed on a monitor. You are asked to compare the similarity of one pair
above with that of another pair below, regarding the overall impression for diagnosis.
Click on the one pair that is more similar than the other. 3) A training session including
two comparisons of pairs of lesions is provided at the beginning of the study. 4) There is

no time limit.
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Figure 4.2: Relationship between objective similarity measure based on the Euclidean
distance in feature space and psychophysical similarity measure for 20 mass pairs selected by
4 different measures.

4.2 Results
Figure 4.2 shows the relationship between the objective similarity measures based on the
Euclidean distance and the psychophysical similarity measures for 20 mass pairs selected
by the 4 different measures. The mass pairs selected by use of measure A tended to have
high objective similarity measures based on the Euclidean distances and relatively low
psychophysical similarity measures, whereas those by measure B tended to have relatively
low objective similarity measures based on the FEuclidean distances, but high
psychophysical similarity measures. The pairs selected by use of measures C and D were
distributed between the pairs for measures A and B. The pairs for measure C were

distributed near the pairs for measure A, whereas the pairs for measure D were distributed
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Figure 4.3: (a) Relationship for average similarity ranking score of each mass pair by 6

radiologists with objective similarity measure based on the Euclidean distance.
Relationship for average similarity ranking score with psychophysical similarity measure.
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Table 4.1: Mean values and standard deviations of average subjective similarity ranking
scores of mass pairs by six radiologists for each measure.

Mean = SD
Measure A 8.23 = 1.30
Measure B 830 = 1.88
Measure C 9.63 + 3.47
Measure D 11.83 = 1.89

Table 4.2: Relationship of statistical significances between computerized Measures based on
average similarity ranking score of each mass pair.

Measure A Measure B Measure C
Measure B <.950
Measure C <.423 <.472
Measure D <.008 <.018 <.248

near the pairs for measure B. It should be noted that there is a noticeable difference among
4 groups of pairs of masses selected as “most similar” based on the four different methods.
Figures 4.3 (a) and (b) show the relationships for the average subjective similarity ranking
score of mass pairs by 6 radiologists with the objective similarity measure based on the
Euclidean distance, and also with the psychophysical similarity measure, respectively.
Table 4.1 shows the mean values and the standard deviations of the average subjective
similarity ranking scores for four groups of mass pairs selected by use of different measures.
Although there was a large variation in the average similarity ranking scores for each
measure, the mean value of the average similarity ranking scores for measure D was greater

than those for the three other measures. On the other hand, the mean value of the average
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MeasureA: 10.00 ( 2/0.94, 820/0.64) Measure B: 10.17 ( 552/0.74, 3/0.92)

MeasureA: 9.00 ( 4/0.91, 466/0.74) Measure B: 10.00 (1644/0.64, 6/0.88)

MeasureA: 8.17 ( 1/0.95, 320/0.77) Measure B: 8.50 ( 820/0.71, 2/0.92)

MeasureA: 7.17 ( 3/0.92, 733/0.71) Measure B: 7.00 (1683/0.64, 7/0.86)

MeasureA: 6.83 ( 5/0.91, 164/0.80) Measure B: 5.83 (1245/0.67, 1/0.94)

Figure 4.4: Mass pairs for measures A and B, and the average subjective similarity ranking
score in bold (ranking on objective similarity measures based on the Euclidean distance in
4950 pairs / objective similarity measure, ranking on psychophysical similarity measures in
4950 pairs / psychophysical similarity measure) for each pair.
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Measure C: 13.33 ( 36/0.86, 122/0.82) Measure D: 14.67 ( 362/0.76, 5/0.90)

12.17 ( 30/0.86, 302/0.77) Measure D: 1217 ( 560/0.73, 4/0.90)

Measure C:

Measure C: 10.17 ( 16/0.89, 105/0.83) Measure D: 12.00 ( 544/0.74, 16/0.87)

Measure C: 7.83 ( 56/0.84, 127/0.82) Measure D: 10.67‘(489/0.74, 17/0.87)

Measure C: 4.67 ( 71/0.84, 176/0.80) Measure D: 9.67 ( 622/0.73, 14/0.88)

Figure 4.5: Mass pairs for measures C and D, and the average subjective similarity ranking
score in bold (ranking on objective similarity measures based on the Euclidean distance in
4950 pairs / objective similarity measure, ranking on psychophysical similarity measures in
4950 pairs / psychophysical similarity measure) for each pair.
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Figure 4.6: Relationship between objective similarity measure based on the Euclidean
distance in feature space and psychophysical similarity measure for 20 calcification pairs
selected by 4 different measures.

similarity ranking scores for measure A was lower than those for the other measures.
These results indicated that the mass pairs selected by measure D were more similar, on
average, in terms of radiologists’ visual perception, than those by the other measures.
Table 4.2 shows P-values for the difference in the average similarity ranking scores
obtained by use of two different measures. A statistical analysis was performed with use
of Student’s t test based on the average similarity ranking score for each pair obtained by 6
radiologists. The difference (P = .008) between measures D and A and (P = .018) between
measures D and B were statistically significant. Figures 4.4 and 4.5 show the 20 mass
pairs obtained by use of the 4 different measures, together with the average subjective

similarity ranking score in bold (ranking on objective similarity measures based on the
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6 radiologists with objective similarity measure based on the Euclidean distance.
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Table 4.3: Mean values and standard deviations of average similarity ranking scores of
calcification pairs for each computerized Measure.

Mean * SD
Measure A 7.63 £ 2.69
Measure B 7.87 £ 2.62
Measure C 10.00 = 3.23
Measure D 12.50 =2.86

Table 4.4: Relationship of statistical significances between computerized Measures based on

average similarity ranking score of each mass pair.

Measure A Measure B Measure C
Measure B <.893 -
Measure C <244 <.285
Measure D <.024 <.028 <.231

Euclidean distance in 4950 pairs / objective similarity measure, and also ranking on
psychophysical similarity measures in 4950 pairs / psychophysical similarity measure) for
each pair. The first pair for measure D in Fig. 4.5 had the highest average similarity
ranking score, whereas the fifth pair for measure C had the lowest average similarity
ranking score.

Figure 4.6 shows the relationship between the objective similarity measure based on
the Euclidean distance and the psychophysical similarity measure for 20 calcification pairs
selected by the 4 measures. Although there was a small overlap in the distributions of
calcification pairs among the 4 measures, the calcification pairs for each of the measures

tended to be distributed in a way similar to those for the mass pairs in Fig. 4.2. Figures 4.7
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Method A 11.67 ( 5/0.880, 447/0.780) Method B: 11.17 (445/0.759, 25/0.951)

Method A: 7.83 (7 /0.878, 1391/0.653) Method B: 8.83 (214/0.794, 1/0.984)

Method A: 7.67 ( 2/0.899, 199/0.858) Method B: 8.17 (286/0.780, 42/0.935)

Method A: 6.83 ( 6/0.879, 604/0.751) Method B: 7.17 (581/0.744, 9/0.967)

Method A: 4.17 ( 1/0.912, 414/0.788) Method B: 4.00 (72/0.827, 45/0.934)

Figure 4.8: Calcification pairs for measures A and B, and the average subjective similarity
ranking score in bold (ranking on objective similarity measures based on the Euclidean
distance in 4950 pairs / objective similarity measure, ranking on psychophysical similarity
measures in 4950 pairs / psychophysical similarity measure) for each pair.
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Method C: 13.33 ( 7/0.877, 370/0.797) Method D: 17.00 (13/0.866, 48/0.932)

Method C: 11.83 (32/0.851, 76/0.912) ~ Method D: 13.33 (52/0.839, 2/0.983)

Method C: 10.50 (44/0.844, 475/0.774) Method D: 11.83 (45/0.843, 80/0.910)

Method C: 9.50 (11/0.868, 63/0.922) Method D: 10.67 (30/0.853, 41/0.937)

Method C: 4.83 (73/0.827, 25/0.951) Method D: 9.67 (25/0.856, 44/0.935)

Figure 4.9: Calcification pairs for measures C and D, and the average subjective similarity
ranking score in bold (ranking on objective similarity measures based on the Euclidean
distance in 4950 pairs / objective similarity measure, ranking on psychophysical similarity
measures in 4950 pairs / psychophysical similarity measure) for each pair.
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(a) and (b) show the relationships for the average subjective similarity ranking score of
calcification pairs to the objective similarity measure based on the Euclidean distance, and
to the psychophysical similarity measure, respectively. Table 4.3 shows the mean values
and the standard deviations of the average subjective similarity ranking scores of
calcification pairs for each measure. The calcifications pairs for measure D had the
highest average subjective similarity ranking scores, whereas those for measure A had the
lowest average similarity ranking scores; these results were the same as those for masses.
Table 4.4 shows P-values for the difference in the average similarity ranking scores
obtained by use of two different measures. The difference (P = .024) between measures D
and A and that (P = .028) between measures D and B were statistically significant. Figures
4.8 and 4.9 show the 20 calcification pairs obtained by use of the 4 different measures,
together with the average subjective similarity ranking score in bold (ranking on objective
similarity measures based on the Euclidean distance in 4950 pairs / objective similarity
measure, and also ranking on psychophysical similarity vmeasures in 4950 pairs /
psychophysical similarity measure) for each pair. The pairs with very high objective
similarity measures both for the Euclidean distance and the ANN tended to have high

average subjective similarity ranking scores in measures C and D.

4.3 Discussion
In both observer studies for mass pairs and calcification pairs, the mean values of the
average subjective similarity ranking scores for measure B were greater than those for
measure A, although the difference between measures A and B was not statistically
significant in this study. This result tended to be consistent with the results presented by
Li et al. [89] and Muramatsu et al. [90, 93, 94], where the correlation coefficient of
radiologists’ subjective similarity ratings with psychophysical similarity measures was

greater than that with objective similarity measures based on the Euclidean distance.
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These results may indicate that the psychophysical similarity measure is a better tool in
retrieving similar images than is the objective similarity measure based on the Euclidean |
distance.

The mean values of the average similarity ranking scores for measures C and D were
greater than those for measures A and B. The mean value of the average similarity ranking
scores for measure D was greater than that for C. For measure D, the pairs with
comparable physical characteristics were first pre-selected by use of an objective similarity
measure based on the Euclidean distance, and thus the subsequent selection of pairs with
high psychophysical similarity measures would be more reliable, because inadequate pairs
which may not be similar due to a large difference in physical characteristics were removed
initially. Therefore, we believe that the pairs selected by measure D would be more
similar in terms of radiologists’ visual perception than those by measure B, because measure
B was improved substantially by the sequential combination with measure A. With
measure C, on the other hand, the pairs were first pre-selected by use of a psychophysical
similarity measure, and thus some pairs with high objective similarity measures, which
would be located closely in feature space, would have been removed, and the subsequent
selection of pairs may provide pairs with different physical characteristics. Therefore, we
believe that the pairs for measure D would be more similar subjectively than those for
measure C.

The implementation of selecting similar images by use of measure D in clinical
situations can be illustrated in the example described below. When a radiologist
encounters a new, unknown case in daily clinical practice at a breast clinic, a search engine
would determine first the objective similarity measures based on the Euclidean distance in
feature space for all of the combinations for the unknown case with all of the known
benign/malignant cases in the database available in the clinic, which may include a large

number of cases such as 1,000 benign cases and 1,000 malignant cases stored in a Picture
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Archiving and Communication System. The search engine would then select a certain
pre-selected number of cases such as the top 100 pairs, each for benign and malignant cases,
with higher objective similarity measures; these pairs would be subjected to determination
of the psychophysical similarity measures by use of the trained ANN. Finally, the
radiologist may indicate a desired number of similar cases to be presented as an aid to
his/her diagnosis, such as five cases each for benign/malignant cases. The search engine
then could retrieve those cases with the five highest psychophysical similarity measures in
each category to be presented as similar cases. It is likely that the cases selected would
look more similar to the unknown case in question for radiologists in making their
diagnostic decision than other cases which might be selected by the three other measures, A,
B, or C.

There are some limitations in this study. One limitation is that the number of pairs for
each objective similarity measure was small in the observer study because the time required
for a radiologist has to be limited to an hour in one session. Another limitation is that four
of six breast radiologists who participated in the observer study provided their subjective
similarity ratings for the 300 mass pairs and the 300 calcification pairs in our previous
studies. However, we believe that the bias due to this overlap would be minimal, because
for training the ANN, the average subjective similarity ratings were obtained by ten breast

radiologists.
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CHAPTER 5
POTENTIAL USEFULNESS OF SIMILAR IMAGES
IN THE DIFFERENTIAL DIAGNOSIS

Radiologists commonly learn diagnostic skills by viewing many cases in their training and
clinical practice. Based on their experience and knowledge, they may make a diagnostic
decision on a new, unknown lesion that appears in medical images. Therefore, it is
expected that the presentation of images of lesions with known pathology similar to a new,
unknown lesion would be useful for radiologists in the differential diagnosis of the
unknown lesion [72-75, 78-82, 84, 86, 87, 89-93, 96]. Several investigators have
attempted to use similar images as a diagnostic aid for chest lesions [78, 84, 89] and breast
lesions [79-80, 82, 86, 87, 91-93, 96]. However, if similar images were not really similar
to an unknown lesion in terms of radiologists’ visual perception, those similar images would
not be useful in assisting radiologists in the differential diagnosis of the unknown lesion.
In selecting similar images from a database, investigators [89-93] have developed a
computerized scheme for automatically selecting similar images based on a psychophysical
similarity measure which is obtained by use of an artificial neural network for learning the
relationship between radiologists’ subjective ratings of similarity and the objective features
of lesions. However, these studies have not demonstrated clearly and convincingly that
radiologists' performance in the differential diagnosis of lesions would be improved by the
presentation of similar images [89, 90].

Recently, Muramatsu [94] has conducted an observer study for evaluating the
usefulness of similar images selected based on a psychophysical similarity measure in the
distinction between benign and malignant masses on mammograms. The results indicated
that there was little difference between radiologists’ performance in the differential

diagnosis without and with the presentation of the similar images. From a detailed
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Selection of 560 images with clustered microcalcifications
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Subjective ratings on likelihood of malignancy
by three radiologists
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similar to unknown case

v

Observer study for distinction between malignant and
benign lesions without and with similar images

Figure 5.1: Overall scheme of this study

analysis of her results, she found that the cases used in the observer study included unusual
and inadequate cases, i.e., “malignant-looking” benign and “benign-looking” malignant
lesions. Thus, radiologists appeared to be confused in the differential diagnosis of lesions
when these malignant-looking benign and benign-looking malignant lesions were presented
as similar images. However, in the practical setting for the application of similar images,
we can eliminate such unusual or inadequate cases in advance. In this study, therefore, we
evaluated the usefulness of the presentation of similar images in the distinction between
benign and malignant clustered microcalcifications on mammograms by removing these

unusual cases from our database.

5.1 Materials and Methods

The use of the following database and the participation of radiologists in the observer study

were approved by the Institutional Review Board at the University of Chicago. Informed
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consent for this observer study was obtained from all observers.

Figure 5.1 shows the overall scheme of this study. First, we select 560 regions of.

interest (ROIs) with clustered microcalcifications, including both benign and malignant
cases. Three attending breast radiologists independently provide subjective ratings on the
likelihood of malignancy for each of the 560 clustered microcalcifications. Based on the
average subjective ratings, one hundred ROIs are removed as malignant-looking benign or
benign-looking malignant lesions. Forty lesions are then selected as “unknown” cases for
an observer study by use of a stratified randomization method. For each unknown case,
four “known” malignant and four “known” benign lesions similar to the unknown case in
terms of radiologists’ visual perception are selected as the similar images. An observer
study is conducted for evaluating the usefulness of the presentation of the similar images in

distinguishing between benign and malignant clustered microcalcifications.

5.1.1 Case Selection

Our database initially consists of 1,101 ROIs, including 644 benign and 457 malignant
clustered microcalcifications which were obtained from a publicly available database, the
Digital Database for Screening Mammography (DDSM) developed by the University of
South Florida [51]. All microcalcification lesions were proved by biopsy. The size of the
ROl is 3 cm by 3 cm, centered at each lesion. Figure 5.2(a) and (b) shows the distribution
of the number of microcalcifications in the clusters and the distribution of the size of
clusters in our database, respectively.

To remove malignant-looking benign and benign-looking malignant lesions from our
study, it is necessary to obtain radiologists’ subjective ratings on the likelihood of
malignancy for all of the clustered microcalcifications. In order to minimize this task by
radiologists, we remove 146 ROIs if the number of microcalcifications is less than 5, or

greater than 35, and if the cluster size is greater than 25 mm. It would be difficult to select
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Figure 5.2: (a) Distribution of the number of microcalcifications in the clusters. (b)
Distribution of the size of clusters included in our database.
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Figure 5.3: Distribution of average confidence levels of malignancy by three attending
breast radiologists.

similar images if some of these lesions are used as “unknown” cases because of the limited
number of cases available. Of the remaining 955 ROIs, 790 ROIs included both
cranio-caudal and medio-lateral-oblique views for 395 clustered microcalcifications,
whereas 165 ROIs included only one view. Only one view from each case was selected by
an attending breast radiologist based on the quality of the clustered microcalcifications.
As a result, the cases in this study consisted of 560 ROIs, including 346 benign and 214
malignant clustered microcalcifications obtained from 560 patients (mean age, 57.4 years;
age range, 32-87 years; 560 women).

Three attending breast radiologists (H.A., C.S., R.A.S.; 6-26 years experience)
independently provide their confidence level regarding the malignancy (or benignity) on a

continuous rating scale from 0 to 1 corresponding to “definitely benign” and “definitely
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Figure 5.4: Distribution of average confidence levels of malignancy after removing benign-
looking malignant and malignant-looking benign lesions.

malignant,” respectively, for each of 560 clustered microcalcifications, which is displayed
on a high-resolution liquid-crystal display (LCD) monitor (MES11L/P4, 21.3 in., 2048 by
2560 pixels, 410 cd/m2 luminance; Totoku Electric Co., Ltd., Tokyo, Japan). Figure 5.3
shows the distribution of the average confidence levels of malignancy by the three breast
radiologists. The average inter-observer correlation coefficient for all possible pairs of 3
observers was 0.554. We assume in this study that benign lesions with the average
confidence levels greater than 0.6 would be considered malignant-looking benign lesions,
whereas malignant lesions with average confidence levels less than 0.4 would be considered
. benign-looking malignant lesions. Therefore, one hundred ROIs with those lesions were
removed, and the cases to be used in our observer study consisted of 460 ROIs including

287 benign and 173 malignant clustered microcalcifications. Figure 5.4 shows the
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Figure 5.5: Distribution of average confidence levels of malignancy for 40 unknown cases.

distribution of the average confidence levels of malignancy for the remaining 460 cases
used in our observer study.

In order to include moderately difficult and indeterminate cases as unknown cases in
the observer study, we select forty unknown cases by use of a stratified randomization
method based on the average confidence levels of malignancy. Twenty malignant lesions
were selected as unknown cases such that the average confidence levels of malignancy for
unknown malignant lesions would be distributed approximately normally in the range from
0.40 to 0.90, as shown in Fig. 5.5, whereas twenty benign lesions were also selected as
unknown cases such that those for unknown benign lesions would be distributed
approximately normally in the range from 0.10 to 0.60.

Similar images for each unknown case should be selected by radiologists because the

purpose of this study is to evaluate the usefulness of images which should be similar to the
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Figure 5.6: Relationship between the objective simiiarity measure based on the Euclidean
distance and the psychophysical similarity measure for all pairs of 40 unknown cases with 8
similar cases selected from each of benign and malignant known images

unknown lesions in terms of radiologists’ visual perception. However, it would be
impractical for radiologists to select the similar images for each unknown case from the
many cases included in our database. Therefore, we decided first to select a set of similar
images by an automated computerized method; these are then selected subjectively by a
radiologist to constitute the final sets of similar images. For each unknown case, eleven
“known” benign lesions and eleven “known” malignant lesions were first pre-selected as
the similar images from our database by use of an objective similarity measure based on the
short Euclidean distance in image feature space [94], i.e., a set of objective image features

for an unknown lesion would be comparable or similar to those of pre-selected lesions.
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Subsequently, eight similar images for each of the benign and malignant lesions were

selected based on the eight highest psychophysical similarity measures [93]. Figure 5.6 . °

shows the relationship between the objective similarity measure based on the Euclidean
distance and the psychophysical similarity measure for all pairs of 40 unknown cases with 8
similar cases pre-selected by the computerized scheme. There was a large variation in
psychophysical similarity measures, although all of these cases had relatively high objective
similarity measures based on the Euclidean distance. Finally, the four most similar images,
which would be very similar to each unknown case, in each of 8 benign and 8 malignant
images were selected subjectively based on the overall impression for radiological diagnosis
by an attending breast radiologist (H. A.; 6 years experience). This selection of four from
eight images was performed without knowing if the group of images was benign or

malignant.

5.1.2 Observer Study

In the observer study, an unknown image is displayed in the center of a high-resolution
LCD monitor. The observer is asked to mark his/her confidence level regarding the
malignancy of the unknown case on the continuous (using units of .01) rating scale from 0
to 1 corresponding to “definitely benign” and “definitely malignant,” respectively. After
the observer marks the initial confidence level, four benign and four malignant similar
images are displayed on the left and right sides of the unknown image, respectively, and the
initial mark is erased. The observer is asked again to mark his’her confidence level
regarding the malignancy of the unknown case.

Eight observers, including five attending breast radiologists (H.A., C.S., K.K., R.A.S.,
G.M.N.; 6-30 years experience) and three breast imaging fellows (L.F., A.S., R.S.; 0-1 years
experience), participate independently in the observer study. Three of five attending breast

radiologists have seen 560 lesions when providing the confidence level regarding the
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malignancy for those lesions, and the period between the work for providing their
confidence levels and the observer study was more than 3 months. The instructions to the
observers included: 1) The purpose of this study is to investigate whether providing the
similar known images can assist radiologists in the distinction between benign and
malignant lesions on mammograms. 2) Forty unknown cases are included in this study.
A training session including two cases is provided at the beginning of the study. 3) You
are asked to provide your confidence level regarding the malignancy (or benignity) of a
lesion on a bar by use of a mouse first without similar images, and then after observing the
similar images. 4) For each unknown case, four most similar images each from benign

and malignant lesions in the database are provided. 5) There is no time limit.

5.1.3 Statistical Analysis
For evaluating the radiologists’ performances without and with the similar images in the
distinction between benign and malignant clustered microcalcifications, we employ a
receiver operating characteristic (ROC) analysis based on a sequential-test method [97, 98].
The areas under the ROC curve (AUCs) and the 95% confidence intervals are obtained with
a quasi-maximum-likelihood estimation of binormal distribution by use of DBM MRMC
software (version 2.2) developed by the University of lowa and the University of Chicago
[99, 100]. The signiﬁcﬁnce of the difference in AUCs between observer readings without
and with similar images is tested with use of the Dorfman-Berbaum-Metz method [99, 100],
which includes both reader variation and case sample variation by means of an analysis of
variance approach. A P value less than .05 is considered to indicate a statistically
significant difference. Inter-observer variability is determined by the mean value of the
standard deviations of radiologists’ confidence levels for each unknown case. An average
change in confidence level greater than 0.05 due to the use of similar images by the 8

observers is also assumed to be a beneficial or detrimental change.
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Figure 5.7: Comparison of ROC curves for the average performance of the eight radiologists
in the distinction between benign and malignant clustered microcalcifications without and
with similar images. With similar images, the average AUC was improved significantly
from 0.692 to 0.790 (P = .0009).

5.2 Results
Figure 5.7 shows the average ROC curves for all observers in distinguishing between
benign and malignant clustered microcalcifications without and with similar images. The
average AUC increased from 0.692 without to 0.790 with the similar images. This
difference was statistically significant (P = .0009). Table 5.1 shows the AUCs for each
observer without and with similar images. All observers’ performances in the differential
diagnosis were improved when the similar images were available. The average AUCs for
the five attending breast radiologists without and with the similar images were 0.698 and

0.794 (P = .024), respectively, whereas those for the three breast imaging fellows without
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Table 5.1: AUCs for radiologists in the distinction between benign and malignant clustered

microcalcifications without and with similar images [95% confidence intervals]

AUC
Observer sim\i?:;hifri:ges similgiitlllllages P value

Attending breast radiologist

A 0.683[0.447, 0.919] 0.867[0.728, 1.001] .0421

B 0.658 [0.473, 0.842] 0.787[0.515, 1.058] 3262

C 0.675[0.501, 0.849] 0.751[0.539, 0.964] 4055

D 0.799 [0.677, 0.922] 0.832[0.697, 0.967] .6310

E 0.677[0.493, 0.861] 0.734 [0.569, 0.901] 3409

Mean 0.698 [0.589, 0.807] 0.794 [0.708, 0.880] .0241
Breast imaging fellow

F 0.734[0.505, 0.962] 0.806 [0.675, 0.936] .3959

G 0.677[0.539, 0.816] 0.765[0.616, 0.913] .1902

H 0.632[0.469, 0.796] ' 0.778 [0.619, 0.937] .0686

Mean 0.681[0.574, 0.788] 0.783[0.713, 0.852] .0135
ALL 0.692 [0.596, 0.788] 0.790 [0.723, 0.857] .0009

and with the similar images were 0.681 and 0.783 (P = .014), respectively. The gain in the
average AUCs for the attending breast radiologists was comparable to that for the breast
imaging observers (P = .886). Inter-observer variability without and with similar images
was 0.139 and 0.149, respectively.

Figure 5.8 shows the relationship between the average initial confidence levels and the
average beneficial or detrimental changes in confidence level for benign and malignant
cases due to the use of similar images by the 8 observers. The number of cases with a
beneficial effect was much greater than that with a detrimental effect. If an average

change in confidence level greater than 0.05 was assumed to be a beneficial or detrimental
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Figure 5.8: Average beneficial or detrimental changes in confidence level due to similar
images.

change, the number of beneficial changes was 15, whereas that of detrimental changes was
2. For each observer, the number of beneficial changes was larger than that of detrimental
changes.

Figure 5.9 shows the unknown malignant case with the most beneficial change which
corresponds to the average confidence level from 0.491 to 0.605 by use of similar images.
In this case, six of the eight observers changed their confidence levels of malignancy
beneficially after viewing the similar images. The other two hardly changed their
confidence levels. Most observers appeared to find that a set of malignant similar images
were more similar to this unknown case than were benign similar images. On the other

hand, in the unknown benign case with the most beneficial change, most observers appear
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Figure 5.9: Malignant unknown lesion (center) with the selected benign (upper) and
malignant (lower) similar lesions. Six of the eight observers increased their confidence
levels of malignancy beneficially after viewing the similar images. The other two hardly
changed their confidence levels.
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Figure 5.10: Benign unknown lesion (center) with the selected benign (left) and malignant
(right) similar lesions. Although the three breast imaging fellows beneficially increased or
hardly changed their confidence levels of malignancy after viewing the similar images, four

of the five attending breast radiologists decreased their confidence levels of malignancy

detrimentally.
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to have considered that a particular benign similar image was more similar to the unknown
case than any other similar lesions.

Figure 5.10 shows the unknown benign case with the most detrimental change from
the average confidence level of 0.270 to 0.354 by use of similar images. In this case,
although the three breast imaging observers beneficially changed or hardly changed their
confidence levels of malignancy after viewing the similar images, four of the five attending
breast radiologists changed their confidence levels of malignancy detrimentally. In this
unknown benign case and the unknown malignant case, both having the most detrimental
change, some observers might have considered that a few similar images with pathology
opposite to the unknown case were more similar. The average confidence levels of these
similar images with the opposite pathology by the three attending breast radiologists were
between 0.4 and 0.6 in Fig. 5.4, which implies that these similar cases should be considered
malignant-looking benign and benign-looking malignant lesions, and thus they should be

removed from the database and not be used for similar images in the future.

5.3 Discussion
In this study, the results indicated clearly that radiologists’ performance in the differential
diagnosis of clustered microcalcifications can be improved by use of similar images.
However, malignant-looking benign and benign-looking malignant lesions were not used
for unknown cases as well as known cases in our observer study, because these lesions
would not contribute to the understanding of the potential usefulness of similar images for
the diagnosis. We believe that malignant-looking benign and benign-looking malignant
unknown lesions would not be helped at present by use of similar images and/or by any
other computerized schemes. In clinical practice, malignant-looking benign lesions would
be considered malignant, and would be treated as such. On the other hand, benign-looking

malignant lesions would be considered benign, and thus not be subjected to additional
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examinations; these lesions may be detected in follow-up examinations. If these lesions
were subjected to additional examinations, many unnecessary examinations would result for . -
benign lesions, which would be costly to patients and to society.

If malignant-looking benign and benign-looking malignant lesions were presented as
similar images selected from known cases in the database, radiologists would be confused
because some “known” benign lesions appear “malignant”, and some “known” malignant
lesions appear “benign”. Therefore, we believe strongly that malignant-looking benign
and benign-looking malignant lesions should not be used in observer studies for evaluating
the usefulness of similar images. Although we do not know the fraction of
malignant-looking benign and benign-looking malignant lesions included in clinical
practice at present, about 20% of cases in our study, in which all lesions underwent biopsy,
were identified as malignant-looking benign and benign-looking malignant lesions. If the
fraction of these lesions would not be very low in clinical practice, radiologists would miss
many cancers [11, 16], and unnecessary biopsy would be very common [18, 19].

In our study, we assumed that benign lesions with average confidence levels greater
than 0.6 would be considered malignant-looking benign lesions, whereas malignant lesions
with average confidence levels less than 0.4 would be considered benign-looking malignant
lesions. We applied these threshold values to the selection of both unknown cases and
known cases. However, the threshold values used in the selection of known cases should
have been different from those used in the selection of unknown cases. The database to be
used for known similar lesions should include only benign and malignant lesions which
most radiologists can recognize correctly as benign and malignant, respectively. Therefore,
the threshold value for selecting known benign cases should be very low, such as 0.4 or
lower, whereas the threshold value for known malignant cases should be very high, such as
0.6 or greater. If we had used different threshold values, it is possible that our results

would have differed.
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By use of MRMC ROC analysis, we analyzed the confidence levels for 35 unknown
cases excluding three obviously benign and two obviously malignant cases. Here, we
assumed obvious cases to be those for benign lesions with average confidence levels less
than 0.3, and malignant lesions with those greater than 0.7. The average AUCs for all
observers increased from 0.623 without to 0.741 with the similar images (P = .0016).
Although both average AUCs for 35 unknown cases without and with the similar images
were less than those for 40 unknown cases, the gain in average AUCs with similar images
increased. The performance of all observers in the differential diagnosis was improved
when they used similar images. These results indicated that similar images would be more
useful for moderately difficult and indeterminate cases with average confidence level, from
0.3 to 0.7 than for obvious cases.

There are some limitations to this study. One limitation is that the similar images
used in our observer study were selected subjectively at the final selection process by an
attending breast radiologist. Because there are some variations among radiologists in their
subjective judgments on similar images, it would be desirable to have subjective judgments
by a number of radiologists. Although three of five attending breast radiologists who
participated in the observer study had seen 560 lesions when providing the confidence level
regarding the malignancy for those lesions, we believed that the recall bias would be
minimal because the pathology of 560 lesions was not provided to them, and the period
between the work for providing their confidence levels and the observer study was more
than 3 months. Another limitation is that we used ROIs instead of whole images as
unknown cases in the observer study. However, although the radiologists’ performance
may be improved by use of the whole image, we believe that the conclusion in this study
would not be changed. In addition, magnification views were not included in this study,
although radiologists often use magnification images in the differential diagnosis of

clustered microcalcifications. The potential usefulness of similar images for magnification
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mammograms is another research area which would require further investigation.
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CHAPTER 6
CONCLUSION

The motivation in this dissertation was to improve the diagnostic accuracy and consistency
of radiologists’ image interpretation. The goal was to develop computerized analysis for
both detection aid and differentiation aid of clustered microcalcifications on mammograms.

For computerized analysis for detecting clustered microcalcifications, we constructed a
novel filter bank by introducing the concept of a Hessian matrix into a commonly used filter
bank. This filter bank has three important features: i) it can enhance the nodular
component in an image; ii) it can enhance the nodular and linear component in an image;
and iii) it can reconstruct an original image from decomposed subimages of the original
image. The objective features for the nodular structures and the linear structures with
various sizes in each ROI were obtained by using features i) and ii) of the filter bank. We
showed that there were differences in these objective features among abnormal ROIs with
clustered microcalcifications, normal ROIs with blood vessels, and normal ROIs without
blood vessels. We demonstrated that the computerized detection method based on the
classification results among three ROIs had a high detection performance.

For computerized analysis for identifying histological classifications of clustered
microcalcifications, six objective features on clustered microcalcifications on each of
follow-up magnification mammograms were determined from the microcalcifications
segmented by the filter bank defined in chapter 2. We showed these objective features
were useful statistically for the distinction between five different types of histological
classifications. In identifying histological classification of clustered microcalcifications,
the histological classification of an unknown new case in question was assumed to be the
same as that of the nearest neighbor case which has the shortest Euclidean distance in a

feature-space. The feature-spaces for the nearest neighbor case consisted of six objective
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features obtained from the previous magnification mammogram (previous features), six
objective features obtained from the current magnification mammogram (current features), .
and the set of the six previous features and the six current features. The classification
accuracies were the highest in the feature-space with set of the six previous features and the
six current features. This result indicated that the differences in not only image features
but also growth speeds were useful in identifying the histological classifications. The
computerized identification of histological classifications based on the nearest neighbor
case also had high classification accuracies. This result would verify the assumption for
identifying histological classification.

For computerized analysis for retrieving lesions similar to unknown lesions on
mammograms, we investigated four objective similarity measures. Measures A and B
were based on the Euclidean distance in feature space and the psychophysical similarity
measure, respectively. Measure C was the sequential combination of B and A, whereas
measure D was the sequential combination of A and B. In this study, we selected 100
lesions each for masses and clustered microcalcifications randomly from our database, and
we selected five pairs of lesions from 4,950 pairs based on all combinations of the 100
lesions by use of each measure. In two observer studies for 20 mass pairs and 20
calcification pairs, six radiologists compared all combinations of 20 pairs by using a two
alternative forced-choice method to determine the subjective similarity ranking score which
was obtained from the frequency with which a pair was considered as more similar than the
other 19 pairs. In both mass and calcification pairs, pairs selected by use of measure D
had the highest mean value of the average subjective similarity ranking scores. The
sequential combination of the objective similarity measure based on the Euclidean distance
and the psychophysical similarity measure would be useful in the selection of images
similar to those of unknown lesions.

The potential usefulness of the presentation of images of lesions with known pathology
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similar to an unknown lesion was evaluated in distinguishing between benign and malignant
clustered microcalcifications on mammograms. A total of 20 benign and 20 malignant
lesions were selected using a stratified randomization method, and it was these lesions that
served as unknown cases in this observer study. For each unknown case, eight similar
images of benign lesions and eight similar images of malignant lesions were preselected
with a computerized scheme. From these preselected images, a breast radiologist
subjectively selected the four most similar images of benign lesions and the four most
similar images of malignant lesions. Five attending breast radiologists and three
breast-imaging fellows participated in the observer study. Observers provided their
confidence level regarding malignancy of the unknown case before and after they viewed
the similar images. The results were evaluated with multireader multicase ROC analysis.
For all observers, the AUCs were improved when similar images were used. The average
AUC for all observers increased from 0.692 without use of similar images to 0.790 with use
of similar images. The presentation of similar images can improve radiologists’
performance in the differential diagnosis of clustered microcalcifications on mammograms.
In this dissertation, we have proposed a new approach to achieve high detection
performance and/or high classification accuracies which would certainly help radiologists to
improve their diagnosis accuracy of clustered microcalcification in a clinical setting. In
this research, we used a digitized mammogram with a pixel size of 0.0435 mm x 0.0435
mm and a 12-bit gray scale by use of a laser scanner. As digital mammograms have
gradually become available in more and more clinical settings, and as the number of
specialists for diagnosing mammograms is limited in a community, these digital
mammograms are going to be networked and analyzed at a key station located in a
community. Mie University Hospital is one such key station in Mie prefecture, and our
method is going to be routinely used to help radiologists. Then, there arises a new

challenge for us to explore a way to treat much larger pixel sizes than those used in this
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dissertation since using larger pixel sizes will greatly reduce the sizes of data and cost of

communication.
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APPENDIX I

Eigenvalues of Hessian Matrix

By using x=rco¥¥ and y=rsing, the function z=f(x,y) is represented by

—a—z—z—aicosé+a—zsin9,
or Ox Oy

2 2 2 2
aszai 00829+26Z cosHsin9+af sin @ .
or 0°x Ox0y oy

The second derivative of the function f(x,y) in an arbitrary direction € is given by

where x” =(cos@ sin 6), and H is a Hessian matrix. Since H is a symmetry matrix,
there is an orthogonal matrix P such that P’HP =diag[s, 4,]. A, and A,
(4, =2 4,) indicate the small eigenvalue and the large eigenvalue of the Hessian matrix,
respectively. If we change the basis with x=Py, the second derivative of the function
f(x,y) is

f"=y"PTHPy = 4y} +2,; -
By using the relation

y+yi=y"y=(P'x) P'x=x"x=cos’@+sin’ 6=1,
it becomes

=R+ Ry = A)y; =+ (A = 4)y; 2 A
Therefore, the small eigenvalue A, of the Hessian matrix is given by the smallest value of
f". By using the same relation, we have

1= 00+ + (A =)y = A+ (4 =)y < 4,

The large eigenvalue A, of the Hessian matrix is given by the largest value of 7.
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APPENDIX II

‘Modified Bayes Discriminant Function

The relationship between the covariance matrix ,X of each class / based on histological
classifications, its i-th eigenvalue 4, (,4 > ,4,,), and its i-th eigenvector , @ , satisfy the

following equation:
1z = Z 14, PP
i=1

where n is the number of dimensions of the feature vector. Therefore, the Bayes

discriminant function (BDF) is defined as

n — 1L, D 2 n
gé(x)ZZ(x I:uﬂl 1) +]n,1312‘1'

1%

Here, x and ,u are the input feature vector and the mean vector of class I, respectively.
In the BDF, the estimation error of the eigenvectors becomes large when the number of
training samples is not large enough compared with the number of dimensions of the feature
vector. In particular, the estimation error of higher-order eigenvectors is much larger than
that of lower-order eigenvectors.

For solving this problem, the Modified Bayes discriminant function (MBDF) was
employed for distinguishing between the five different types of histological classifications.

The MBDF is given by

2 n
g (x ( V= Z Ilua 1 Z(x_hua lq)i) +lr(ﬁlﬂii=k1—l+llﬂ’k+lj’

=1 4 j=kt] 1%+ =

where k (I<k<n) is an integer. Here, the estimation error of higher-order eigenvectors
is reduced by using ,A,,, as an approximate value of , 1, (i=k+2,---,n). In the case
of k=n-1, the MBDF is equal to the BDF. When £ is about one third of the number of
dimensions of the feature vector, it is known to show the highest classification performance.

In this study, k& was given as one third of the number of dimensions of the feature vector.
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