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ABSTRACT 

1n order to overcome the increase in breast cancer death rate， mammography which is 

considered the most sensitive method for detection of early breast cancers has been 

introduced for breast cancer screening in many advanced nations. Clustered 

microcalcifications which are present in 30%・50%of all cancers found in a mammography 

are one of the important radiographic indications on mammograms. However， it is often 

difficult for radiologists to detect clustered microcalcifications correctly because they are 

very small and obscure. 1t is also difficult to differentiate between benign and malignant 

clustered microcalcifications. With the concept of CAD (Computer-aided Diagnosis)， it 

is expected that radiologists' performance in the diagnosis of medical images will improve 

by taking into account the analysis res).llt of a lesion obtained from a computerized analysis 

as a“second opinion." Therefore， the pu中oseof this dissertation research is to develop a 

computerized analysis for both a detection aid and a differentiation aid of clustered 

microcalcifications on mammograms. 

For a detection aid， we have developed a computerized detection method for indicating 

a potential region of clustered microcalcifications on mammograms for radiologists. 1n the 

computerized detection method， it is important to not only detect clustered 

microcalcifications with high sensitivity but also segment individual microcalcifications 

while maintaining their shapes because image features are extracted from the detected 

clustered microcalcifications in the computerized analysis for a differentiation aid. For the 

computerized detection method， therefore， we first constructed a novel filter bank with the 

requirements for a perfect reconstruction by introducing the concept of a Hessian matrix for 

classifシingnodular structures and linear structures. A mammogram image is出en

decomposed into several subimages for a second difference at scales from 1 to 4 by this 

filter bank. The subimages for the nodular component (NC) and the subimages for the 
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nodular and linear component (NLC) are then obtained from analysis of the Hessian matrix 

based on those subimages for second difference. Many regions of interest (ROIs) are 

selected from the mammogram image. In each ROI， eight objective features are 

determined from each ofthe subimages for NC at scales from 1 to 4 and the subimages for 

NLC at scales仕om1 to 4. A Bayes discriminant function with the eight objective features 

is employed for distinguishing between abnormal ROIs with clustered microcalci:fications 

and normal ROIs without clustered microcalci:fications. The region connecting the ROIs 

classi:fied as abnormal ROI is considered to be a potential region of clustered 

microcalci:fications. With the proposed detection method， sensitivity and a false positive 

rate was 100.0% and 0.98 per image， respectively. 

F or the differentiation aid， we developed a computerized classi:fication method for 

providing radiologists the likelihood of histological classifications of clustered 

microcalcifications and a computerized retrieval method for providing radiologists images 

of lesions with known pathology similar to an unknown lesion. There are differences in 

both the image features and the growth speeds among histological classifications of 

clustered microcalcifications. In the computerized classification method， therefore， we 

extracted six objective features from clustered microcalcifications on each of the follow-up 

magnification mammograms (i.e. both current and previous magnification mammograms). 

In identifying histological classification of clustered microcalcifications， the histological 

classification of an unknown new case in question is assumed to be the same as that of the 

nearest neighbor case which has the shortest Euclidean distance in a feature-space. The 

feature-spaces for the nearest neighbor case consist of six objective features obtained合om

the previous magnification mammogram (previous fe剖ures)，six objective features obtained 

from the cu汀entmagnification mammogram (current features)， and the set of the six 

previous features and the six cu町entfeatures. The classification accuracies with the six 

current features were higher than those with the six previous features. These classification 
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accuracies were improved substantially by using the set of th'e six previous features and the 

six current features. With the proposed classification method， the classification accuracies . 

were 90.9% (10 of 11) for invasive carcinoma， 89.5% (17 of 19) for noninvasive carcinoma 

of the comedo type， 96.0% (24 of 25) for noninvasive carcinoma of the noncomedo type， 

82.6% (19 of 23) for mastopathy， and 93.3% (14 of 15) for fibroadenoma. In order to also 

present radiologists similar lesions as a differentiation aid， we investigated four objective 

similarity measures as an image-retrieval tool for selecting lesions similar to unknown 

lesions in terms of radiologists' visual perception. In the observer study， we confmned 

that the presentation of similar images can improve radiologists' performance in the 

differential diagnosis of clustered microcalcifications on mammograms. 

The proposed computerized analysis for both detection aid and differentiation aid for 

clustered microcalcifications achieve~ high detection performance and high classification 

accuracies， and would help radiologists improve the diagnosis accuracy of clustered 

microcalcifications at mammography in clinical practice. 
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CHAPTERl 

INTRODUCTION 

1.1 Breast Cancer 

Breast cancer is one of the major health problems in woman in advanced nations. 

Especially in the United States， it was estimated that more than 240，000 breast cancers 

occurred among women in 2007 and that one of eight women has breast cancer during their 

lives [1]. 1n Japan， both the disease rate and the mortality r剖ein breast cancer continue to 

increase every year. It is estimated that about 35，000 breast cancers occur among women 

in a year and that one of twenty women has breast cancer [2]. Breast cancer has had the 

highest disease rate of all the cancers for Japanese women. Early diagnosis and early 

treatment are very important to reduce breast cancer mortality [3]. Therefore， 

mammography which is considered the most sensitive method for detection of early breast 

cancers has been introduced to breast cancer screening in many advanced nations. Some 

studies [4-6] of randomized clinical住ialsreport that that periodic mammography screening 

can reduce the breast cancer mortality. 

Clustered microcalcifications and mass are the important radiographic indications 

which might relate to breast cancer on mammograms [7， 8]. Although mass can be 

recognized more clearly on an ultrasound image， it is difficult to obtain information on 

clustered microcalcifications from any modality except mammogram. Clustered 

microcalcifications are also present in 30%・50%of all cancers found at mammography [9， 

10]. Therefore， it is very important to detect clustered microcalcifications accurately on 

mammograms. However， 10%・30%of cancers are missed at breast cancer screening for 

several reasons such as non-palpable lesions， radiologists' fatigue by repetitive tasks， and 

technical limitations of mammograms [1ト16]. It is also difficult for radiologists to 

determine whether the detected lesion is benign or malignant. The positive predictive 
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value of mammography， i.e.， the ratio of the number of breast cancers found to the number 

of biopsies， is typically between 15% and 30% [17-19]. Unnecessary biopsies cause. 

patients both physical and monetary problems. 

1.2 Computer-aided Diagnosis 

The concept of a computer-aided diagnosis (CAD) was invented as an approach for 

improvement of radiologists' performance in the diagnosis of medical images [20・23].

CAD is defined as a diagnosis made by a radiologist who takes into account the analysis 

result of a lesion obtained from a computerized scheme as a“second opinion." It is 

expected to improve the diagnostic accuracy and the consistency in the radiologists' image 

interpretation with CAD. In generally CAD， a computerized analysis for detection aid and 

that for differentiation aid are used according to the pu中ose.

1.2.1 Computerized Analysis for Detection Aid 

For the detection aid of clustered microcalcifications， many investigators have developed 

computerized schemes [24-39] for identi今ing potential regions of clustered 

microcalcifications on mammograms. Chan et al. [24， 25] developed a computerized 

analysis based on a difference image technique in which a signal-suppressed image was 

subtracted from a signal-enhanced image in order to remove structured background on由e

mammogram. Li et al.‘ [26] proposed using 企actalbackground modeling， taking the 

difference between the original image and the modeled image. Karssemeijer [27， 28] 

developed a computerized analysis based on the use of statistical models and the general 

合ameworkof Bayesian image analysis. 

Other researchers have developed a computerized scheme based on wavelet transform 

[29， 30]， which is a robust tool for image analysis， enhancement， and pattem recognition. 

Wavelet仕ansformis basically a filtering technique that represents images hierarchically on 
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the basis of scale or resolution. 1t also provides a powerful method for analyzing 

high-spatial-企equencyphenomena localized in space， and thus can e百ectivelyextract 

information derived from localized high-仕equencysignals， such as those emitted by 

microcalcifications. Strickland et al. [31， 32] used a discrete wavelet transform with 

biorthogonal spline filters to detect microcalcifications. They computed four dyadic scales 

and two additional interpolating scales， and applied a binary threshold-operator to all six 

scales. The responses of the individual wavelet scales were then combined by a summing 

rule， and the output was used to detect microcalcifications. Yoshida etα1. [33ラ 34]

multiplied every scale by a weight factor and reconstructed an image by applying the 

inverse transform in a discrete wavelet transform. The weights were determined by 

supervised leaming， using a set oftraining cases. Clarke et al. [35] and Qian et al. [36，37] 

applied a denoising to the image and then took the high-pass scale of a discrete wavelet 

transform using spline wavelets. This resulted in a general edge detector that could locate 

not only microcalcifications but also several other structures， such as film artifacts or lines. 

Laine et al. [38， 39] applied several wavelet-type filter bank decompositions， such as the 

dyadic wavelet transform. An adaptive enhancement operator was defined on the wavelet 

coefficient scales. They obtained effective contrast improvement values for irregular 

structures such as microcalcifications. The enhancement operator was defined separately 

for each scale. 

1.2.2 ComputerizedAnα'lysis for Differenti，α!tionAid 

For differentiation aid of clustered microcalcifications， many investigators have also 

developed computerized schemes [40-48] for estimating the likelihood of malignancy of 

clustered microcalcifications on mammograms. Jiang et al. [40] developed a 

computerized method for extracting eight image features of clustered microcalcifications， 

and they produced an estimate of the likelihood of malignancy by using an artificial neural 
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network. The classification performance of their computerized scheme was slightly 

greater than that of radiologists. Chan et al. [41-43] developed a classification method. 

using various feature classifiers with the combination of morphologic features and texture 

features obtained from different views of the same clustered microcalcifications. 

Nakayama et al. [44， 45] extracted some objective features 仕om clustered 

microcalcifications by taking into account the image features that radiologists commonly 

used for describing microcalcifications in order to distinguish between benign and 

malignant clustered microcalcifications. Shen et al. [46] used 3 shape features， i.e.， 

compactness， moments， and Fourier descriptors， to c1assify individual microcalcifications 

by use of a nearest-neighbor classifier. Kallergi et al. [47] used the descriptors of 

morphology of the individual calcifications and the distribution of the cluster. Leichter et 

al. [48] evaluated the usefulness of .objective features based on the shape of individual 

microcalcifications and those based on the g∞metry of clustered microcalcifications. 

Although the features based on the geometry was more useful than those based on the shape 

in distinguishing between benign and malignant clustered microcalcifications，由e

combination of both of features based on the shape and geometry provided a greater 

classification performance. 

1.3 Purpose of This Dissertation Research 

The goal of this dissertation research is to develop a novel computerized analysis for 

detection aid and differentiation aid of clustered microcalcifications on mammograms. 

1n the computerized analysis for detection aid， the detection performances of 

computerized methods based on wavelet transform [31・39]were relatively higher than those 

based on the other techniques described in the section of 1ユ1. These results may indicate 

that the multi-resolution analysis based on wavelet transform is useful for detection of 

microcalcifications because microcalcifications on mammograms present various sizes. 
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However， these computerized detection methods did not analyze the shape of the 

microcalcifications in detai1. Microcalcifications are nodular in structure， whereas normal 

tissues such as blood vessels and mammary ducts are linear in structure. Therefore， we 

consider that it might be possible to detect clustered microcalcifications more accurately by 

introducing the shape information of individual microcalcifications into the multi-resolution 

analysis. 1n chapter 2， we first construct a novel filter bank based on the concept of the 

Hessian Matrix for classi骨ingnodular structures and linear structures， and then develop a 

computerized detection method for clustered microcalcifications based on objective features 

obtained from the filter bank. 

1n study for differentiation aid，五anget al. [49] conducted observer performance 

studies for classi命ingclustered microcalcifications as malignant or benign without and with 

the computer output indicating the likelihood of malignancy. The radiologists' 

performance was improved significantly when they used the computer output. This result 

indicates that radiologists are able to use computer output as a second opinion to improve 

their diagnostic accuracy. However.ラ theperformance level of the computerized scheme 

was considerably greater than that of radiologists with the computer output. This result 

appears to imply that it is difficult for radiologists to have complete reliance on the 

computer output even if the computerized scheme has a high perおrmancelevel. Making 

clinical decisions for biopsy or follow-up on clustered microcalcifications by taking into 

account possible histological classifications on magnification mammograms may reduce the 

number of unnecessary biopsies because there are differences in the growth speeds among 

histological classifications of lesions [7， 50]. Therefore， the likelihood of histological 

classifications estimated by a computerized analysis would be useful to radiologists for their 

decisions on patient management. 1n chapter 3， we develop a computerized classification 

method for histological classifications of clustered microcalcifications based on di宜erences

in both the image features and the growth speeds among histological classifications on 
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follow-up magnification mammograms (i.e. both current and previous magnific剖ion

mammograms). 

Radiologists leam diagnostic skills by viewing many cases in their training and clinical 

practice. Based on their experience and knowledge， they make diagnostic decisions on 

new， unknown lesions in medical images. Therefore， it is expected that the presentation of 

images of lesions with known pathology similar to a new， unknown lesion would be useful 

for radiologists in the differential diagnosis of the unknown lesion. In chapter 4， we 

investigate four 0吋ectivesimilarity measures as an image-retrieval tool for selecting lesions 

similar to unknown lesions in teロnsof radiologists' visual perception. In chapt怠r5， we 

confirm that the presentation of similar images can improve radiologists' performance in the 

differential diagnosis of clustered microcalcifications on mammograms. 
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CHAPTER2 

COMPUTERIZED DETECTION METHOD OF 

CLUSTERED MICROCALCIFICATIONS 

In the computerized detection method， it is very important to not only detect clustered 

microcalcifications accurately but also segment microcalcifications while maintaining their 

shapes because image features such as size and shape iηegularity of each microcalcification 

are used in the computerized analysis for differentiation aid. Therefore， we constructed a 

novel filter bank having three important features: i) it could enhance the nodular component 

in image; ii) it could enhance the nodular and linear component in image; and iii) it could 

reconstruct an original image from the decomposed subimages of the original image. The 

nodular feature (N feature) at each scale from 1 to 4 and the nodular and linear feature (NL 

feature) at each scale from 1 to 4 are determined by the subimages for nodular component 

(NC) at scales from 1 to 4 and the subimages for nodular and linear component (NLC) at 

scales仕om1 to 4. We then investigated the effectiveness of the N features and the NL 

features for detecting clustered microcalcifications. Finally， we evaluated the detection 

performance by applying the proposed detection method to 600 mammograms. 

2.1 Materials 

Our database consists of 1200 standard-view (cranio・caudalview and medio-lateral-oblique 

view) mammograms obtained from 300 patients in the DDSM (Digital Database for 

Screening Mammography， University of South Florida) [51]. Six hundred and ten 

clustered microcalcifications (239 malignant lesions and 371 benign lesions) are included in 

603 of the 1200 mammograms. The remaining 597 images are normal mammograms 

without clustered microcalcifications. All mammograms were digitized to a pixel size of 

0.0435 mm x 0.0435 mm and a 12・bitgray scale by use of a laser scanner. In order to train 
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Digitized mammogram 

Decomposition of original image with filter bank 

Selection ofROIs 

Extraction of eight features 

Distinction ofROIs with Bayes discriminant function 

Detection of clustered microcalcifications 

Figure 2.1: Schematic diagram of the proposed detection method for clustered 

mIcrocalcifications on mammograms. 

and evaluate the proposed detection rriethod， we divided our database into a training set and 

a test set. Each set included 600 mammograms obtained from 150 patients. The total 

number of clustered microcalcifications is 300 in the training set， and 310 in the test set， 

respectively. 

2.2 Overall Scheme for Detection of Clustered Microcalcifications 

Figure 2.1 shows a schematic diagram of the proposed detection method of clustered 

microcalcifications on mammograms. Mammogram image is first decomposed into 

several subimages at different scales from 1 to 4 by a novel filter bank (section 2.3). 

These subimages are the horizontal subimage for second difference in the vertical direction， 

the vertical subimage for second difference in the horizontal direction， and the diagonal 

subimage for first difference in the vertical direction followed by first difference in the 

horizontal direction. The subimages for NC and the subimages for NLC are obtained from 

analysis of the Hessian matrix based on those subimages for the differences. Many 

regions of interest (ROIs) of 5 mm x 5 mm are then selected from the mammogram image 
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automatically. In each ROI， eight features are determined from the subimages for NC at 

scales from 1 to 4 and the subimages for NLC at scales from 1 to 4 (section 2.4). A Bayes 

discriminant function with these eight features is employed for distinguishing among 

abnormal ROIs with clustered microcalcifications and two different types of normal ROIs 

without clustered microcalcifications (section 2.5). The region connecting the ROIs 

classified as abnormal ROI is considered to be a potential region of clustered 

microcalcifications. 

A 115 x 115 matrix (approximately 5 mm x 5 mm) is chosen as the ROI size because 

the clustered microcalcifications are defined as a region containing more than three 

microcalcifications per 5 mm x 5 mm area in clinical practice [7]. When the ROIs are 

selected at intervals of 5 mm so as to border on the adjacent ROIs， some clustered 

microcalcifications may be divided across two or more ROIs. These clustered 

microcalcifications might be not detected correctly because each ROI includes only the 

information on the divided cluster. Therefore， it is necessary to select ROIs at a shorter 

interval so that the center of clustered microcalcifications will be at the center of one of the 

ROIs. Although we must select ROIs at intervals of 1 pixel (0.0435 mm) to analyze a 

mammogram in detail， there are no large differences between adjacent ROIs selected at 

intervals of 1 pixel. It will also take much time to analyze redundant ROIs. In this study， 

therefore， we select the ROIs at intervals of 23 pixels (approximately 1 mm) so that one 

ROI would overlap with the adjacent ROIs. 

2.3 Filter Bank for Detection ofNodular Components and Linear Components 

2.3.1 Hessian Matrix ClassifYing Nodular Structures and Linear Structures 

For the distinction between clustered microcalcifications and normal tissues on 

mammograms， it would be important to enhance both nodular components， such as 

microcalcifications， and linear components， such as blood vessels and mammary ducts. 
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The concept of the second derivative is well known as an enhancement technique for these 

components. The values of the second derivatives for the nodular structure in all. 

directions become negative. On the other hand， the value of the second derivative for the 

linear struc印rebecomes zero in the direction of the axis of the linear structure， whereas it 

becomes negative in the other directions. Therefore， the filters based on the second 

derivatives are often used for the detection or the enhancement of the nodular structure and 

the linear structure. Shimizu et al. [52，53] defined a minimum directional difference filter 

(Min-DD Filter) based on the smallest value of the second derivatives in all directions， and 

a maximum directional difference filter (Max-DD Filter) based on the largest value of the 

second derivatives in all directions. They then applied the Min-DD Filter to detect large 

lung nodules in chest X-ray images. 

On the other hand， the smallest v_alue and the largest value of the second derivatives in 

all directions can be calculated approximately by the small eigenvalue A1 and the large 

eigenvalueλ2 of the Hessian matrix because the second derivative of the function I(x，y) 

in an arbitrary direction θis given by 

δ2/___2 θ21 
一ーァcosθ+2一一'-cosθsinθ+ーーァsin2θ 
òx~ ox砂 今戸

[θ21 θ21 i 
_ (~~~ Q ~;~ Q~ o.x2 白砂 I(cosθ) 
，---~ _... ~ 1θ21 o21 Il sinθf 

lox砂砂2 ) 

、‘，ノ
噌
・
・
且

，d
a

‘‘、

Details are shown in the Appendix 1. Therefore， the following formulas indicate the 

conditioris that the two eigenvalues λ1 and λ2 must satisfシfora nodular structure and a 

linear structure， respectively: 

for a nodular structure: ~ == Az <伐

for a linear struc加re:ム<0，九三O.

(2) 

(3) 

Li et al. [54] and Sato et al. [55， 56] enhanced the nodular component and the linear 

component in three-dimensional medical images by analyzing the eigenvalues of the 
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three-dimensional Hessian matrix. 

2.3.2 Filter Bank戸rDetection ofNodular Components and Linear Components 

As we described in the previous section， the nodular component and the linear component 

can be enhanced by using the value of the second derivative or the eigenvalue of the 

Hessian matrix. Although lung nodules have various sizes， the length of the filter for the 

second derivative was constant in the Shimizu's method [53]. Therefore， it might be 

possible to enhance nodular structures and linear structures more accurately by using filters 

for the second derivative with various sizes. In addition， it might be necessary to properly 

shape the nodular s仕uctureand the linear structure using a smoothing operator， because the 

second derivative is usually influenced by noise. These issues are solvable with a filter 

bank which consists of high-pass filters and low-pass filters of various lengths. Once 

clustered microcalcifications are detected， the next problem is to determine whether the 

detected lesion is benign or malignant. Many investigators have developed computerized 

analysis for distinguishing between benign and malignant clustered microcalcifications 

[40]・[48]. In these computerized analyses， it is important to segment microcalcifications 

while maintaining their shapes because image features such as size and shape i町egularity

are used to estimate the likelihood of malignancy for clustered microcalcifications. This 

issue was not taken into account in Li's and Sato's methods [54-56]. This issue is solvable 

by use of a filter bank that satisfies the requirement for perfect reconstruction. Therefore， 

we introduced the concept of the Hessian Matrix into a 日lterbank that satisfies the 

requirement for perfect reconstruction. 

Figure 2.2 shows a two-channel filter bank. The analysis bank on the left has a 

lowpass filter HL(z) ， a highpass五lterHH(Z)， and a downsampling operator (↓2) which 

removes the odd-numbered components a抗erfiltering. The synthesis bank on the right has 

a lowpass filter FL (z)， a highpass filter FH (z)， and an upsampling operator (↑2) which 
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mput output 

Figure 2.2: Two-channel filter bank: Separate the input企equencybands (filter and 

downsample). Then reassemble (upsample and filter). 

1 I I I I I 
I I I I I 

scale 3 scale 2 scale 1 

Analysis B町立 Synthesis Bank 

Figure 2.3: Filter bank for the one-dimensional discrete wavelet transform at scales from 1 

to 3. 

scale 1scale 21  scale 3| 

Analysis Bank 

scale 3 scale 2 scale 1 

Synthesis Bank 

Figure 2.4: Filter bank without sampling operators at scales from 1 to 3. 

inserts a zero in the odd components. The filter bank for the one-dimensional discrete 

wavelet transform is usually given by iterating the lowpass channel of the two-channel filter 

bank， as illustrated in Fig. 2.3. For the perfect reconstruction with an l-step delay， the 

filters ofthe two-channel filter bank must satisfy the following conditions [57]: 
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HL(-z)FL(z) + HH (-z)FH (z) = 0， 

HL (z)FL (z) + H H (z)FH (z) = 2zーに

(4) 

(5) 

where FL(z)=HH(一吟 and FH(z)=-HL(-z). This filter bank performs a discrete 

biorthogonal wavelet transform. For a discrete orthogonal wavelet transform， the 

following condition must be satisfied in addition to the above conditions [57]: 

HH(Z) = _Z-N HL(-Z-l)， (6) 

where the overall system delay is 1 = N. Therefore， it is very difficult to give the filters 

for the Hessian matrix in a :filter bank based on a discrete orthogonal wavelet transform with 

the perfect reconstruction. The analysis bank of these :filter banks divides the input signal 

into two channels of two halιlength outputs decimated by the downsampling operator. 

Together， these五lterbanks make up the maximally decimated filter bank [57]. The 

maximally decimated :filter bank is usually used for image compression or transmission， 

because the length of the output signal obtained from the analysis bank is equal to the 

length of the input signaL However， we consider that the maximally decimated filter bank 

is not always useful for image analysis because details of the image are decimated by the 

downsampling. Therefore the filter bank without sampling operators is employed for 

detection of clustered microcalcifications. We can remove eq.(4) and eq.(6) from the 

perfect reconstruction conditions by using the filter bank without sampling operators. The 

condition for perfect reconstruction is given by only: 

HL (z)FL (z) + HH (z)FH (z) = 1. (7) 

Equation (5) changes to eq. (7) because the filter bank without sampling operators does not 

have the delay. Figure 2.4 shows the filter bank without sampling operators. Although 

2j is usually employed for the order of z at scale j， we employ j in order to obtain 

details of the change of microcalcifications along the increase of scales. 

Figure 2.5 shows the :filter bank for the two-dimensional wavelet transform. S01 is 

an original image. The smoothed subimage S 1 f is obtained by successive applications 
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Figure 2.5: Filter bank for the two-dimensional wavelet transform. 
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l 11 1 
1 11 1 
horizontal vertical 

Analysis Bank 

SJ 

wtf 

wtf 

wtf 

vertical horizontal 

Synthesis Bank 

Sof 

Sof 

Figure 2.6: Filter bank for two-dimensional wavelet transform， which is the equivalent 

representation of the filter bank in Fig. 2.5. 

of the vertical low-pass filter followed by the horizontal low-pass filter. The horizontal 

subimage W1
H f is obtained by applying the vertical high-pass filter followed by the 

horizontal low-pass filter. The vertical subimage wt f is obtained by applying the 

vertical low-pass filter followed by the horizontal high-pass filter. The diagonal subimage 

w] D f is obtained by applying the vertical high-pass filter followed by the horizontal 

high-pass filter. 

The filter bank in Fig. 2.6 shows the equivalent representation ofthe filter bank in Fig. 

2.5. The filter bank satisfies the perfect reconstruction even ifwe move some filter in the 
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Figure 2.7: Filter bank obtained by changing the order of some filters of the filter bank in 

Fig.2.6. 
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Figure 2.8: Filter bank obtained by iterating the lowpass channel ofthe filter bank in Fig. 2.7. 

synthesis bank to the analysis bank because the filters are applied to the horizontal direction 

and the vertical direction independently. We obtain the fiIter bank in Fig. 2.7 by changing 

the order of some filters of the filter bank in Fig. 2.6. Note that S，f， W，H f， and 

wt f in Fig. 2.6 are not equivalent to S，f， wt f ， and W，V f in Fig. 2.7. In order 

to obtain each element ofthe Hessian matrix from this filter bank， H H (z) and FH(z) are 

given by 
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Figure 2.9: Subimages obtained from the analysis bank of the novel filter bank by input of 

an abnormal ROI with clustered microcakifications. 
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as new wavelet basis. H H (z) and FH(z) are the filters for the first difference. 

Therefore， H H (z)FH (z) is the filter for the second di町erence，which is given by 
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~Df wtf ~Df wtf 

Figure 2.10: Subimages obtained from the analysis bank ofthe novel filter bank by input of 

a normal ROI with blood vessels. 

The horizontal subimage wt f is the second difference in the vertical direction of the 

original image. The vertical subimage W1
V f is the second difference in the horizontal 

direction of the original image. The diagonal subimage W1
D f is the first difference in 

the vertical direction followed by the first difference in the horizontal direction of the 

original image. These subimages wt f， wt f， w/ f ， correspond to the elements of 

the Hessian matrix. Because the condition for perfect reconstruction in the filter bank 
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without sampling operators is HL(z)FL(z) + HH(Z)FH (z) =1， the other filter HL(z)FL(z) 

is given by 

HL(抑 Z)=j(Z2+2+f 、
•• 

，
 

1
l
 

咽

'
i/，‘‘、

、

where H L (z )FL (z) is the filter for the smoothing operator. By applying the smoothing 

filter to由eoriginal image S 0 f ， the smoothed subimage S 1 f瓜 thenext scale， i.e.， the 

scale of 1， is obtained. The multi-resolution representation is obtained by iterating the 

lowpass channel of the filter ba此， as shown in Fig. 2.8. This multi-resolution 

representation can remove noises and properly shapes the nodular structure and the linear 

structure. Inthisfilterbank， HH(Z)， FH(z)， HH(z)FH(z)，and HL(z)FL(z) atscale j 

are gIVen as 

HH(Z)十一山一J)，

M)=j(山一J)，

Hιρ叫仲jシヤト(←付一づ_Z2J

H民町仰HL(z)ρ刈川(令ω叫附z吟杭)肌ι仲 jシψZ21+2+z-

(12) 

(13) 

(14) 

(15) 

Figures 2.9 and 2.10 show the subimages obtained from the analysis bank ofthe novel filter 

bank by input of an abnormal ROI with clustered microcalcifications and a normal ROI 

with blood vessels， respectively. In the filter bank ofFig. 2.8， NC/x，y) (the subimage 

for NC at scale j) is defined by the absolute value of the large eigenvalue λ2 of the 

Hessian matrix at scale j. Here， the pixels that are ~ > 0 are given as zero because the 

eigenvalues for the nodular struc印retend to become negative-NLCj(XJY)(the subimage 

for NLC at the scale j) is defined by the absolute value ofthe small eigenvalue λ1 ofthe 

Hessian matrix at the scale j. Here， the pixels that町 e~ > 0 are given as zero. 

2.3.3 Fundamental Characteristics 
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(d) Line pro叩esof small eigenvalue 

Figure 2.11: Fundamental characteristic of the absolute values of the small eigenvalue and 

large eigenvalue. (a) Artificial data consisting of three nodular models and three linear 

models with di百erentpixel values and widths; (b) line profi1es of the pixel value for訂 tificial

data; (c) line profiles of the large eigenvalue for artificial data; and (d) line profiles of the 

small eigenvalue for artificial data. 

(c) Une profiles of large eigenvalue (b) Line profiles of models (a) Nodular models and linear models 

1n order to investigate the fundamental characteristics of the subimages for NC and the 

We 

The pixel values at 

subimages for NLC， we performed the simulations using two sets of artificial data. 

used three nodular models and three linear models in Fig. 2.11 (a). 
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each center of the nodular models are 20， 40， and 40， whereas those of the linear models are 

20，40， and 40. The diameters ofthe nodular models are 20 pixels， 20 pixels and 40 pixels，. 

whereas the widths of the linear models with the length of 100 pixels are 20 pixels， 20 

pixels， and 40 pixels. Figure 2.11(b) shows the line profiles on each center ofthe nodular 

models and linear models. 

Figure 2.1l(c) shows the line profiles ofthe large eigenvalue ofthe Hessian matrix for 

these models. Although the large eigenvalues ne訂 theedges of the nodular models and 

linear models were positive， most of the large eigenvalues for nodular models were negative. 

However， the large eigenvalues for linear models were not less than zero. When the pixel 

value at the center of the model doubles， the absolute values of the large eigenvalue also 

double. This is because these eigenvalues correspond to the values of second derivatives. 

The absolute values of the large eigenvalues at a coarser scale were larger than those at a 

finer scale when the diameter of the nodular model was increased. This indicates由atthe 

size of the nodular model can be estimated by comparing the absolute values of the large 

eigenvalues of each scale. Therefore， we can detect nodular components such as 

microcalcifications by using the absolute values of large eigenvalues at each scale. Here， 

the pixels that had large eigenvalues ~ > 0 were given as zero. 

Fig. 2.11 (d) shows the line profiles of small eigenvalues of the Hessian matrix for 

nodular models and linear models. Although the small eigenvalues near the edges of the 

nodular models and linear models were zero， most of the small eigenvalues for the nodular 

models and linear models were negative. The fundamental characteristics which depended 

on the pixel value and the diameter of models were the same as the characteristics of the 

large eigenvalues. Therefore， we can detect both nodular components， such as 

microcalcifications， and linear components， such as blood vessels and mammary ducts， by 

using the absolute value of the small eigenvalues at each scale. Here， the pixels that had 

small eigenvalues ~ > 0 were given as zero. 
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Figure 2.12: Subimages for NC and for NLC， which were obtained企oman abnormal ROI 

with clustered microcalcifications， a normal ROI with blood vessels， and a normal ROI 

without blood vessels. 

2.4 Extraction of Features for Detection of Clustered Microcalcifications 

We determined eight features for distinguishing among abnormal ROIs with clustered 

microcalcifications and two di旺erent types of normal ROIs without clustered 
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Figure 2.13: Cumulative histograms for three types of ROI. (a) Cumulative histogram 

obtained企omthe subimage adding NCs at scales企om1 to 4 and (b) cumulative histogram 

obtained企omthe subimage adding NLCs at scales from 1 to 4. 

microcalcifications (normal ROIs with blood vessels and normal ROIs without blood 

vessels). These eight features are extracted from the subimages for NC at scales from 1 to 

4 and the subimages for NLC at scales from 1 to 4. Fig. 2.12 shows the subimages for NC 

and the subimages for NLC， which were obtained from an abnormal ROI with clustered 

microcalcifications， a normal ROI with blood vessels， and a normal ROI without blood 

vessels. As shown in the subimages for NC， some pixel values for the abnormal ROI were 

higher than those for the two normal ROIs. As shown in the subimages for NLC， some 

pixel values for the normal ROI without blood vessels were lower than those for the 

abnormal ROI and the normal ROI with blood vessels. Figure 2.13 shows the cumulative 

histograms of the subimages for NC and the subimages for NLC. These cumulative 

histograms were obtained from the subimage adding NCs at scales from 1 to 4， and the 

subimage adding NLCs at scales from 1 to 4. Each of these cumulative histograms was 

also an average of the cumulative histograms of 30 abnormal ROIs with clustered 
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microcalcifications， 30 normal ROIs with blood vessels， and 30 normal ROIs without blood 

vessels which were randomly selected from the database. Large differences appeared 

among the three types of ROI in the pixel value higher than 97% of these cumulative 

histograms. This implies that the ratio of the total area of all microcalcifications included 

in an ROI to the area of an ROI was approximately 3%. Therefore， the nodular feature (N 

feature) at each scale from 1 to 4 is determined by the average value of the pixel values 

higher than 97% ofthe cumulative histograms ofthe subimage for NC at each scale from 1 

to 4. The nodular and linear feature (NL feature) at each scale from 1 to 4 is also 

determined by the average value of the pixel values higher than 97% of the cumulative 

histograms ofthe subimage for NLC at each scale from 1 to 4. 

2.5 Evaluation of Detection Performance 

In order to detect clustered microcalcifications， we employed the Bayes discriminant 

function [58] for disti昭lIshinga即時 出reeclassesωi (i = 1，2，3). Classes ω1 ，ω2' and 

ω3 correspond to the abnormal ROI with clustered microcalcifications， the normal ROI 

with blood vessels， and the normal ROI without blood vessels， respectively. We first 

trained the Bayes discriminant function by using three different types of ROI selected from 

the training set. These ROIs are 300 abnormal ROIs with clustered microcalcifications， 

300 normal ROIs with blood vessels， and 300 normal ROIs without blood vessels. 

Abnormal ROIs are selected so that the centers of clustered microcalcifications would be 

coincident with the centers ofthe ROIs. Normal ROIs are randomly selected from normal 

mammograms that do not include clustered microcalcifications. In each of these three 

classes， N features and NL島aturesat scales from 1 to 4 which are determined from each of 

these ROIs are used for calculating the mean vector m i and the covariance matrix L i . 

The mean vector m i and the covariance matrix L i are defined as 
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mi -_  ~ X， (16) 
nj XEXi 

~i=-- ~(x-m;)(x-mi) ・ (17) 
nt xεX; 

Here， n， and Xi are the number of samples and the sample set in class ωi' 

respectively. The probability density function for each of the three c1asses is assumed to 

be in normal distribution， whereas the prior probabilities are assumed to be equal. This is 

because the mammograms are clinical data. Therefore， the Baye白sdiscriminant function 

f白ordisはtir昭lIs油hin暗gamo時tI削h悶 classes叫 (i= 1ユ，3)is give山 y

的 )=-j(x吋 山町)-j叫 (18) 

where [L;[ is the determinant. We then selected the ROIs瓜 intervalsof approximately 1 

mm in the test set. In order to distinguish among the three types of ROI， eight features 

determined from selected ROIs are' inputted to the Bayes discriminant function as the 

feature vector x. The Bayes discriminant function g i (x) outputs three values 

indicating the Iikelihood of each class. The class yielding the largest output value was 

considered to be the result of the distinction among the three types of ROI. Regions 

connecting the ROIs which are classified as abnormal are considered to be potential regions 

of clustered microcalcifications. 

The free-response receiver operating characteristic (FROC) curve [59] is usually used 

to surnmarize quantitatively the detection performance of the computerized scheme. An 

FROC curve is a plot of the true-positive fraction (TP) achieved by a computerized 

detection method versus the average number of false positives (FPs) per image varied over 

the continuum of the decision threshold. An FROC curve provides a comprehensive 

summary of the trade-off between detection sensitivity and specificity. Howeverラ itis not 

easy to calculate an FROC curve in the present context because the Bayes discriminant 

function outputted three values indicating the likelihood of each class. Therefore， we first 
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multiply the output value g， (x)， indicating the likelihood of an ROI with a clustered 

microcalcifications， by various coefficients before comparing g， (x)， g2(X) ， and g3 (x). 

The ROI is then considered as abnormal when g， (x) is the highest value of the three 

output values. When a center of the region connecting the ROIs which are classified as 

abnormal is within a true cluster determined by an experienced radiologist， this region is 

considered to have been “truly" detected. When a center of the connecting region is not 

within a true cluster， this region is considered a false positive. In this study， the coefficient 

is varied from 0.5 to 1.5 by the unit of 0.02. This range of the coefficient is determined 

empirically to detect all cIustered microcalcifications in the test set. By using this methodラ

we obtain the relationship between TP and FPs per image varied over the continuum of the 

coefficier礼

2.6 Results and Discussion 

2.6.1 Usefulness ofEight Features 

In order to investigate the usefulness of the used features for distinguishing among three 

classes， we showed the relationship between N features and NL features at scales from 1 to 

4 as shown in Fig. 2.14. These N features and NL features were determined仕om300 

abnormal ROIs with clustered microcalcifications， 300 normal ROIs with blood vessels， and 

300 normal ROIs without blood vessels which were used for training the Bayes 

discriminant function in the section 2.5. The N features for abnormal ROIs with clustered 

microcalcifications at all scales tended to be larger than those for normal ROIs with and 

without blood vessels because individual microcalcifications were generally nodular in 

structure. The NL features for normal ROIs without blood vessels at all scales tended to 

be smaller than those for abnormal ROIs with clustered microcalcifications and normal 

ROIs with blood vessels. Although N features and NL features for abnormal ROIs with 

clustered microcalcifications decreased greatly at scales between 2 and 3， those for normal 
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Figure 2.14: Relationship between N features and NL feat町 田 (a)at scale 1， (b) at scale 2， (c) at 

scale 3， and (d) at scale 4. 

(d) N features at scale 3 (c) 

This ROIs with and without blood vessels did not decrease greatly at any of the scales. 

appears to imply that most of the microcalcifications are of a size corresponding to the 

The difference among the three types of ROIs was small in N width ofthe filter at scale 2. 

This implies that N features and NL features at scale 5 features and NL features at scale 4. 

F or detecting 

c1ustered microcalcifications， many investigators have developed computerized schemes 
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Table 2.1: Tests for univariate equality means. 

Wilk's lambda F value p value 

N fea印reat scale 1 0.708 185.20 p < .001 

N feature at scale 2 0.521 412.78 p < .001 

N feature at scale 3 0.584 319.56 p < .001 

N feature at scale 4 0.602 282.23 pく .001

NL feature at scale 1 0.832 135.65 p < .001 

NL feature at scale 2 0.575 372.22 p < .001 

NL feature at scale 3 0.665 258.09 p < .001 

NL feature at scale 4 0.727 206.51 p < .001 

based on the distinction between clustered microcalcifications and normal tissue. 

However， in the relationship between N features and NL features， large differences 

appeared between normal ROIs with blood vessels and normal ROIs without blood vessels. 

Therefore， we consider that it might be possible to detect clustered microcalcifications more 

accurately by distinguishing among the abnormal ROIs with clustered microcalcifications， 

the normal ROIs with blood vessels， and the normal ROIs without blood vessels. In 

addition， the detection performance of the computerized scheme using N features and NL 

features at different scales might be higher than those using an N feature and an NL feature 

at one scale， because the differences appeared among the three types of ROI瓜 eachscale. 

Table 2.1 shows the results of tests for univariate equality of group means. These 

results were calculated by using the objective features in Fig. 2.14. Wilk's lambda [60] for 

the N feature at scale 2 was smaller than that.for any other feature. The F-value [60] for 

the N feature at scale 2 was also larger than that for any other feature. This result would 

indicate that the N feature at scale 2 made a larger contribution for distinguishing among the 
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Table 2.2: AUCs for each individual feature in the discriminant of abnormal and normal 

ROIs. 

AUC 

N feature at scale 1 0.841 

N feature at scale 2 0.919 

N feature at scale 3 0.916 

N feature at sca1e 4 0.897 

NL feature at scale 1 0.687 

NL feature at scale 2 0.850 

NLfea加reat scale 3 0.728 

NL feature at scale 4 0.722 

three types of ROIs. The NL feature at scale 1 made some contributions to the 

classification. This was because the NL feature at scale 1 was influenced strongly by noise. 

However， the contribution of the NL feature at scale 1 reached the level of statistical 

significance (p < .001). Therefore， the eight features were statistically significant for 

distinguishing among the three types ofROIs. 

Table 2.2 shows the areas under the receivers operating characteristic curve (AUCs) 

[59] of individual features for distinguishing between abnormal ROIs and normal ROIs. 

This AUC was calculated by use ofthe features in Fig. 2.14. The AUC for the N feature at 

scale 2 was larger than that for any other feature. This result would indicate that the N 

feature at scale 2 made a larger con仕ibutionfor distinguishing between the two types of 

ROIs. The AUCs for NL features were smaller than those for N features because both 

abnormal ROIs with clustered microcalcifications and normal ROIs with blood vessels 

included linear components. Therefore， NL features might be more effective when they 

are used for distinguishing the three types of ROIs. 

28 



1.0 

0.8 

喜百民自 0.6 

lt " "" Bayes discriminant function with 4 N叩 d4 NL features 

Bayes discriminant function with 4 N features 

E04 

H ω コ』 02 

0.0 
0.0 0.5 1.0 1.5 2.0 

A verage number of false positives p町 image

Figure 2.15: Comparison ofthe relationships between TP and FPs obtained by the Bayes 

discriminant functions with eight features and with four features. 

1.0 

0.8 

52 06 

。;>同EEL 04 

H E 。0.2 

0.0 
0.0 

lt " "'¥.. Bayes discriminant function for distinguishing 
"'¥.. among three di低 renttypes'ofROIs 

ー Bayesdiscriminant function for distinguishing 
between two different types ofROIs 

0.5 1.0 1.5 

A verage number of false positives per image 

2.0 

Figure 2.16: Comparison of the relationships between TP and FPs obtained by the Bayes 
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2.6.2 Performance of Detection 

Figure 2.15 shows the relationship between TP and FPs obtained by applying the Bayes 
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discriminant function with eight features to 600 mammograms in the test set. For 

detecting clustered microcalcifications， many investigators have developed computerized . 

schemes using only the objective features related to the nodular structure. Therefore， in 

order to investigate the usefulness of NL featu向島 therelationship between TP and FPs for 

the Bayes discriminant function with four features， i.e.， all features except the NL feature， is 

also shown in Fig. 2.15. The detection performance of the Bayes discriminant function 

with eight features was much higher than that of the Bayes discriminant function with the 

four N features. The points at which the blood vessels intersect tended to become nodular 

in structure. Therefore， they were detected as FP candidates in the other computerized 

schemes for the detection of clustered microcalcifications. This result would indicate that 

the number of these FP candidates was reduced by identifying the ROI with blood vessels. 

Many investigators have also develQped computerized schemes based on the distinction 

between clustered microcalcifications and normal tissue. Therefore， in order to investigate 

the usefulness of distinguishing among three di町erenttypes of ROIs， the relationship 

between TP and FPs for the Bayes discriminant function for distinguishing between 

abnormal ROIs and normal ROIs is also shown in Fig. 2.16. The detection performance of 

the Bayes discriminant function for distinguishing among three types of ROIs was higher 

than that of the Bayes discriminant function for distinguishing betweenれ1110types of ROIs温

This result indicates that the detection performance was improved by distinguishing among 

three different types of ROIs. 

The proposed detection method based on the Bayes discriminant function with eight 

features for distinguishing among three types of ROIs identified 310 of the 310 clustered 

microcalcifications in the test set， yielding a sensitivity of 100.0% and a FP rate of 0.98 per 

mammogram. 
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CHAPTER3 

COMPUTERIZED CLASSIFICATION METHOD FOR 

IDENTIFYING HISTOLOGICAL CLASSIFICATIONS OF 

CLUSTERED MICROCALCIFICATIONS 

Making clinical decisions for biopsy or follow-up on clustered microcalcifications by taking 

into account possible histological classifications on magnification mammograms would 

reduce the number of unnecessary biopsies [7， 50]. For example， patients with clustered 

microcalcifications associated with invasive carcinoma that may metastasize to other organs 

must undergo biopsy immediately. Patients associated with noninvasive carcinoma of the 

comedo type that grows rapidly must undergo biopsy or immediate follow-up at a very short 

interval of one month. Patients associated with noninvasive carcinoma of the noncomedo 

type with lower risk than the comedo type should also have follow-up at a short interval of 

three months. Patients associated with mastopathy and fibroadenoma of benign breast 

lesions should have follow-up at a relatively long interval of six months. Therefore， the 

computerized analysis for estimating the likelihood of histological classifications on 

clustered microcalcifications would be helpful to radiologists for their decisions on patient 

management. 

In this chapter， we develop a computerized classification method for histological 

classification of clustered microcalcifications in order to assist radiologists' interpretation as 

a“second opinionア Thereare differences in both the image features and the growth speed 

among histological classifications of clustered microcalcifications. In the computerized 

classification method， therefore， we extract six objective features from clustered 

microcalcifications on each of follow-up maghification mammograms (i.e. both current and 

previous magnification mammograms). We show that the differences in growth speed 

among histological classifications are reflected in the six objective features used in the 
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proposed classification method. We then evaluate the potential contribution of the 

follow-up mammograms in the computerized classification method for estimating the . 

likelihood of histological classifications on clustered microcalcifications. 

3.1 Materials 

Our database consists of cuηent and previous magnification mammograms obtained from 

93 patients before and after three-month follow-up examination at the Breastopia Namba 

Hospital， Miyazaki， Japan. It includes 55 malignant clustered microcalcifications (11 

invasive carcinomas， 19 noninvasive carcinomas of the comedo type， and 25 noninvasive 

carcinomas of the noncomedo type) and 38 benign clustered microcalcifications (23 

mastopathies and 15 fibroadenomas). The histological classification of all clustered 

microcalcifications was proven by stereotaxic core needle biopsy after a three-month 

follow-up examination. Informed consent wωobtained for the research use of each 

patient's mammograms. Figure 3.1 shows a cuηent magnification mammogram and the 

corresponding previous magnification mammogram in each of the five histological 

classifications. It should be noted that the change in visual image features of the clustered 

microcalcifications in invasive carcinoma and noninvasive carcinoma of the comedo type 

are larger than those in the other lesions. 

The magnification mammograms were acquired with a Kodak MinR・2000screenlfilm 

system. The magnification factor of the magnification mammograms was 1.8. The 

mammographic x-ray system included an x-ray tube with a 0.1 mm focal spot and a 

molybdenum anode， a 0.03・mm-thickmolybdenum filter， and a 5: 1 reciprocating grid. 

These mammograms were digitized to a 512x512 matrix size with a 0.0275 mm pixel size 

and a 12・bitgray scale by use of an EPSON ES・8000digitizer (optical resolution 800x1600 

dpi， optical density range 0.0・3.3D).
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Invasive carcinoma 

Noninvasive carcinoma of 
the comedo type 

Noninvasive carcinoma of 
the noncomedo type 

Mastopathy 

Fibroadenoma 

Previous image Current image 

Figure 3.1: Example of cuηent images and the coηesponding previous image in each 

histological classification. 

3.2 Segmentation of Microcalcifications and Definition of Cluster Margin 

For segmentation of individual microcalcifications within a cluster on magnification 
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(a) Original image (b) Enhanced image 
for calcifications 

(c) Segmented image 
for calcifications 

Figure 3.2: Illustration of microcalcification segmentation by a novel filter bank and a 

threshold technique. (a) Original image， (b) enhanced image for microcalcifications， and (c) 

segmented image for microcalcifications. 

(a) Segmented 
calcifications 

(b) Candidate for c1ustered 
microcalcifications 

(c) Cluster margin 

Figure 3.3: Illustration of definition of c1uster margin， (a) segmented microcalcifications， (b) 

candidate for the c1uster margin， and (c) c1uster margin. 

mammograms， we first enhance the microcalcifications by use of the novel filter bank in 

section 2.3. The microcalcifications are enhanced while maintaining their shape by use of 

this filter bank， as shown in Fig. 3.2(b). A gray-level thresholding technique [61] is then 

applied to the enhanced image， as shown in Fig. 3.2(c). The binary image for 

microcalcifications is obtained at a threshold level of a 600 pixel value which is determined 

empirically to segment all microcalcifications in 186 magnification mammograms. All 
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detected regions at the threshold level of 600 are considered to be microcalcifications. 

In order to obtain information about the shape of the distribution of clustered 

microcalcifications， the margin of a c1uster is automatically determined by using a computer. 

We first draw circles with a diameter of 20 pixels at the center of gravity of each 

microcalcification， as shown in Fig. 3.3(b). The center of gravity of each 

microcalcification is calculated from the region ofthe segmented microcalcifications. The 

region connecting the circles is considered to be a candidate for a c1uster margin. 

However， some circles for each microcalcification within a c1uster were not connected， 

when the diameter of the circles was too small. Therefore， the diameter is increased from 

20 to 60 pixels unti1 all circ1es within a c1uster are connected， thus yielding a candidate for a 

c1uster margin. The shape of the candidate for the cluster margin strongly depends on the 

locations of individual microcalcifications. The shape of the margin cannot be estimated 

accurately because there are some indentations in the candidate for the cluster margin， as 

shown in Fig. 3.3(b). We apply a binary mo中hologicc10sing operator [62] to the 

candidate for smoothing the shape of the cluster margin. The structure element for the 

binary morphologic closing operator is given by the circ1e with half the diameter of the 

circle which is used for determining the candidate for the cluster margin. The edge of the 

smoothed binary image is determined as the c1uster margin. 

Although， in this study， we use only magnification mammograms acquired with MLO 

positioning; there would be a small position variation at each acquirement of the 

magnification mammograms. Therefore， even if each image contains the same c1ustered 

microcalcification， visual image features may be slightly different in each magnification 

mammogram. This is an important issue in the consistency between objective features of 

c1ustered microcalcifications extracted from the current and the previous magnification 

mammograms. However， in our previous study， we confirmed that the objective features 

of clustered microcalcification extracted from MLO magnification mammogram were 
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nearly similar to those extracted from CC magnification mammogram [63]. Therefore， we 

consider that the extracted features are little inf1uenced from this position variation. 

3.3 Extraction of Six Objective Features 

Clustered microcalcifications associated with invasive carcinoma tend to be very 

heterogeneous in terms of microcalcifications' sizes and pixel values [7， 8， 50]. Their 

shape is generally a rodlike/branching p副 em. 百1eedges of their distribution are 

commonly irregular， because invasive carcinoma invades interstitial tissue. Clustered 

microcalcifications associated with noninvasive carcinoma also tend to be heterogeneous. 

However， there are some differences in the shape between the comedo type and the 

noncomedo type of noninvasive carcinoma. Microcalcifications for the comedo type tend 

to be in a rodlike/branching pattem， whereas those for the noncomedo type tend to be in a 

linear/branching and granular/punctate pattem [7， 64， 65]. The distribution of 

microcalcifications of the comedo type is likely to become linear and branching pattem in 

the direction toward the凶pple，because they are guided by the course ofthe duct [7， 8，50]. 

Clustered microcalcifications associated with a benign lesion are commonly uniform in 

microcalcificationピsizeand pixel values;由eytend to have round pattems. 

We selected six objective features on clustered microcalcifications to distinguish 

among five different types of histological classifications. These objective features were: 

(1) the variation in the sizes ofmicrocalcifications within a cluster， (2) the variation in pixel 

values of microcalcifications within a cluster， (3) the shape i汀egularity of 

microcalcifications within a cluster， (4) the extent of linear and branching distribution of 

microcalcifications， (5) the distribution of microcalcifications in the direction toward the 

nipple， (6) the number of microcalcifications within a cluster. These features are frequently 

used for describing microcalcifications. 
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3.3.1 Vari，αtion in Sizes of Microcalcificαtions 

The variation in the sizes of microcalcifications within a cluster is determined by the 

relative standard deviation in the areas of microcalcifications within a cluster. The area of 

each microcalcification is determined by the number of pixels within the segmented 

microcalcification. Although standard deviation is 合equentlyused for quantifシingthe 

variation in sizes， standard deviation becomes large when the sizes of the 

microcalcifications within a cluster are large. Because the size information of 

microcalcifications alone is not directly related to the likelihood of malignancy [7， 8， 50]， 

we use the relative standard deviation to quantify the variation in the sizes of 

microcalcifications within a cluster. In order to demonstrate the usefulness of the relative 

standard deviation， we compared the relative standard deviation and the standard deviation 

in determining the variation in the sizes of microcalcifications， as shown in Fig. 3.4， where 

these values were normalized by using the mean value and the standard deviation of all 

cases in the database. When the standard deviation was used， the distributions for 

malignant cases extensively overlapped with those for benign cases. Thus， it is very 

difficult to distinguish between them. However， when the relative standard deviation was 

used， the variations in the sizes for malignant cases tended to be greater than those for 

benign cases. 

3.3.2 vcα~riαûon in Pixel Values of Microcαlcifications 

The variation in pixel values of microcalcifications within a cluster is determined by the 

standard deviation for the pixel values of microcalcifications. The pixel value of each 

microcalcification is defined by the mean value of the five largest pixel values on the 

segmented microcalcification in the origiI1al image. Because the pixel values of 

microcalcifications is likely to be 問 latedto the likelihood of malignancy [7， 8，50]， we use 

the standard deviation to quanti命 thevariation in pixel values of microcalcifications. 
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Figure 3.4: Comparison between the relative standard deviation and the standard deviation 

in determining the variation in the sizes of microcalcifications. 

Figure 3.5 shows a comparison between the standard deviation and the relative standard 

Whenthe deviation in determining the variation in the pixel values of microcalcifications. 

standard deviation was used， the variations in the pixel values for malignant cases tended to 

be larger than those for benign cases. 

3.3.3 Shape Irregularity of Microcalcificαuons 

1n order to define the shape irregularity of microcalcifications within a cluster， we employed 

One irregularity index for two kinds of irregularity indices for each microcalcification. 

each microcalcification is defined by the standard deviation of the 16 shape factors， as 

Sixteen shape factors consist of 8 minimum distances and 8 maximum 
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shown in Fig. 3.6. 



• 
• • 、

。• 

4 

3 

2 

8
2
pこ
ou心。
U
Z
H
S
Z
O
明言一
h
o
匂
宮
崎
吉
岡
S
由
。
と
宮
司
U
M

-2 

• 

?手、:・
も/;'*

。

。

。0
0
0
 

0
 

。

。
-3 

Malignant clustered microcalcification 
Benign clustered microcalcification 

4 3 -2 -1 0 1 2 

Standard deviation in the pixel values 
-3 

-4 

-4 

Figure 3.5: Comparison between the standard deviation and the relative standard deviation 

in determining the variation in pixel values of microcalcifications. 

distances between the center of the segmented microcalcification and the edges of the 

The minimum distance and the maximum distance are segmented microcalcification. 

The standard deviation of obtained in each of 8 regions located at intervals of 45 degrees. 

For a round these 16 shape factors is used for identi命ingirregular microcalcifications. 

microcalcification， all 16 shape factors would have similar values， and thus the standard 

pattern) branching and (linear irregular an For small. be would deviation 

microcalcification， some of the 16 shape factors have large values， whereas others have 

Another irregularity index small values; therefore， the standard deviation would be large. 

of each microcalcification was evaluated by use of the degree of irregularity (1・PIN;P = 

perimeter of the circ1e with the same area as the microcalcification， N = length of the 
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(a) Minimum distances (b) Maximum distances 

Figure 3.6: IlIustrations of the definition of the shape factors for individual 

microcaIcifications. (a) Eight shape factors are the minimum lengths ofthe distance， and (b) 

eight shape factors are the maximum lengths of the distance between the center-of-

microcaIcification pixel and the edges of microcaIci日cationin eight regions separated by 

forty-five degrees. 

microcalcification outline) which is generalIy used for quantifシingthe iηegularity in the 

shape [66]. 

The shape irregularity of microcalcifications within a cluster is defined by the mean 

value ofthe five largest iηegulariザ indicesof individual microcalcifications within a cluster. 

Figure 3.7 shows a comparison of同/0shape irregularities of microcalcifications within a 

cluster， which was obtained from the standard deviation of the 16 shape factors and the 

degree of i汀egularity. When the standard deviation of the 16 shape factors was used as a 

basis for the irregularity index， the shape irregularities for malignant cases tended to be 

larger than those for benign cases. Because the length of the microcalcification outline 

could not be determined accurately for small microcalcifications， the reliability for the 

degree of irregularity is somewhat uncertain. Therefore， we use only the standard 
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Figure 3.7: Comparison oftwo shape irregularities ofmicrocalcifications within a cluster. 

of each irregularity index of the evaluation for factors shape 16 of the deviation 

the m microcalcifications of clustered i汀'egularityshape and the microcalcification 

following sections. 

3.3.4 Eχtent 01 Linearαnd Branching Distribution 01 Microcα'Zcificαtions 

cluster is of microcalcifications and branching distribution of the linear The extent 

Note that the 16 shape evaluated by use of the standard deviation of the 16 shape factors. 

factors are applied to the cluster margin defined in section 3.2， instead of individual 

16 shape factors consist of 8 The microcalcifications as described in section 3.3.3. 

minimum distances and 8 maximum distances between the center of a cluster and the edges 

The minimum distance and the maximum distance are 
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of a cluster， as shown in Fig. 3.8. 



(a) Minimum distances (b) Maximum distances 

Figure 3.8: Illustrations of the definition of the shape factors for a cluster m訂 gin.(a) Eight 

shape factors are the minimum lengths of the distance， and (b) eight shape factors are the 

maximum lengths of the distance between the center of the cluster and the edges of the 

cluster in eight regions separated by forty-five degrees. 

obtained from each of 8 regions located at intervals of 45 degrees in the cluster margin. 

3.3.5 Distribution 01 Microcalcificα'fions in Direction towα'rdNipple 

To determine the measure for the distribution of microcalcifications in the direction toward 

the nipple， we define the average distances to a main straight line and a sub-straight line as 

shown in Fig. 3.9. The main straight line is drawn企omthe center of the nipple to the 

center of a cluster. The average distance of microcalcifications to the main line is given by 

the average distance from each center of microcalcifications to the main straight line. 

Note that the unit of this distance is the pixel of the digitized mammogram. The 

sub-straight line is a line perpendicular to the main straight line at the center-of-cluster pixel. 

The average distance of microcalcifications to the sub-straight line is given by the average 

distance from each center of microcalcifications to the sub-straight line. The measure for 
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Figure 3.9: Illustration of a main s仕aightline and a sub-straight line for determining the 

di狩 ibutionof microcalcifications in the direction toward the nipple. The main straight line is 

drawn企omcenter of nipple to center of c1uster. The sub-straight line is perpendicular to the 

main straight line at the center-of-c1uster pixel. 

the distribution of microcalcifications in the direction toward the nipple is determined by 

the ratio of the average distance for the sub-straight line to the average distance for the main 

straight line. If the distribution of microcalcifications is extended toward the nipple， the 

average distance for the main straight line would have a smal1 value， whereas the average 

distance for the sub-straight line would have a large value. Therefore， the ratio of the 

average distance for the sub-straight line to the average distance for the main s住aightline 

would be large. 

3.ミ.6Number 01 Microcαlci.ficαtions 

The number of microcalcifications within a c1uster is determined by the number of the 

segmented microcalcifications within a cluster in section 3ユ
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3.4 Determination of Histological Classification 

For determining the histological classifications of clustered microcalcifications， the nearest . 

neighbor case is identified by the Euclidean distance in the previous and current 

feature-space which consisted of six objective features obtained 企omthe previous 

magnification mammogram (previous features) and six objective features obtained from the 

current magnification mammogram (current features). The histological classification of an 

unknown new case in question is assumed to be the same as that of the nearest neighbor 

case which has the shortest Euclidean distance in our database: the validity of this 

assumption is examined in this study. 

3.5 Results and Discussion 

3.5.1 Usefulness of&χO匂ectiveFeatures 

Figure 3.10 shows comparisorts between the current features and the previous features in 

each of six objective features. The six objective features in malignant lesions tended to 

increase over the three-month follow-up examination， whereas those in benign lesions 

tended to be almost constant or decrease. These results were consistent with the 

differences in growth speed among histological classifications in clinical experience [64， 

65]. The findings of the five objective features excluding the number of 

microcalcifications also corresponded to the radiologic finding [7， 50] of clustered 

microcalcifications in each histological classification. Although， on the other hand， 

clustered microcalcifications associated with malignant lesions tend to have many 

microcalcifications， this radiologic finding did not appear in this study. This cause might 

be because we used only clustered microcalcifications in which the extent of the distribution 

was small (iふ theextent was less than 1.5 cm x 1.5 cm). 

Table 3.1 shows the results of tests for univariate equality of group means for each 

objective feature in each of the current features and the previous features. The Wilk's 
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Table 3.1: Tests for univariate equality of group means for each objective feature in each of 

thecu町entfeatures and the previous features. 

Previous featぼ凶 (n= 93) Current features (n = 93) 
Coπelation 

Obj巴ctive:fi田知res
Wi1k's 

F value pvalue 
Wilk's 

F value pvalue 
coefficient 

lambda lambda 

Variation in size 0.68 8.26 く 0.001 0.52 21.03 < 0.001 0.34 

Variation in 

pixel values 
0.70 7.16 < 0.001 0.60 14.39 < 0.001 0.32 

Shape註T巴:gularity 0.60 14.68 < 0.001 0.48 24.75 < 0.001 0.35 

Extent oflinear and 
0.73 5.29 < 0.001 0.62 12.86 < 0.001 0.40 

branching distribution 

Distribution in direction 
0.65 10.54 く 0.001 0.59 15.17 < 0.001 0.51 

toward the nipple 

Numberof 
0.74 5.23 < 0.001 '0.69 7.64 < 0.001 0.75 

microcalcifications 

lambdas [60] for the cuηent features were smaller由anthose for the previous features， 

whereas the F values [60] for the cuηent features were larger than those for the previous 

features. These results would indicate that the difference in each objective feature among 

the five histological classifications became larger over the three-month follow-up 

examination. For the number of microcalcifications， the WiUピslambdas were larger than 

any other objective features， and the F values were smaller than the other objective features. 

The correlation coe旺icientfor the number of microcalcifications was also high between the 

current feature and the previous feature. These results indicated that the number of 

microcalcifications did not have properties which would be useful to be applied for a 

classifier like a Linear Discriminant Analysis [67]. However， the p values for all objective 

features reached the level of statistical significance. 百lerefore，these twelve objective 

features were statistically significant for determining the histological classifications of 

clustered microcalcifications. 
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Table 3.2: Comparisons of the classification accuracies obtained by the Nearest neighbor 

criterion and the Modified Bayes discriminant function with the six cu汀entfeaturesラ thesix 

previous features， and the set ofthe six previous features and the six current fea加res.. 

Classification accuracy 

With six previous features Wi曲目xcurrent features 
With six previous features 

including the number of including the number of 
and six current feat町田

microcalcifications microcalcifications 

Pa出ologicaldiagnosis h在BDF NNC 島但ヨDF NNC MBDF NNC 

Invasive carcinoma 6 7 7 8 10 10 
(11) (54.5~も) (63.6与も) (63.6')も) (72. 7')も) (90.9')も) (90.9')も)

Noninvasive carcinoma 
10 11 13 13 16 17 

of the comedo type 
(52.6%) (57.9')も) (68.4ちも) (68.4写も) (84.2与も) (89.5与も)

(19) 

Noninvasive c訂 cmoma
16 17 18 18 21 24 

ofthe noncomedo句rpe
(64.0')也) (68.0号も) (72.0与も) (72.0%) (84.0')も) (96.0')も)

(25) 

Mastopathy 15 15 16 17 17 19 
(23) (652%) (65.2%) (69.6%) (73.9写も) (73.9%) (82.6呼も)

Fibroadenoma 11 10 11 11 13 14 
(15) (73.3ちも) (66.7'!-も) (73.3')也) (73.3')も) (86.7%) (93.3号也)

3.5.2 ClassificαuonPerformαnce 

Table 3.2 shows the classification accuracies obtained by the nearest neighbor criterion 

。剖C)and the Modified Bayes discriminant function (MBDF: see Appendix II) [68・70]

based on a leave-one-out testing method [67]. In this method， the training was carried out 

for all except one case in the database; the case not used for training was used for testing 

with the trained孔佃DF. This procedure was repeated untiI every case in our database had 

been used once. The MBDF can reduce the estimation error of higher-order eigenvectors 

in the Bayes discriminant function. F or the cons甘uctionofthe NNCs and the MBDFs， we 

used the six previous features， the six current features， and the set of the six previous 

features and the six cuηent features. The classification accuracies with the six current 

features were higher than those with the six previous features in both the NNCs and the 

MBDFs. These classification accuracies were improved substantially by using the set of 
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Table 3.3: Comparisons of the classification accuracies obtained by the Nearest neighbor 

criterion and the Modified Bayes discriminant function with the five current features， the five 

previous features， and the set of the five previous features and the five current features. 

Classification accuracy 

Wi由自veprevious feat町 es W曲 fivecuπent features 
With five previous features 

excluding the number of excluding the numbぽ of
and five c町 rentfea旬res

microcalcifications microcalcifications 

Pathological diagnosis h担 DF NNC h岨 DF NNC h但 DF NNC 

Invasive carcinoma 6 6 8 8 9 9 
(11) (54.5%) (54.5%) (72.7%) (72.7%) (8l.8%) (81.8与も)

Noninvasive carcinoma 
11 11 13 13 16 17 

ofthe comedo type 
(57.9%) (57.9%) (68.4%) (68.4%) (84.2%) (89.5%) 

(19) 

Noninvasive carcinoma 
15 16 17 17 19 21 

of出巴 noncomedotype 
(60.0%) (64.0%) (68.0%) (68.0%) (76.0%) (84.0%) 

(25) 

Mastopa出y 15 15 15 16 17 18 
(23) (65.2%) (65.2%) (65.2%) (69.6%) (73.9%) (78.3%) 

Fibroadenoma 11 10 11 11 13 13 
(15) (73.3%) (66.7%) (73.3%) (73.3%) (86.7号も) (86.7%) 

the six previous features and the six cu汀entfeatures. The classification accuracies 

obtained with the NNCs were higher than those obtained with the MBDF. This reason 

would be that the MBDF was not trained optimally because the number of samples was 

smal1 compared to the number ofthe used features. 

In order to investigate the usefulness of the number of microcalcifications， Table 3.3 

shows also the classification accuracies obtained by the NNCs and the MBDFs with the five 

current features excluding the number of microcalcifications， the five previous features 

excluding the number of microcalcifications， and the set of the five previous features and 

the five current features. The classification accuracies with the NNCs were the same or 

higher as those with the MBDFs. Although both the classification accuracies with the 

NNCs and those with the MBDFs were also improved by adding the number of 
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Table 3.4: Classification results obtained by the Nearest neighbor criterion with the set of 

the six previous features and the six cuηent features. 

Computer output 

Invasive Noninvasive Noninvasive 
Patho1ogica1 diagnosis carcinoma of carcinoma of Mastopathy F ibroadenoma carcmoma ∞medotype noncomedo type 

Invasive carcinoma 10 。 。 。
(11) 。0.9%) (9.1%) (0.0%) (0.0%) (0.0%) 

Noninvasive carcinorna 17 l 。 。
of comedo type 

(19) (5.3%) (89.5%) (5.3%) (0.0%) (0.0%) 

Noninvasive carcinoma 。 24 。 。
of noncomedo type 

(25) (0.0%) (4.0%) θ6.0%) (0.0%) (0.0%) 

Mastopathy 。 。 2 19 2 
ο3) (0.0%) (0.0%) (8.7%) (82.6%) (8.7%) 

Fibroadenoma 。 。 。 l 14 
(15) (0.0%) (0.0%) (0.0%) (6.7%) (93.3%) 

microcalcifications， the improvement in the NNCs tended to be larger than that in the 

お侶DFs.

Table 3.4 shows the classification results obtained by the NNC with the set of the six 

previous features and the six current features. The classification accuracies of histological 

classifications were 90.9% (10/11) for invasive carcinoma， 89.5% (17/19) for noninvasive 

carcinoma ofthe comedo type， 96.0% (24/25) for noninvasive carcinoma ofthe noncomedo 

type， 82.6% (19/23) for mastopathy， and 93.3% (14/15) for fibroadenoma. 

Figure 3.11 shows an example of identification results of a nearest neighbor case for 

each of the five histological classifications as shown in Fig. 3.1. lt might be that the 

nearest neighbor cases are similar to cases in Fig. 3.1. 

49 



Invasive carcinoma 

N oninvasive carcinoma of 

the comedo type 

Noninvasive carcinoma of 

the noncomedo type 

恥1astopathy

Fibroadenoma 

Previous image Current image 

Figure 3.11: Example of identification results of a nearest neighbor case for each of the five 

histological classifications as shown in Fig. 3.1. 
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CHAPTER4 

COMPUTERIZED RETRIEVAL METHOD FOR SIMILAR 

IMAGES OF CLUSTERED MICROCALCIFICATIONS 

In the interpretation of medical images， radiologists attempt to make diagnostic decisions 

based on the medical knowledge derived from viewing many clinical images over the years 

through educationラ training，and clinical practice. It is commonly known thatラ whena 

radiologist encounters a new， unknown case in daily clinical work， he/she may occasionally 

search for clinical images with known pathology similar to that of the unknown case by 

reviewing images in previous clinical cases， teaching files， and textbooks. Therefore， the 

presentation of similar images would be useful and would have the potential to improve 

radiologists' performance in the differential diagnosis of lesions in clinical images [72-75]. 

In order to develop a useful tool for selecting similar images to be used as a diagnostic 

aid， many investigators have studied content-based or feature-based image-retrieval 

methods [76・88]. However， these retrieval methods do not take into account radiologists' 

subjective impression of similarity when two images are compared. If retrieved images 

were not really similar to an unknown lesion visually for clinical pu叩oses，they would not 

be useful for radiologists in the differential diagnosis ofthe unknown lesion. Therefore， Li 

et al. [89] and Muramatsu et al. [90・94]proposed a psychophysical similarity measure， as 

an image retrieval tool， which was determined by use of an artificial neural network (ANN) 

for leaming the relationship between radiologists' subjective similarity ratings and the 

objective features of lesions. They showed th剖 thecorrelation coefficients (r = 0.72，0.74， 

and 0.71 for nodules on low-dose CT， and masses and clustered microcalcifications on 

mammograms， respectively) between radiologists' subjective similarity ratings and 

psychophysical similarity measures were greater than those (r = 0.60， 0.60， and 0.58 for 

nodules on low-dose CT， and masses and clustered microcalcifications on mammograms， 
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respectively) between radiologists' subjective similarity ratings and 0吋ectivesimilarity 

meas町 esbased on the Euclidean distance in feature space that was frequently used in many . 

studies. Their results indicated that similar images selected based on the psychophysical 

similarity measures would be more similar in terms of radiologists' visual perception than 

those selected based on the Euclidean distance in feature space. However， it appears that 

the psychophysical similarity measures were not highly accurate as a reliable objective 

similarity measure for selecting similar imagesラ becausethe correlation coefficients were 

less than 0.80， i.e.， they were not extremely high. 

In this study， therefore， we investigate new objective similarity measures based on both 

the Euclidean distance in feature space and the psychophysical similarity measure. In 

order to evaluate the usefulness of these measures， we select pairs of masses and pairs of 

clustered microcalcifications on ma加mogramsby using four different measures. We 

conduct two observer studies based on a two-altemative forced-choice (2AFC) method [95] 

for mass pairs and for calcification pairs， for comparison of subjective similarities. in terms 

of radiologists' visual perception on pairs of images selected by use of different measures. 

4.1 Materials and 1¥直ethods

The use ofthe following database and the participation ofradiologists in the observer study 

were approved by the Institutional Review Board at the University of Chicago. Informed 

consent for this observer study was obtained from all observers. 

In this study， we investigate four objective similarity measures (A， B， C， and D) based 

on the Euclidean distance in feature space and the psychophysical similarity measure 

determined by the ANN. In Muramatsu's studies [90， 93， 94]，日向/images including 25 

benign and 25 malignant lesions were first selected as representative lesions for both mass 

and calcification studies by an attending breast radiologist to include various sizes and types 

of lesions. Three hundred pairs were created by the combination of each representative 

52 



lesion and six images (3 benign and 3 malignant lesions) selected subjectively by consensus 

of three investigators to include pairs with a wide range of similarities. Ten breast 

radiologists provided their subjective similarity ratings for the 300 mass pairs and the 300 

calcification pairs. For specific image features considered in both the Euclidean distance 

and the ANN， we employ the combination of six and seven objective features for masses 

and clustered microcalcifications， respectively， which provide the highest correlation 

coefficients between the average subjective similarity ratings and psychophysical similarity 

measures [90， 93， 94]. The six features for masses inc1ude the degree of irregularity， the 

full width at half maximum of a cumulative modified radial gradient histogram， the radial 

gradient index， the minor-to・major-axisratio of an ellipse fitted to the out1ine of the mass， 

the edge contrast， and the standard deviation of pixel values [90， 94]. On the other hand， 

the seven features for c1ust怠redmicrocalcifications inc1ude the circularity of the c1uster， the 

number of microcalcifications per unit area， the mean effective diameter of 

microcalcifications， the standard deviation of the effective diameters of microcalcifications， 

the mean contrast of microcalcifications， the standard deviation of contrasts of 

microcalcifications， and the standard deviation of the shape irregularities of 

microcalcifications [93， 94]. Measures A and B are based on the Euc1idean distance in 

feature space and the psychophysical similarity measure， respectively. Measure C is the 

sequential combination of B and A， which is derived first based on the psychophysical 

similarity measure and then the Euc1idean distance in feature space， whereas measure D is 

the sequential combination of A and B， which is derived based on the Euc1idean distance in 

feature space and then the psychophysical similarity measure. 

4.1.1 Dαtα!bases 

To compare the usefulness of four different measures as an image-retrieval tool， we use 

pairs of masses and pairs of clustered microcalcifications on mammograms which were 
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obtained from the Digital Database for Screening Mammography (DDSM) developed by 

the University of South Florida [51]. Our database for masses consists of 1，568 regions of. 

interest (ROIs)， including 840 benign and 728 malignant masses [94]. The size ofthe ROI 

is 5 cm by 5 cm (pixel size 100μm)， centered at each mass. On the other hand， our 

database for clustered microcalcifications consists of 1，101 ROIs， inc1uding 644 benign and 

457 malignant c1ustered microcalcifications [94]. The size of the ROI is 3 cm by 3 cm 

(pixel size 50μm)， centered at each c1ustered microcalcification. All1esions were proved 

by biopsy. The contrast and the density level in each ROI were manually adjusted to an 

appropriate level by an attending breast radiologist. 

4.1.2 Selection ofPαirs oflmαges 

The pairs of images for masses and those for c1ustered microcalcifications are selected for 

each of the observer studies by use of the method described below. We first remove 300 

ROIs used for training the ANN [90， 93，94]， which is then applied to the determination of 

psychophysical similarity measures for all of pairs of images used in this study. One 

hundred ROIs are selected randomly from the remaining ROIs (1，268 and 801 for masses 

and c1ustered microcalcifications， respectively) such that only one ROI is selected from the 

same patient. For the selected 100 ROIs， 4，950 pairs are created by all possible 

combinations of two different ROIs. Pairs of ROIs with the highest similarity measures 

are then selected for an observer study by use of four different measures. For measure A， 

five pairs with the five highest similarity measures based on the Euclidean distances in 

feature space are selected from the 4，950 pairs. For measure B， five pairs with the five 

highest psychophysical similarity measures are selected from the 4，950 pairs. For measure 

C， a pair with the highest psychophysical similarity measure is pre・select怠din 99 pairs 

created by the combinations of one ROI and the other 99 ROIs. This procedure is repeated 

for all of the selected 100 ROIs. Subsequently， five pairs with the five highest similarity 
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measures based on the Euclidean distances are selected from the pre・selected100 pairs. 

For measure D， a pair with the highest similarity measure based on the Euclidean distance is 

pre-selected in 99 pairs created by the combinations of one ROI and the other 99 ROIs. 

This procedure is repeated for all ofthe selected 100 ROIs. Subsequently， five pairs with 

the five highest psychophysical similarity measures are selected from the pre・selected100 

pairs. Here， five pairs for each measure are selected such that the same ROI is not selected 

again as another ROI in different pairs obtained with the same measure. 

4.1.3 Observer Study 

We conduct two observer studies for 20 mass pairs and for 20 calcification pairs， for 

comparison of subjective similarities in terms of radiologists' visual perception on pairs of 

ROIs selected by use of the 4 different measures. 百le2AFC method， known as a paired 

comparison method， is employed in the observer study because it is a sensitive method for 

the distinction of a small difference in the comparison of two similar pattems [94]. In the 

observer study， two pairs of lesions are displayed on a high-resolution liquid-crystal-display 

monitor (ME511LIP4， 21.3 in叫 2048by 2560 pixels， 410 cd/m2 luminance; Totoku Electric 

Co.， Ltd.) with one pair above and another pair below， as shown in Fig. 4.1. The observer 

is asked to compare the similarity of the two pairs and to select the pair considered more 

similar than the other pair. During the observer study， each pair is compared to all of the 

other 19 pairs one by one. The丘equencywith which a pair is selected as the more similar 

pair is considered as the subjective similarity ranking score for the pair; the maximum and 

the minimum score would be 19 and zero， respectively. The subjective similarity ranking 

scores indicate the relative rankings of similarities among the 20 pairs selected by four 

different measures. 

Six observers， including three attending breast radiologists and three breast-imaging 

fellows， participate independently in the observer study. The instructions to the observers 
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Figure 4.1: Observer interface for obtaining subjective similarity ranking scores based on the 

2AFC method. 

included: 1) The purpose of this study is to obtain experimental data for subjective 

impression of similarity for pairs of masses (and pairs of clustered microcalcifications in the 

second session) on mammograms selected by four computerized methods. 2) Two pairs of 

images are displayed on a monitor. You are asked to compare the similarity of one pair 

above with that of another pair below， regarding the overall impression for diagnosis. 

Click on the one pair that is more similar than the other. 3) A training session including 

two comparisons of pairs of lesions is provided at the beginning of the study. 4) There is 

no time limit. 
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Figure 4.2: Relationship between objective similarity meas町 ebased on the Euclidean 

distance in feature space and psychophysical simil訂 itymeasure for 20 mass pairs selected by 

4 different measures. 

4.2 Results 

Figure 4.2 shows the問 lationshipbetween the objective similarity measures based on the 

Euclidean distance and the psychophysical similarity measures for 20 mass pairs selected 

by the 4 different measures. The mass pairs selected by use of measure A tended to have 

high objective similarity measures based on the Euclidean distances and relatively low 

psychophysical similarity measures， whereas those by measure B tended to have relatively 

low objective similarity measures based on the Euclidean distances， but high 

psychophysical similarity measures. The pairs selected by use of measures C and D were 

distributed between the pairs for measures A and B. The pairs for measure C were 

distributed near the pairs for measure A， whereas the pairs for measure D were distributed 
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radiologists with objective similarity measure based on the Euclidean distance. (b) 

Relationship for average similarity ranking score with psychophysical similarity measure. 
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Table 4.1: Mean values and standard deviations of average subjective similarity ranking 

scores of mass pairs by six radiologists for each measure. 

Mean + SD 

MeasureA 8.23 + 1.30 

MeasureB 8.30 + 1.88 

MeasureC 9.63 + 3.47 

MeasureD 11.83 + 1.89 

Table 4.2: Relationship of statistical significances between computerized Measures based on 

average similarity ranking score of each mass pair. 

MeasureA MeasureB MeasureC 

お1easureB く .950

恥1easureC く.423 <.472 

MeasureD く .008 く .01& <.248 

near the pairs for meas町 eB. It should be noted that there is a noticeable di首位enceamong 

4 groups of pairs of masses selected as“most similar" based on the four different methods. 

Figures 4.3 (a) and (b) show the relationships for the av町 agesubjective similarity ranking 

score of mass pairs by 6 radiologists with the objective similarity measure based on the 

Euclidean distance， and also with the psychophysical similarity measure， respectively. 

Table 4.1 shows the mean values and the standard deviations of the average subjective 

similarity ranking scores for four groups of mass pairs selected by use of different measures. 

Although there was a large variation in the average similarity ranking scores for each 

measure， the mean value of the average similarity ranking scores for measure D was greater 

than those for the由reeother measures. On the other hand， the mean value of the average 
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MeasureA: 10.00 ( 2/0.94， 82010.64) Measure B: 10.17 (552/0.74， 3/0.92) 

MeasureA: 9.00 ( 4/0.91， 466/0.74) Measure B: 10.00 (1644/0.64， 6/0.88) 

MeasureA: 8.17 ( 1/0.95， 32010.77) Measure B: 8.50 ( 82010.71， 2/0.92) 

MeasureA: 7.17 ( 3/0.92， 733/0.71) Measure B: 7.00 (1683/0.64， 7/0.86) 

MeasureA: 6.83 ( 5/0.91， 164/0.80) Measure B: 5.83 (1245/0.67， 1/0.94) 

Figure 4.4: Mass pairs for measures A and B， and the average subjective similarity ranking 

score in bold (ranking on objective similarity measures based on the Euclidean distance in 

4950 pairs / objective similarity measure， ranking on psychophysical similarity measu問 Sll1

4950 pairs / psychophysical similarity measure) for each pair. 
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MeasureC: 13.33 ( 36/0.86， 122/0.82) Measure D: 14.67 (362/0.76， 5/0.90) 

Measure C: 12.17 ( 30/0.86， 302/0.77) Measure D: 12.17 (560/0.73， 4/0.90) 

MeasureC: 10.17 ( 16/0.89， 105/0.83) Measure D: 12.00 (544/0，74， 16/0.87) 

MeasureC: 7.83 ( 56/0.84， 127/0.82) Measure D: 10.67 (489/0.74， 17/0.87) 

MeasureC: 4.67 ( 71/0.84， 176/0.80) Measu陪 D:9.67 (622/0.73， 14/0.88) 

Figure 4.5: Mass pairs for measures C and D， and the average subjective similarity ranking 

score in bold (ranking on objective similarity measures based on the Euclidean distance in 

4950 pairs / objective similarity measure， ranking on psychophysical similarity measures in 

4950 pairs / psychophysical similarity measure) for each pair. 
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Figure 4.6: Relationship between objective similarity measure based on the Euclidean 

distance in feature space and psychophysical similarity measぽ efor 20 calcification pairs 

selected by 4 different measures. 

similarity ranking scores for measure A was lower than those for the other measures. 

These results indicated that the mass pairs selected by measure D were more similar， on 

average， in terms of radiologists' visual perception， than those by the other measures. 

average similarity ranking scores Table 4.2 shows P-values for the difference in the 

A statistical analysis was performed with use obtained by use of two different measures. 

of Student's t test based on the average similarity ranking score for each pair obtained by 6 

The difference (P = .008) between measures D and A and (P = .018) between radiologists. 

Figures 4.4 and 4.5 show the 20 mass measures D and B were statistically significant. 

pairs obtained by use of the 4 different measures， together with the average subjective 

similarity ranking score in bold (ranking on objective similarity measures based on the 
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Figure 4.7: (a) Relationship for average similarity ranking score of each calcification pair by 

6 radiologists with objective similarity measure based on the Euclidean distance. (b) 

Relationship for average similarity ranking score with psychophysical similarity measure. 
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Table 4.3: Mean values and standard deviations of average similarity ranking scores of 

calcification pairs for each computerized Measure. 

Mean土 SD

MeasureA 7.63 + 2.69 

お1easureB 7.87 + 2.62 

MeasureC 10.00 + 3.23 

MeasureD 12.50 + 2.86 

Table 4.4: Relationship of statistical significances between computerized Measures based on 

average similarity ranking score of each mass pair. 

MeasureA MeasureB 恥1easureC 

恥1easureB く .893

Measure C <.244 く .285

MeasureD く .024 <.028 <.231 

Euc1idean distance in 4950 pairs / objective similarity measure， and also ranking on 

psychophysical similarity measures in 4950 pairs / psychophysical similarity measure) for 

each pair. The first pair for measure D in Fig. 4.5 had the highest average similarity 

ranking score， whereas the fifth pair for measure C had the lowest average similarity 

ranking score. 

Figure 4.6 shows the relationship between the objective similarity measure based on 

the Euclidean distance and the psychophysical similarity measure for 20 calcification pairs 

selected by the 4 measures. Although there was a small overlap in the distributions of 

calcification pairs among the 4 measures， the calcification pairs for each of the measures 

tended to be distributed in a way similar to those for the mass pairs in Fig. 4ユ Figures4.7 
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MeihodA 11.67 (5/0.880，447/0.780) Method B: 11.17 (445/0.759，25/0.951) 

MethodA: 7.83 (7/0.878， 1391/0.653) Method B: 8.83 (214/0.794， 1/0.984) 

MethodA: 7.67 (2/0.899， 199/0.858) Meihod B: 8.17 (286/0.780， 42/0.935) 

MethodA: 6.83 (6/0.879，604/0.751) Method B: 7.17 (581/0.744， 9/0.967) 

MethodA: 4.17 ( 1/0.912，414/0.788) Method B: 4.00 (72/0.827， 45/0.934) 

Figure 4.8: Calcification pairs for measures A and B， and the average subjective simil釘ity

ranking score in bold (ranking on objective similarity measures based on the Euclidean 

distance in 4950 pairs / objective similarity measure， ranking on psychophysical similarity 

measures in 4950 pairs / psychophysical similarity measure) for each pair. 
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Method C: 13.33 ( 7/0.877，370/0.797) Method 0: 17.00 (13/0.866， 48/0.932) 

Method C: 11.83 (32/0.851， 7610.912) Method 0: 13.33 (52/0.839， 2/0.983) 

Method C: 10.50 (44/0.844，475/0.774) Method 0: 11.83 (45/0.843， 8010.910) 

Method C: 9.50 (竹/0.868，63/0.922) Method 0・10.67(3010.853， 4110.937) 

Method C: 4.83 (73/0.827， 25/0.951) Method 0: 9.67 (25/0.856， 44/0.935) 

Figure 4.9: Calcification pairs for measures C and D， and the average subjective similarity 

ranking score in bold (ranking on objective similarity measures based on the Euclidean 

distance in 4950 pairs I objective simi1arity measure， ranking on psychophysical similarity 

measures in 4950 pairs I psychophysical simi1arity measure) for each pair. 
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(a) and (b) show the relationships for the average subjective similarity ranking score of 

calcification pairs to the objective similarity measure based on the Euc1idean distance， and 

to the psychophysical similarity measure， respectively. Table 4.3 shows the mean values 

and the standard deviations of the average subjective similarity ranking scores of 

calcification pairs for each measure. The calcifications pairs for measure D had the 

highest average subjective similarity ranking scores， whereas those for measure A had the 

lowest average similarity ranking scores; these results were the same as those for masses. 

Table 4.4 shows P-values for the difference in the average simi1arity ranking scores 

obtained by use of two different measures. The difference (P = .024) between measures D 

and A and that (P = .028) between measures D and B were statistically significant. Figures 

4.8 and 4.9 show the 20 calcification pairs obtained by use of the 4 different measures， 

together with the average subjective similarity ranking score in bold (ranking on objective 

similarity measures based on the Euclidean distance in 4950 pairs / objective simi1arity 

measure， and also ranking on psychophysical similarity measures in 4950 pairs / 

psychophysical similarity measure) for each pair. The pairs with very high objective 

similarity measures both for the Euc1idean distance and the ANN tended to have high 

average subjective similarity ranking scores in measures C and D. 

4.3 Discussion 

In both observer studies for mass pairs and calcification pairs， the mean values of the 

average subjective simi1arity ranking scores for measure B were greater than those for 

measure A， although the difference be同reenmeasures A and B was not statistically 

significant in this study. This result tended to be consistent with the results presented by 

Li et al. [89] and Muramatsu et al. [90， 93， 94]， where the correlation coefficient of 

radiologists' subjective similarity ratings with psychophysical simi1arity measures was 

greater than that with objective similarity measures based on the Euc1idean distance. 
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These results may indicate that the psychophysical similarity measure is a better tool in 

retrieving similar images than is the objective similarity measure based on the Euclidean . 

distance. 

The mean values of the average similarity ranking scores for measures C and D were 

greater than those for measures A and B. The mean value of the average similarity ranking 

scores for measure D was greater than that for C. For measure D， the pairs with 

comparable physical characteristics were first pre-selected by use of an objective similarity 

measure based on the Euclidean distance， and thus the subsequent selection of pairs with 

high psychophysical similarity measures would be more reliable， because inadequate pairs 

which may not be similar due to a large difference in physical characteristics were removed 

initially. Therefore， we believe that the pairs selected by measure D would be more 

similar in terms ofradiologists' visual.perception than those by measure B， because measure 

B was improved substantially by the sequential combination with measure A. With 

measure Cラ onthe other hand， the pairs were first pre-selected by use of a psychophysical 

similarity measureラ andthus some pairs with high objective similarity measures， which 

would be located closely in feature space， would have been removed， and the subsequent 

selection of pairs may provide pairs with different physical characteristics. Therefore， we 

believe that the pairs for measure D would be more similar subjectively than those for 

measure C. 

The implementation of selecting similar images by use of measure D in clinical 

sItuations can be illustrated in the example described below. When a radiologist 

encounters a new， unknown case in daily clinical practice at a breast clinic， a search engine 

would determine first the objective similarity measures based on the Euclidean distance in 

feature space for all of the combinations for the unknown case with all of the known 

benign/malignant cases in the database available in the c1inic， which may include a large 

number of cases such as 1，000 benign cases and 1，000 malignant cases stored in a Picture 
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Archiving and Communication System. The search engine would then select a certain 

pre-selected number of cases such as the top 100 pairs， each for benign and malignant cases， 

with higher objective similarity measures; these pairs would be subjected to determination 

of the psychophysical similarity measures by use of the trained ANN. Finally， the 

radiologist may indicate a desired number of similar cases to be presented as an泊dto 

hislher diagnosis， such as five cases each for benignlmalignant cases. The search engine 

then could retrieve those cases with the five highest psychophysical similarity measures in 

each category to be presented as similar cases. It is likely that the cases selected would 

look more similar to the unknown case in question for radiologists in making their 

diagnostic decision than other cases which might be selected by the three other measures， A， 

B，orC. 

There are some limitations in this study. One limitation is that the number of pairs for 

each objective simi1arity measure was small in the observer study because the time required 

for a radiologist has to be limit怠dto an hour in one session. Another limitation is that four 

of six breast radiologists who participated in the observer study provided their subjective 

similarity ratings for the 300 mass pairs and the 300 calcification pairs in our previous 

studies. However， we believe that the bias due to this overlap would be minimal， because 

for training the ANN， the average subjective similarity ratings were obtained by ten breast 

radiologists. 
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CHAPTER5 

POTENTIAL USEFULNESS OF SIMILAR IMAGES 

IN THE DIFFERENTIAL DIAGNOSIS 

Radiologists commonly leam diagnostic skills by viewing many cases in their training and 

clinical practice. Based on their experience and knowledge， they may make a diagnostic 

decision on a new， unknown lesion that appears in medical images. Therefore， it is 

expected that the presentation of images of lesions with known pathology similar to a new， 

unknown lesion would be useful for radiologists in the differential diagnosis of the 

unknown lesion [72・75，78・82，84， 86， 87， 89-93， 96]. Several investigators have 

attempted to use similar images as a diagnostic aid for chest lesions [78， 84， 89] and breast 

lesions [79・80，82， 86， 87， 91-93， 96]， However， if similar images were not really similar 

to an unknown lesion in terms of radiologists' visual perception， those similar images would 

not be useful in assisting radiologists in the differential diagnosis of the unknown lesion. 

In selecting similar images from a database， investigators [89-93] have developed a 

computerized scheme for automatically selecting similar images based on a psychophysical 

similarity measure which is obtained by use of an artificial neural network for leaming the 

relationship between radiologists' subjective ratings of similarity and the objective features 

of lesions. However， these studies have not demonstrated clearly and convincingly that 

radiologists' performance in the differential diagnosis of lesions would be improved by the 

presentation of similar images [89， 90]. 

Recently， Muramatsu [94] has conducted an observer study for evaluating the 

usefulness of similar images selected based on a psychophysical similarity measure in the 

distinction between benign and malignant masses on mammograms. The results indicated 

that there was little difference between radiologists' performance in the differential 

diagnosis without and with the presentation of the similar images. From a detailed 
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Selection of 560 images with clustered microcalcifications 

Subjective ratings on likelihood of malignancy 
by three radiologists 

Removal ofbenign-looking malignant 
and malignant-looking benign lesions 

Selection of 40“unknown" cases 

Selection of eight“known" images 
similar to unknown case 

Observer study for distinction between malignant and 
benign lesions without and with similar images 

Figure 5.1: Overall scheme ofthis study 

analysis of her results， she found that the cases used in the observer study included unusual 

and inadequate cases， i.e.，“malignant-looking" benign and “benign-looking" malignant 

lesions. Thus， radiologists appeared to be confused in the differential diagnosis of lesions 

when these malignant-looking benign and benign-looking malignant lesions were presented 

as similar images. However， in the practical setting for the application of similar images， 

we can eliminate such unusual or inadequate cases in advance. In this study， therefore， we 

evaluated the usefulness of the presentation of similar images in the distinction between 

benign and malignant clustered microcalcifications on mammograms by removing these 

unusual cases from our database. 

5.1 Materials and Methods 

The use ofthe following database and the participation ofradiologists in the observer study 

were approved by the Institutional Review Board at the University of Chicago. Informed 
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consent for this observer study was obtained from all observers. 

Figure 5.1 shows the overall scheme of this study. First， we select 560 regions of. 

interest (ROIs) with clustered microcalcifications， including both benign and malignant 

cases. Three attending breast radiologists independently provide subjective ratings on the 

likelihood of malignancy for each of the 560 clustered microcalcifications. Based on the 

average subjective ratings， one hundred ROIs are removed as malignant-looking benign or 

benign-looking malignant lesions. Forty lesions are then selected as “unknown" cases for 

an observer study by use of a stratified randomization method. For each unknown case， 

four “known門 malignantand four “known" benign lesions similar to the unknown case in 

terms of radiologists' visual perception are selected as the similar images. An observer 

study is conducted for evaluating the usefulness of the presentation of the similar images in 

distinguishing between benign and malignant clustered microcalcifications. 

5.1.1 Cαse Selection 

Our database initially consists of 1，101 ROIs， including 644 benign and 457 malignant 

clustered microcalcifications which were obtained from a publicly available database， the 

Digital Database for Screening Mammography (DDSM) developed by the University of 

South Florida [51]. All microcalcification lesions were proved by biopsy. The size ofthe 

ROI is 3 cm by 3 cm， centered at each lesion. Figure 5.2(a) and (b) shows the distribution 

of the number of microcalcifications in the clusters and the distribution of the size of 

clusters in our database， respectively. 

To remove malignant-looking benign and benign-looking malignant lesions from our 

study， it is necessary to obtain radiologists' subjective ratings on the likelihood of 

malignancy for all of the clustered microcalcifications. In order to minimize this task by 

radiologists， we remove 146 ROIs if the number of microcalcifications is less than 5， or 

greater than 35， and ifthe cluster size is greater than 25 mm. It would be difficult to select 

72 



ロBenign(644) 

図 Malignant(457) 

250 

200 

150 
ω
一O区
』
O
」

ω
D
E
コ
Z

議際
際
際
機際一………隙隊
機
際
隙
際
機

100 

50 

100 120 80 

Numberof microcalcifications in the cluster 

40 35 30 25 20 15 10 5 

。。
a. 

ロBenign(644) 

図 Malignant(457) 

250 

200 

150 

50 

100 

ω
一O区
』
O
』

ω
D
E
コZ

35 30 25 20 

Size of the cluster [mm] 

15 10 5 

。。
b. 

(b) Figure 5.2: (a) Distribution of the number of microcalcifications in the clusters. 

Distribution of the size of clusters included in our database. 
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Distribution of average confidence levels of malignancy by three attending Figure 5.3: 

breast radiologists. 

similar images if some of these lesions are used as“unknown" cases because of the limited 

included both ROIs， 790 ROIs remaining 955 Of the available. number of cases 

microcalcifications， clustered 395 for vlews medio・lateral-obliqueand cranio・caudal

Only one view from each case was selected by whereas 165 ROIs included only one view. 

an attending breast radiologist based on the quality of the clustered microcalcifications. 

As a result， the cases in this study consisted of 560 ROIs， including 346 benign and 214 

malignant clustered microcalcifications obtained from 560 patients (mean age， 57.4 years; 

age range， 32-87 years; 560 women). 

experience) R.A.S.; 6・26years C.S.， (H.A.， radiologists attending breast Three 

independently provide their confidence level regarding the malignancy (or benignity) on a 

continuous rating scale from 0 to 1 corresponding to "definitely benign" and “definitely 
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Figure 5.4: Distribution of average confidence leve1s of malignancy after removing benign-

looking malignant and malignant-looking benign lesions. 

malignant，" respectively， for each of 560 clustered microcalcifications， which is displayed 

on a high-resolution liquid-crystal display (LCD) monitor (ME511LIP4， 21.3 in.， 2048 by 

Figure 5.3 2560 pixels， 410 cd/m2 luminance; Totoku Electric Co.， Ltd.， Tokyo， Japan). 

shows the distribution of the average confidence levels of malignancy by the three breast 

The average inter-observer correlation coefficient for all possible pairs of 3 radiologists. 

We assume in this study that benign lesions with the average observers was 0.554. 

confidence levels greater than 0.6 would be considered malignant-looking benign lesions， 

whereas malignant lesions with average confidence levels less than 0.4 would be considered 

Therefore， one hundred ROIs with those lesions were . benign-looking malignant lesions. 

removed， and the cases to be used in our observer study consisted of 460 ROIs including 

shows the 5.4 Figure clustered microcalcifications. 
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Figure 5.5: Distribution of average confidence levels of malignancy for 40 unknown cases. 

distribution of the average confidence levels of malignancy for the remaining 460 cases 

used in our observer study. 

In order to include moderately difficult and indeterminate cases as unknown cases in 

the observer study， we select forty unknown cases by use of a stratified randomization 

Twenty malignant lesions method based on the average confidence levels of malignancy. 

were selected as unknown cases such that the average confidence levels of malignancy for 

unknown malignant lesions would be distributed approximately normally in the range from 

0.40 to 0.90， as shown in Fig. 5.5， whereas twenty benign lesions were also selected as 

distributed would be benign lesions unknown for those that such cases unknown 

approximately normally in the range from 0.10 to 0.60. 

Similar images for each unknown case should be selected by radiologists because the 

pu中oseof this study is to evaluate the usefulness of images which should be similar to the 
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Figure 5.6: Relationship between the objective similarity measure based on the Euclidean 

distance and the psychophysical similarity measure for all pairs of 40 unknown cases with 8 

similar cases selected仕omeach ofbenign and malignant known images 

it would be However， unknown lesions in terms of radiologists' visual perception. 

impractical for radiologists to select the similar images for each unknown case仕omthe 

Thereforeラ wedecided first to select a set of similar many cases inc1uded in our database. 

images by an automated computerized method; these are then selected subjectively by a 

For each unknown case， eleven radiologist to constitute the final sets of similar images. 

“known" benign lesions and eleven “known" malignant lesions were first pre-selected as 

the similar images from our database by use of an objective similarity measure based on the 

short Euclidean distance in image feature space [94]， i.e.， a set of objective image features 

for an unknown lesion would be comparable or similar to those of pre-selected lesions. 
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Subsequently， eight similar images for each of the benign and malignant lesions were 

selected based on the eight highest psychophysical similarity measures [93]. Figure 5.6 . 

shows the relationship between the objective similarity measure based on the Euclidean 

distance and the psychophysical similarity measure for all pairs of 40 unknown cases with 8 

similar cases pre-selected by the computerized scheme. There was a large variation in 

psychophysical similarity measures， although all ofthese cases had relatively high objective 

similarity measures based on the Euclidean distance. Finally， the four most similar images， 

which would be very similar to each unknown case， in each of 8 benign and 8 malignant 

images were selected subjectively based on the overall impression for radiological diagnosis 

byan attending breast radiologist (H. A.; 6 years experience). This selection of four from 

eight images was performed without knowing if the group of images was benign or 

malignant. 

5.1.2 Observer Stu砂

1n the observer study， an unknown image is displayed in the center of a high-resolution 

LCD monitor. The observer is asked to mark hislher confidence level regarding the 

malignancy ofthe unknown case on the continuous (using units of .01) rating scale from 0 

to 1 corresponding to“definitely benign" and “definitely malignant，" respectively. After 

the observer marks the initial confidence level， four benign and four malignant simi1ar 

泊lagesare displayed on the left and right sides of the unknown image， respectively， and the 

initial mark is erased. The observer is asked again to mark hislher confidence level 

regarding the malignancy of the unknown case. 

Eight observers， including five attending breast radiologists (H.A.， C.S.， K.K.， R.A.S.， 

G.M.N.; 6・30years experience) and three breast imaging fellows (L.F.， A.S.， R.S.; 0・1years 

experience)， participate independently in the observer study. Three of five attending breast 

radiologists have seen 560 lesions when providing the confidence level regarding the 
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malignancy for those lesions， and the period between the work for providing their 

confidence levels and the observer study was more than 3 months. The instructions to the 

observers included: 1) The pu中oseof this study is to investigate whether providing the 

similar known images can assist radiologists in the distinction between benign and 

malignant lesions on mammograms. 2) Forty unknown cases are included in this study. 

A training session including two cases is provided at the beginning of the study. 3) You 

are asked to provide your confidence level regarding the malignancy (or benignity) of a 

lesion on a bar by use of a mouse first without similar images， and then after observing the 

similar images. 4) F or each unknown case， four most similar images each from benign 

and malignant lesions in the database are provided. 5) There is no time limit. 

5.1.3 StatisticαrlAnalysis 

For evaluating the radiologists' performances without and with the similar images in the 

distinction between benign and malignant clustered microcalcifications， we employ a 

receiver operating characteristic (ROC) analysis based on a sequential-test method [97，98]. 

The areas under the ROC curve (AUCs) and the 95% confidence intervals are obtained with 

a quasi-maximum-likelihood estimation of binormal distribution by use of DBM MR恥1C

so抗ware(version 2.2) developed by the University of Iowa and the University of Chicago 

[99， 100]. The significance of the difference in A UCs between observer readings without 

and with similar images is tested with use ofthe Dorfman-BerbaurrトMetzmethod [99， 100]， 

which includes both reader variation and case sample variation by means of an analysis of 

variance approach. A P value less than .05 is considered to indicate a statistically 

significant difference. Inter-observer variability is determined by the mean value of the 

standard deviations of radiologists' confidence levels for each unknown case. An average 

change in confidence level greater than 0.05 due to the use of similar images by the 8 

observers is also assumed to be a beneficial or detrimental change. 
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Figure 5.7: Comparison of ROC curves for the average performance ofthe eight radiologists 

in the distinction between benign and malignant clustered microcalcifications without and 

with similar images. With similar images， the average AUC was improved significantly 

from 0.692 to 0.790 (P = .0009). 

5.2 Results 

Figure 5.7 shows the average ROC curves for all observers in distinguishing between 

benign and malignant clustered microcalcifications without and with similar images. The 

average AUC increased from 0.692 without to 0.790 with the similar images. This 

difference was statistically significant (P = .0009). Table 5.l shows the AUCs for each 

observer without and with similar images. All observers' performances in the differential 

diagnosis were improved when the similar images were available. The average AUCs for 

the five attending breast radiologists without and with the similar images were 0.698 and 

0.794 (P = .024)， respectively， whereas those for the three breast imaging fellows without 
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Table 5.1: AUCs for radiologists in the distinction between benign and malignant clustered 

microcalcifications without and with similar images [95% confidence intervals] 

AUC 

Observer 
Without With 

P value 
similar images similar images 

Attending breast radiologist 

A 0.683 [0.447，0.919] 0.867 [0.728， ] .001] .0421 

B 0.658 [0.473ラ0.842] 0.787 [0.515，1.058] .3262 

C 0.675 [0.501，0.849] 0.751 [0.539，0.964] .4055 

D 0.799 [0.677， 0.922] 0.832 [0.697， 0.967] .6310 

E 0.677 [0.493， 0.861] 0.734 [0.569ラ0.901] .3409 

恥1ean 0.698 [0.589，0.807] 0.794 [0.708ヲ0.880] .0241 

Breast imaging fel10w 

F 0.734 [0.505， 0.962] 0.806 [0.675， 0.936] .3959 

G 0.677 [0.539， 0.816] 0.765 [0.616， 0.9l3] .1902 

H 0.632 [0.469， 0.796] 0.778 [0.619，0.937] .0686 

民1ean 0.681 [0.574，0.788] 0.783 [0.7l3， 0.852] .0135 

ALL 0.692 [0.596， 0.788] 0.790 [0.723，0.857] .0009 

and with the similar images were 0.681 and 0.783 (P = .014)， respectively. The gain in the 

average AUCs for the attending breast radiologists was comparable to that for the breast 

imaging observers (P = .886). Inter-observer variability without and with similar images 

was 0.139 and 0.149， respectively. 

Figure 5.8 shows the relationship between the average initial confidence levels and the 

average beneficial or detrimental changes in confidence level for benign and malignant 

cases due to the use of similar images by the 8 observers. The number of cases with a 

beneficial effect was much greater than that with a detrimental effect. If an average 

change in confidence level greater than 0.05 was assumed to be a beneficial or detrimental 
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Figure 5.8: Average beneficial or de仕imentalchanges in confidence level due to similar 

lmages. 

change， the number of beneficial changes was 15， whereas that of detrimental changes was 

2. For each observer， the number ofbeneficial changes was larger than that of detrimental 

changes. 

Figure 5.9 shows the unknown malignant case with the most beneficial change which 

corresponds to the average confidence level from 0.491 to 0.605 by use of similar images. 

In this case， six of the eight observers changed their confidence levels of malignancy 

beneficially after viewing the similar images. The other two hardly changed their 

confidence levels. Most observers appeared to find that a set of malignant similar images 

were more similar to this unknown case than were benign similar images. On the other 

hand， in the unknown benign case with the most beneficial change， most observers appear 
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Figure 5.9: Malignant unknown lesion (center) with the selected benign (upper) and 
malignant (lower) similar lesions. Six of the eight observers increased their confidence 
levels of malignancy beneficially after viewing the similar images. The other two hardly 
changed their confidence levels. 
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F igure 5.1 0: Benign unknown lesion (center) with the selected benign (left) and malignant 
(right) similar lesions. Although the three breast imaging fellows beneficially increased or 
hardly changed their confidence levels of malignancy after viewing the similar images， four 
of the日vea口endingbreast radiologists decreased their confidence levels of malignancy 
detrimentally. 
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to have considered that a particular benign similar image was more similar to the unknown 

case than any other similar lesions. 

Figure 5.10 shows the unknown benign case with the most detrimental change from 

the average confidence level of 0.270 to 0.354 by use of similar images. In this case， 

although the three breast imaging observers beneficially changed or hardly changed their 

confidence levels of malignancy after viewing the similar images， four of the five attending 

breast radiologists changed their confidence levels of malignancy detrimentally. In this 

unknown benign case and the unknown malignant case， both having the most detrimental 

change， some observers might have considered that a few similar images with pathology 

opposite to the unknown case were more similar. The average confidence levels of these 

similar images with the opposite pathology by the three attending breast radiologists were 

between 0.4 and 0.6 in Fig. 5.4， which implies that these similar cases should be considered 

malignant-looking benign and benign-looking malignant lesions， and thus they should be 

removed from the database and not be used for similar images in the future. 

5.3 Discussion 

In this study， the results indicated clearly that radiologists' performance in the differential 

diagnosis of clustered microcalcifications can be improved by use of similar images. 

However， malignant-looking benign and benign-looking malignant lesions were not used 

for unknown cases as well as known cases in our observer study， because these lesions 

would not contribute to the understanding of the potential usefulness of similar images for 

the diagnosis. We believe that malignant-looking benign and benign-looking malignant 

unknown lesions would not be helped at present by use of similar images and/or by any 

other computerized schemes. In clinical practice， malignant-looking benign lesions would 

be considered malignant， and would be treated as such. On the other hand， benign-looking 

malignant lesions would be considered benign， and thus not be subjected to additional 
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examinations; these lesions may be detected in follow-up examinations. If these lesions 

were subjected to additional examinations， many unnecessary examinations would result for . 

benign lesions， which would be costly to patients and to society. 

If malignant-looking benign and benign-looking malignant lesions were presented as 

similar images selected from known cases in the database， radiologists would be confused 

because some“known" benign lesions appear“malignantヘandsome“known" malignant 

lesions appear“benign". Therefore， we believe strongly that malignant-looking benign 

and benign-Iooking malignant lesions should not be used in observer studies for evaluating 

the usefulness of similar images. Although we do not know the fraction of 

malignant-looking benign and benign-looking malignant lesions included in clinical 

practice at presentヲ about20% of cases in our study， in which all lesions underwent biopsy， 

were identified as malignant-looking benign and benign-looking malignant lesions. If the 

fraction of these lesions would not be very low in clinical practice， radiologists would miss 

many cancers [11， 16]， and unnecessary biopsy would be very common [18， 19]. 

In our study， we assumed that benign lesions with average confidence levels greater 

than 0.6 would be considered malignant-looking benign lesions， whereas malignant lesions 

with average confidence levels less than 0.4 would be considered benign-looking malignant 

lesions. We applied these threshold values to the selection of both unknown cases and 

known cases. However， the threshold values used in the selection of known cases should 

have been different from those used in the selection of unknown cases. The database to be 

used for known similar lesions should include only benign and malignant lesions which 

most radiologists can recognize correctly as benign and malignant， respectively. Therefore， 

the threshold value for selecting known benign cases should be very low， such as 0.4 or 

lower， whereas the threshold value for known malignant cases should be very high， such as 

0.6 or greater. If we had used different threshold values， it is possible that our results 

would have differed. 
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By use of MRMC ROC analysis， we analyzed the confidence levels for 35 unknown 

cases excluding three obviously benign and two obviously malignant cases. Here， we 

assumed obvious cases to be those for benign lesions with average confidence levels less 

than 0.3ラ andmalignant lesions with those greater than 0.7. The average AUCs for al1 

observers increased from 0.623 without to 0.741 with the simi1ar images (P = .0016). 

Although both average AUCs for 35 unknown cases without and with the similar images 

were less than those for 40 unknown cases， the gain in average AUCs with similar images 

increased. The performance of al1 observers in the differential diagnosis was improved 

when they used similar images. These results indicated that similar images would be more 

useful for moderately difficult and indeterminate cases with average confidence level， from 

0.3 to 0.7 than for obvious cases. 

There are some limitations to this study. One limitation is that the similar images 

used in our observer study were selected subjectively at the final selection process by an 

attending breast radiologist. Because there are some variations among radiologists in their 

subjective judgments on similar images， it would be desirable to have subjective judgments 

by a number of radiologists. Although three of five attending breast radiologists who 

participated in the observer study had seen 560 lesions when providing the confidence level 

regarding the malignancy for those lesions， we believed that the recal1 bias would be 

minimal because the pathology of 560 lesions was not provided to them， and the period 

between the work for providing their confidence levels and the observer study was more 

than 3 months. Another limitation is that we used ROIs instead of whole images as 

unknown cases in the observer study. However， although the radiologists' performance 

may be improved by use of the whole image， we believe that the conclusion in this study 

would not be changed. In addition， magnification views were not inc1uded in this study， 

although radiologists often use magnification images in the differential diagnosis of 

c1ustered microcalcifications. The potential usefulness of similar images for magnification 
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mammograms is another research area which would require further investigation. 
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CHAPTER6 

CONCLUSION 

The motivation in this dissertation was to improve the diagnostic accuracy and consistency 

of radiologists' image interpretation. The goal was to develop computerized analysis for 

both detection aid and differentiation aid of clustered microcalcifications on mammograms. 

For computerized analysis for detecting clustered microcalcifications， we constructed a 

novel filter bank by introducing the concept of a Hessian matrix into a commonly used filter 

bank. This filter bank has three important features: i) it can enhance the nodular 

component in an image; ii) it can enhance the nodular and linear component in an image; 

and iii) it can reconstruct an original image from decomposed subimages of the original 

image. The objective features for the nodular structures and the linear structures with 

various sizes in each ROI were obtained by using features i) and ii) of the filter bank. We 

showed that there were differences in these objective features among abnormal ROIs with 

clustered microcalcifications， normal ROIs with blood vesselsラ andnormal ROIs without 

blood vessels. We demonstrated that the computerized detection method based on the 

classification results among three ROIs had a high detection performance. 

F or computerized analysis for identifシinghistological classifications of clustered 

microcalcifications， six objective features on clustered microcalcifications on each of 

follow-up magnification mammograms were determined 仕omthe microcalcifications 

segmented by the filter bank defined in chapter 2. We showed these objective features 

were useful statistically for the distinction between five different types of histological 

classifications. In identifying histological classification of clustered microcalcifications， 

the histological classification of an unknown new case in question was assumed to be the 

same as that of the nearest neighbor case which has the shortest Euclidean distance in a 

feature-space. The feature-spaces for the nearest neighbor case consisted of six objective 
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features obtained from the previous magnification mammogram (previous features)， six 

objective features obtained from the cur問 ntmagnification mammogram (current features)， • 

and the set of the six previous features and the six c町 rentfeatures. The c1assification 

accuracies were the highest in the feature-space with set of the six previous features and the 

six cu汀entfeatures. This result indicated that the differences in not only image features 

but also growth speeds were useful in identiちlingthe histological classifications. The 

computerized identification of histological classifications based on the nearest neighbor 

case also had high classification accuracies. This result would verify the assumption for 

identifying histological c1assification. 

For computerized analysis for retrieving lesions similar to unknown lesions on 

mammograms， we investigated four objective similarity measures. Measures A and B 

were based on the Euc1idean distanc.e in feature space and the psychophysical similarity 

measure， respectively. Measure C was the sequential combination of B and A， whereas 

measure D was the sequential combination of A and B. In this study， we selected 100 

lesions each for masses and c1ustered microcalcifications randomly from our database， and 

we selected five pairs of lesions from 4，950 pairs based on all combinations of the 100 

lesions by use of each measure. In two observer studies for 20 mass pairs and 20 

calcification pairs， six radiologists compared all combinations of 20 pairs by using a two 

altemative forced司 choicemethod to dete打ninethe subjective similarity ranking score which 

was obtained from the frequency with which a pair was considered as more similar than the 

other 19 pairs. In both mass and calcification pairs， pairs selected by use of measure D 

had the highest mean value of the average subjective similarity ranking scores. The 

sequential combination of the objective similarity measure based on the Euclidean distance 

and the psychophysical similarity measure would be useful in the selection of images 

similar to those of unknown lesions. 

The potential usefulness of the presentation of images of lesions with known pathology 
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similar to an unknown lesion was evaluated in distinguishing between benign and malignant 

clustered microcalcifications on mammograms. A total of 20 benign and 20 malignant 

lesions were selected using a stratified randomization method， and it was these lesions that 

served as unknown cases in this observer study. For each unknown case， eight similar 

images of benign lesions and eight similar images of malignant lesions were preselected 

with a computerized scheme. From these preselected images， a breast radiologist 

subjectively selected the four most similar images of benign lesions and the four most 

similar images of malignant lesions. Five attending breast radiologists and three 

breast-imaging fellows participated in the observer study. Observers provided their 

confidence level regarding malignancy of the unknown case before and after they viewed 

the similar images. The results were evaluated with multireader multicase ROC analysis. 

For all observers， the AUCs were improved when similar images were used. The average 

AUC for all observers increased from 0.692 without use of similar images to 0.790 with use 

of similar images. The presentation of similar images can improve radiologists' 

performance in the differential diagnosis of clustered microcalcifications on mammograms. 

In this dissertation， we have proposed a new approach to achieve high detection 

performance and/or high classification accuracies which would certainly help radiologists to 

improve their diagnosis accuracy of clustered microcalcification in a clinical setting. In 

this research， we used a digitized mammogram with a pixel size of 0.0435 mm x 0.0435 

mm and a 12・bitgray scale by use of a laser scanner. As digital mamrriograms have 

gradually become available in more and more clinical settings， and as the number of 

specialists for diagnosing mammograms is limited in a communityラ these digital 

mammograms are going to be networked and analyzed at a key station located in a 

community. Mie University Hospital is one such key station in Mie prefecture， and our 

method is going to be routinely used to help radiologists. Then， there arises a new 

challenge for us to explore a way to treat much larger pixel sizes than those used in this 
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dissertation since using larger pixel sizes will greatly reduce the sizes of data and cost of 

commumcatlOn. 
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APPENDIXI 

Eigenvalues of Hessian Matrix 

By using x=rcmf3 and y=rsinθ， the function z::::: f(x，y) is represented by 

8z 8z 
一一=一一cosB+ ':::::"'sin B， 
8r aχ 8y 

θZ 2 8z 2 0 ~ _ 8z 2 ~. _ 8ヴ2
ーァ=三一cos2θ+ 2"":::':::__cos Bsinθ + v: sin 2θ-
8Lr θLX  8x8y θ"y 

The second derivative ofthe function f(x，y) in an arbi仕arydirection θis given by 

主=f"二川，

where XT = (cOsθsmθ)， and H is a Hessian matrix. Since H is a symmetry matrix， 

there is an orthogonal matrix P such that pT HP = diag[.-1， ん].λ1 and λ2 

(λ1三 λ2)indicate the small eigenvalue and the large eigenvalue of the Hessian matrix， 

respectively. If we change the basis with x=Py， the second derivative of the function 

f(x，y) is 

f" = yT pT HPyニムyf+λ2yj.

By using the relation 

y:+y;=yTy=(PTx)TpTx=xTx=C052θ+siI12θ=1ラ

it becomes 

f"=λ1 (y~ + Y;) + (λ2一λ1)yj=λ1+(λ2-A，I)Y;;とλ1・

Therefore， the small eigenvalueλ1 of the Hessian matrix is given by the smallest value of 

f" • By using the same relationラwehave 

f"= λ2 (Y~ + Y;)+(ム -λ2)Y~ =λ2 + (λ1 一 λ2)y~ ~λ2 ・

The large eigenvalue λ2 of the Hessian matrix is given by the largest value of f"・
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APPENDIXII 

Modified Bayes Discriminant Function 

The relationship between the covariance matrix 1 I: of each class 1 based on histological 

classifications， its i-th eigenvalue 1λiCλzミJλ;+1)'and its i-th eige町民tor1① z 制 s今the

following equation: 

1I:=LIλi[<l>uφ;， 

where n is the number of dimensions of the feature vector. Therefore， the Bayes 

discriminant function (BDF) is defined as 

~ (X-lf.i， 1<l>，Y ， 1~; g~(x)= y パ +1nf!.IA;・
I=l [f円I

Here， x and 1μare the input feature vector and the mean vector of class 1， respectively. 

In the BDF， the estimation e町orof the eigenvectors becomes large when the number of 

training samples is not large enough compared with the number of dimensions of the feature 

vector. In particular， the estimation e汀orof higher-order eigenvectors is much larger than 

that of lower-order eigenvectors. 

For solving this problem， the Modified Bayes discriminant function (MBDF) was 

employed for distinguishing between the five different types of histological classifications. 

The MBDF is given by 

~(X-lμ， 1①;Y ， ~ (X-lμ， 1色)2， lJ:-r 1 :-r 1 i 
gl(x)=Zq+工 +1~ gA;.lI，IAk+1 1， 

λl λ品1 し j

where k (1 ::; k < n) is an integer. Here， the estimation error of higher-order eigenvectors 

is reduced by using 1 Ak+1 as an叩proximatevalue of 1 A; (i = k + 2，…， n). In the case 

of k=n-l， the MBDF is equal to the BDF. When k is about one third ofthe number of 

dimensions ofthe feature vector， it is known to show the highest classificatIon performance. 

In this study， k was given as one third ofthe number of dimensions ofthe feature vector. 
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