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ABSTRACT

Since energy consumption and heat density are growing problems in
high-performance processors as well as embedded processors, lots of latest
researches on computer systems aim at enhancing energy-efficiency of pro-
cessors. One of leading energy-efficient approaches, single-instruction-set-
architecture (single-ISA) heterogeneous multi-core processor comprised of
microarchitecturally diverse cores (differently-designed in microarchitecture
level), gets much attention from the researchers. Two key challenges in the
heterogeneous paradigm are (1) the development of energy-efficient proces-
sor core highlighting finer heterogeneity in an application phase, and (2) the
design automation of the entire single-ISA heterogeneous multi-core proces-
sor. The author studies basic circuit and architecture for (1), and develops
a processor design environment for (2) as described below in detail:

(1) This work proposes a combinational approach across two different
fields to develop a low-energy processor core, i.e., circuit-level (low-energy D-
flip-flops) and microarchitecture-level (variable stages pipeline) approaches.

Circuit-level approach: D-flip-flops play an important role in a processor
chip because the delay, area, and power consumption of D-flip-flops drasti-
cally affect the performance of the processor. This work proposes two types of
novel D-flip-flop which adopt semi-static and true-single-phase clock (TSPC)
schemes. One is called double split-output semi-static TSPC D-flip-flop
(DSSTSPC D-flip-flop) emphasizing short circuit delay by a novel front-end
composed of parallelized split-output latches. The other, single split-output
semi-static TSPC D-flip-flop (SSSTSPC D-flip-flop), takes a special focus
on low-energy operation by removing a part of DSSTSPC D-flip-flop. The
former shortens the circuit delay by 5% compared with a conventional low-
energy D-flip-flop without increase in the energy and layout area. The latter
achieves 31% smaller layout area and 30% lower energy consumption with up
to 8% performance degradation compared with the conventional D-flip-flop.

Microarchitecture-level approach: Modern processors widely employ dy-
namic voltage and frequency scaling (DVFS) technique which dynamically
scales the supply voltage and clock frequency in accordance with workload on
the processor. Although DVFS is effective for energy saving, it suffers from its
large overhead when we intend a temporally fine-grain energy optimization.
To compensate for DVFS, a variable stages pipeline (VSP) architecture is



proposed. VSP reduces the energy consumption by dynamically varying the
pipeline depth, instead of the supply voltage, depending on instruction-level
behavior in a running program. Since the penalty for a pipeline scaling is
small enough to reduce the energy consumption at tens or hundreds clock cy-
cles, VSP can save the energy consumption at finer-grain period than DVFS.
This thesis proposes a fine-grain depth-changing method which can be imple-
mented by a trivial FIFO buffer to detect processor workload, and presents
its chip fabrication on a 180 nm technology. Evaluation results using the
fabricated VSP chip show that the VSP reduces the energy consumption by
34% to 48% at fine-grained low-energy operation insertion which is impossible
with DVFS. Moreover, we adopt a special cell called latch D-flip-flop selector-
cell (LDS-cell) into VSP processor to further reduce the energy consumption
under folded pipeline structure. This thesis reveals that inserting LDS-cells
makes VSP processor consume 13% less energy on a fabricated chip. (2)
This thesis also presents a development environment that improves research
productivity by automatic design generation and co-simulation framework,
especially fabrication and prototyping through a standard ASIC design flows.

Automatic design generation: Because a single-ISA heterogeneous multi-
core consists of microarchitecturally diverse cores to streamline the execution
of diverse program phases, the design and verification effort is multiplied by
the number of employed core types. The increased design effort impedes de-
velopment of heterogeneous multi-core processors. N. K. Choudhary et al.
develop a toolset, called FabScalar, for automatically composing the synthe-
sizable designs of arbitrary cores. Although using FabScalar helps mitigate
the design effort, the design effort for diverse cache systems and a shared
bus still exists as a barrier in the development of heterogeneous multi-core
processor. This work proposes FabHetero which is composed of three de-
sign automation tools: FabScalar, FabCache, and FabBus for automatically
composing diverse cores, cache systems, and flexible shared bus, respectively.
FabHetero project sets a goal of fabricating heterogeneous multi-core proces-
sor chips in a short time, and this work is the first attempt to automate
the entire heterogeneous multi-core design. The author confines the microar-
chitectural diversity into a superset code that enables users to use a single
universal design of heterogeneous multi-core processor; however, the footprint
of each design is the desired configuration. FabCache automatically designs
many caches that satisfy the requirements from modern superscalars and dif-
fer in cache dimensions. FabBus automates generating a flexible shared bus
which connects the arbitrary number of caches with desired cache coherence

3



protocol.
Co-simulation framework: Furthermore, FabHetero framework includes

a practical processor co-simulation framework for not only RTL simulation
but also gate/transistor level simulation, and even fabricated chip evalua-
tion/validation. Our framework addresses the following two challenges: sys-
tem call emulation and sampled execution. Both mechanisms are commonly
used only in software processor simulators; therefore, this work introduces
these mechanisms into standard ASIC design flows using off-chip system
call emulator and checkpoint mechanism. Processor design can remain un-
changed from its pure specification (no extra I/Os and hardware is needed)
because the proposed mechanisms exploit general instructions inherent in
processor.

This work provides a great step: automatic generation of an entire proces-
sor design involving a superscalar core, cache system, and bus system and its
fabrication in shortened design time using the co-simulation framework. This
helps researchers fabricate their novel processor chips by much less effort.
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1 Introduction

Since energy consumption and heat density are growing problems in high-

performance processors as well as embedded processors, lots of latest re-

searches on computer systems aim at enhancing energy efficiency of proces-

sors. The purpose of this work is to develop energy-efficient processors. Many

techniques to improve the energy efficiency have been developed in wide re-

search fields of device, circuit, microarchitecture, and software. This thesis

mainly focuses on development of microarchitectural low-energy technique

because microarchitectural approaches have an advantage in that they do

not depend on specific device technology and can be widely used.

As one of leading low-energy approaches, single-instruction-set-architecture

(single-ISA) heterogeneous multi-core processor, which is comprised of mi-

croarchitecturally diverse cores (differently-designed in microarchitecture level),

gets much attention from the researchers [1–3]. Heterogeneous multi-core

processors streamline the execution of diverse programs and program phases

using differently-designed core types. Two key challenges for emerging low-

energy processors in the heterogeneous paradigm are (1) the development of

energy-efficient processor core highlighting finer heterogeneity in an applica-

tion phase, and (2) the design automation of the entire single-ISA hetero-

geneous multi-core processor. The author studies basic circuit scheme and

architectural approach for (1), and develops a processor design environment

for (2).

1.1 Development of Energy-efficient Processor Core

While a heterogeneous multi-core processor contains diverse core types to en-

hance energy efficiency, each core design is still required to be energy efficient.

This work proposes combination across two different level approaches to de-
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velop a low-energy processor core, i.e., circuit-level (low-energy D-flip-flops)

and microarchitecture-level (variable stages pipeline) approaches.

1.1.1 Proposing Low-energy D-flip-flop

In the design of digital circuit, D-flip-flops have a larger impact on the circuit

speed, area and power consumption than other standard cells. The timing

of a design is significantly dependent on the speed of the D-flip-flops, par-

ticularly in deep-pipelined designs. The design trend increases the pipeline

stages for higher-performance processors, and this has also prompted an in-

crease in the number of D-flip-flops in a chip [4]. D-flip-flops dominate 38 to

48% of the graphic processing LSI area [5], and 22% of the area in variable

stages pipeline processor (the author’s another research project). In many

digital circuits, the power consumption in the clock system, which includes

the clock network and D-flip-flops, may be 20 to 40% of the total chip power

consumption [6, 7]. These aspects represent improving the performance of

D-flip-flops is of value to enhance processor performance.

In order to achieve both high performance and low energy, a high-performance

semi-static true-single-phase clocking D-flip-flop (HSTSPC D-flip-flop) is pro-

posed [5]. The HSTSPC D-flip-flop is based on true-single-phase clock (TSPC)

scheme, so that it can achieve higher speed and lower energy than conven-

tional D-flip-flops. In addition, the HSTSPC D-FF adopts a semi-static struc-

ture, that is suitable for conventional digital circuit design. However, because

there is a difference between the number of NMOS and PMOS transistors,

an area-efficient layout is difficult. In addition, the output of front-end does

not fully drive to high level because it is pulled up by NMOS transistor.

This work proposes two novel D-flip-flops which improve HSTSPC D-flip-

flop. One is double split-output semi-static TSPC D-flip-flop (DSSTSPC
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D-flip-flop) emphasizing short circuit delay by a novel front-end comprised

of parallelized split-output latches. Proposed scheme solves the layout prob-

lem of HSTSPC D-flip-flop using the same number of NMOS and PMOS

transistors. Furthermore, the novel front-end fully and quickly drives its

output, consequently, the D-flip-flop improves operation speed. The other,

single split-output semi-static TSPC D-flip-flop (SSSTSPC D-flip-flop), takes

a special focus on low-energy operation by removing a part of DSSTSPC D-

flip-flop. Both D-flip-flops achieve higher energy-efficiency than conventional

D-flip-flops and are suitable for standard cell based design widely used in

design of embedded processors. Proposed D-flip-flops help in developing

energy-efficient processor cores.

1.1.2 Enhancement of Variable Stages Pipeline Architecture

On a heterogeneous multi-core core processor, matching instruction-level be-

havior in programs to differently-designed cores improves energy-efficiency;

a scheduling method allocates a program or program phase (even if a pro-

gram is running) to a suitable processor. This may cause frequent migrations

between cores; however, a migration incurs a significant overhead, i.e., pass-

ing architectural state (program counter, register file, etc.) and cache state.

The migration penalty motivates us to develop processor cores highlighting

finer heterogeneity in a program phase. Modern processors widely employ

dynamic voltage and frequency scaling (DVFS) technique which dynamically

scales the supply voltage and clock frequency in accordance with workload

on the processor [8, 9]. Lowering the supply voltage is of effectiveness for

energy reduction because the energy consumption depends on the square of

the supply voltage. However, DVFS suffers from its large overhead when the

author intends a temporally fine-grain energy optimization [10].

3



To optimize energy consumption at finer-grain interval than DVFS’s in-

terval, a variable stages pipeline (VSP) architecture is proposed. VSP re-

duces the energy consumption by dynamically varying the pipeline depth,

instead of the supply voltage, depending on behavior of a running program

and program phase. Since the penalty for a pipeline scaling is small enough

to reduce the energy consumption at tens or hundreds clock cycles, VSP can

save the energy consumption at two or three orders of magnitude finer-grain

than DVFS. The author proposes a fine-grain depth-changing method with

can be implemented by a trivial FIFO buffer to detect processor workload,

and presents its chip fabrication on a 180 nm technology.

VSP technique can be used along with proposed D-flip-flops to further

improve energy efficiency.

1.2 Design Effort Reduction for Fabricating Heteroge-
neous Multi-core Processors

In the heterogeneous era, processor designers will suffer huge design effort

because they must develop differently-designed cores, suitable cache system

for each core, and a shared bus on a die. This situation suggests to us that

the design automation of diverse cores, caches, and shared bus is strongly

required. The author frames a novel framework to automatically generate

the entire heterogeneous multi-core processors in a design space. This thesis

also presents a practical co-simulation mechanism that improves research

productivity, especially fabrication and prototyping through a standard ASIC

design flows.
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1.2.1 Automatic Design Generation of the Entire Heterogeneous
Multi-core Processor

Because a single-ISA heterogeneous multi-core consists of microarchitecturally

diverse cores to streamline the execution of diverse programs and program

phases, the design and verification effort is multiplied by the number of em-

ployed core type. The increased design effort impedes development of het-

erogeneous multi-core processors. N. K. Choudhary et al. develop a toolset,

called FabScalar, for automatically composing the synthesizable register-

transfer-level (RTL) designs of arbitrary cores within a superscalar tem-

plate [11]. Although using FabScalar helps mitigate the design effort, design

effort for diverse cache systems and a flexible shared bus still exists as a bar-

rier in the development of a whole heterogeneous multi-core processor. Cache

system is widely recognized as a key factor impacting on the performance,

area, and energy. Therefore, each cache system should be dedicated for each

processor core for targeted program and program phase. In addition, the

shared bus in a heterogeneous multi-core processor requires a high flexibility

because it must connect diverse cache designs. These two aspects incur a

high design effort even after automating core development. To automatically

design the entire heterogeneous multi-core processors, the author proposes

FabHetero which is composed of three design automation tools: FabScalar,

FabCache, and FabBus for developing diverse cores, cache systems, and flex-

ible shared bus, respectively. FabHetero project sets a goal of fabricating

heterogeneous multi-core processor chips in a short time, and this work is

the first attempt to automate the entire heterogeneous multi-core design in

a design space.
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1.2.2 Co-simulation Framework for Streamlining Processor De-
velopment

As multi-core architecture has become commonly used to improve processor

performance, designing a state-of-the-art multi-core chip in a short time has

become essential for processor research. A development environment that

contains useful mechanisms and can be used throughout the entire processor

research provides efficient infrastructure to researchers. FabHetero frame-

work includes a practical processor co-simulation framework for not only

RTL simulation but also gate/transistor level simulation, and even fabricated

chip evaluation/validation with an LSI tester. The co-simulation framework

addresses the following two challenges: system call emulation and sampled

execution. Both mechanisms are commonly used only in software processor

simulators; therefore, this work introduces these mechanisms into standard

ASIC design flows. These mechanisms effectively reduce the design time in

FabHetero project.

1.3 Thesis Contributions

This thesis is mainly composed of four works: each work addresses different

challenge but all works head to fabrication of low-energy heterogeneous multi-

core processors. Each contribution to the goal is explicitly described below.

• DSSTSPC D-flip-flop, targeting a high speed operation, shortens the

circuit delay by 5% compared with a conventional low-energy D-flip-flop

without increase in the energy and layout area [12]. The D-flip-flop also

solves imbalanced scheme of the conventional D-flip-flop. This aspect

enables designers to easily optimize the layout without a special layout

model. This D-flip-flop can be used as a component in processor cores
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intended to achieve high performance on a heterogeneous multi-core

processor.

• SSSTSPC D-flip-flop, power and area-efficient design, achieves 31%

smaller layout area and 30% lower energy consumption than the con-

ventional D-flip-flop with up to 8% performance degradation [12]. Pro-

cessor cores emphasizing low-energy consumption rather than high per-

formance can employ the D-flip-flop instead of DSSTSPC D-flip-flop.

• This work presents the detailed energy evaluation and hardware cost

to implement VSP architecture into a processor core. The author fab-

ricated a VSP processor chip on a 180 nm technology. The chip fabri-

cation clarifies that the hardware cost to adopt VSP approach is rea-

sonable considering obtained effectiveness. Evaluation result using the

fabricated VSP chip shows that the VSP reduces the energy consump-

tion by 34% to 48% at fine-grained interval at which DVFS cannot be

used [13,14].

• This work proposes how to optimize the trade-off between energy and

performance using VSP architecture for fine-grain heterogeneity in a

program phase. Proposed depth-changing controller enables VSP to

change its pipeline depth to a suitable depth for applications [15–17].

• A special cell called latch D-flip-flop selector-cell (LDS-cell) is adopted

into VSP processor to further reduce the energy consumption under

folded pipeline structure. LDS-cell prevents unnecessary signal tran-

sitions from propagating through combinational circuits. The author

confirms that inserting LDS-cells makes VSP processor consume 13%

less energy. The comparison between transistor-level simulation and

fabricated chip evaluation reveals that an actual implementation of
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VSP on a die has larger impact on energy saving, 5% energy saving on

the simulation [18,19].

• The author frames a framework, called FabHetero, for automatically

generating the entire heterogeneous multi-core processors [20]. Fab-

Hetero consists of three design automation tools: FabScalar, FabCache,

and FabBus for developing diverse cores, cache systems, and flexible

shared bus, respectively. This work defines the design space of Fab-

Hetero and provides it as a research infrastructure.

• FabCache automatically generates diverse cache systems in heteroge-

neous multi-core processors. FabCache parameterizes many design di-

versity: cache hierarchy, cache dimensions, specific designs, and inter-

face design [23].

• FabBus is a tool based on AMBA protocol to design flexible shared

bus systems for heterogeneous multi-core processors. FabBus connects

arbitrary number of caches with desired cache coherency protocol [24].

• The development of a practical processor co-simulation environment

streamlines chip fabrication of processors on standard ASIC design

flow [21,22]. This thesis addresses the following two challenges: system

call emulation and sampled execution for not only RTL simulation but

also gate/transistor level simulation, and even fabricated chip evalua-

tion/validation with an LSI tester. Both mechanisms are commonly

used only in software processor simulators; therefore the author intro-

duces these mechanisms into standard ASIC design flows.

1.4 Thesis Organization

The rest of this thesis is organized as follows.
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Chapter 2 describes background information related to this thesis. The

chapter discusses process technology and low-energy technique trends. Chap-

ter 3 provides the detail description of the low-energy D-flip-flops includ-

ing evaluation results of energy, circuit delay, and layout area. It intro-

duces D-flip-flop classification and related work. Chapter 4 elaborates on

variable stages pipeline architecture. The chapter includes explanation of

other variable-depth pipeline architectures, proposed depth-changing control

method, detailed specification of fabricated VSP chip, and evaluation results

using the chip. Chapter 5 describes FabHetero project including the specifi-

cations of FabCache and FabBus. It also introduces FabScalar developed by

North Carolina State University, collaborator in FabHetero project. Chapter

6 presents co-simulation framework used in FabHetero project. The chap-

ter also presents that proposed co-simulation framework does not depend on

the microarchitecture of a processor; therefore, proposed approaches can be

widely used in processor design projects. Chapter 7 summarizes this thesis

and gives future work.
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2 Background

This chapter provides background on this thesis: why single-ISA heteroge-

neous multi-core processor attracts much attention. The historical trend

of processor architecture is classified into three eras in historical order of

device technology and processor architecture in the following Sections. Sec-

tion 2.1 describes the first era: improvement of single-core/thread perfor-

mance. Section 2.2 presents multi-core technologies following from the lim-

itation of improving single-core chip performance. Section 2.3 provides the

trend of heterogeneous multi-core architecture. Section 2.4 summarizes the

requirements for developing low-energy single-ISA heterogeneous multi-core

processors targeted in this work.

2.1 Improvement of Single-core Performance

Moore’s Law [25], the doubling of transistor density every 18 months, has

been a fundamental driver of performance enhancement. Figure 2.1 shows the

growing transistor integration for Intel processors. In the past three decades,

transistors have become smaller, faster and more energy-efficient every tech-

nology node along with Dennard scaling [26]: transistors get smaller but the

power density is constant. With Dennard scaling theory, processor architects

can use a larger number of transistors with the same energy consumption on

the same die area. For this reason, processor architects have improved the

single-thread performance by adding more hardware for complex microarchi-

tecture such as pipeline, superscalar, and out-of-order execution to exploit

instruction level parallelism (ILP). Superscalar and out-of-order execution

are the core ideas of modern computing for mobile computers, personal com-

puters, and servers. A superscalar extracts ILP by analyzing the dependency

between instructions and scheduling the execution order. A new superscalar
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Figure 2.1: Impact of technology scaling on transistor count of Intel’s pro-
cessor.

processor can execute an existing binary program compiled for the same ISA

because the ILP is dynamically extracted by hardware. The out-of-order

execution used in superscalar processors more aggressively extracts ILP by

scheduling instructions regardless of the original program order.

To utilize hardware resources in a superscalar more effectively, simulta-

neous multi-threading (SMT) such as hyper threading is proposed. SMT is a

technique which exploits thread-level parallelism (TLP); two or more threads

are simultaneously executed on a superscalar. Threads share abundant ex-

ecution units, such as arithmetic and logic unit (ALU) and load/store unit

(LSU), and this enhances utilization of hardware resources.

Unfortunately, extracting more ILP in a single-thread has increased the

complexity of hardware which is not reasonable for the performance gain.
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2.2 Proliferation of Multi-core and Many-core Archi-
tectures

Difficulty of improving single-thread performance with a reasonable hardware

results in a recent shift from single-core to multi-core design. This trend

has aimed to increase the number of cores along with increase in available

transistor count on a chip to improve computing performance. Processor

architects have started focusing on multi-core and many-core architectures.

A multi-core processor composed of the same type cores is referred to as

homogeneous multi-core. Currently, many of commercial products employs

the homogeneous structure, e.g., Intel core series, Oracle UltraSPARC series.

With multiple cores on a chip, throughput of the processor increases because

multiple applications can be simultaneously executed on the chip.

In the last decade, processor architects have increased the number of core

for performance growth owing to innovative technology scaling, rather than

focusing on single-core performance. Most of modern personal computers

and high-end mobile computers have two or four processor cores on a chip.

As for processors used in server computers, a larger number of processor core

is generally employed, 16 cores of UltraSPARC T5, 60 cores of Xeon Phi.

However, the failure of Dennerd scaling imposes a wall on processor ar-

chitects. Utilizable core count in parallel is limited due to power budget and

heat density; consequently, a part of a chip is not simultaneously activated

(the area is called “dark silicon”). The percentage of dark silicon will increase

if processor architects increase core count like the last decade [27].
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2.3 A New Paradigm: Heterogeneous Multi-core Ar-
chitecture

Currently, energy efficiency becomes the forefront of the design constraints in

processors due to the dark silicon problem described above. Designers have

started improving energy efficiency at the circuit and microarchitectural lev-

els. The power wall has already made a disruptive impact on the computing

industry in the last decade - major processor companies shifted to multi-

core based designs from conventional monolithic superscalar designs [28].

Furthermore, heterogeneous multi-core architectures start getting much at-

tention [29,30].

Heterogeneous multi-core approach is classified into two categories: single-

ISA and multi-ISA. A single-ISA heterogeneous multi-core provides diverse

superscalar core types, each core is customized to an intended behavior of

program, program phase, or class of program behaviors. Using a proper su-

perscalar core for characteristic in a program contributes to reduce energy

consumption and yield higher performance on individual programs. For this

reason, many researchers have become focusing on single-ISA heterogeneous

multi-core processors. Companies have started adopting the architecture into

their product, e.g., ARM’s big.LITTLE processing [3] and NVIDIA’s vari-

able symmetric multiprocessing [31]. In contrast, a multi-ISA heterogeneous

multi-core generally consists of one or more general purpose processor with

digital signal processor (DSP) / graphic processing unit (GPU) / acceler-

ator. Applications executed on a multi-ISA heterogeneous multi-core are

programmed and compiled for target processing unit and assigned onto the

processing unit; each application is effectively executed on targeted process-

ing unit.

Single-ISA heterogeneous multi-core processor has advantages of appli-
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cation portability and flexibility compared with multi-ISA heterogeneous

multi-core processor. This is because executable binary files can be efficiently

executed on succeeding processors of the same ISA, which may improve the

microarchitecture, while multi-heterogeneous system often requires to recom-

pile applications to be executed on or optimized for a new product because

of the difference of available hardware resources (the number of functional

units).

2.4 Necessary Requirements for Developing Low-energy
Single-ISA Heterogeneous Multi-core Processors

Although single-ISA heterogeneous multi-core processor can achieve a higher-

performance computing with lower-energy consumption, there are two chal-

lenges: (1) developing energy-efficient cores used in a heterogeneous multi-

core, and (2) improving research productivity of heterogeneous multi-core

processor.

(1) In modern processors including heterogeneous multi-core, energy re-

duction of each processor core is still in the spotlight. In particular, D-flip-

flops have a large impact on the energy and performance of a processor. In

order to develop low-energy heterogeneous multi-core, the author proposes

two novel D-flip-flops in Chapter 3: one achieves higher performance to be

used for high-end cores, and the other saves larger energy intended to use

for low-end but low-energy cores in a heterogeneous multi-core processor,

respectively.

Reducing further energy consumption on a heterogeneous multi-core re-

quires detecting fluctuation of program behavior and migrating program to

another core. However, since a migration takes considerable overhead, fre-

quent migration is not effective for energy saving. For this reason, the author
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proposes a low-energy processor architecture which is effective for optimizing

fine-grained fluctuation of program behavior on a heterogeneous multi-core

processor in Chapter 4.

(2) The other challenge in heterogeneous paradigm is to improve research

and development productivity. Processor designers have to dedicate an enor-

mous effort to design a heterogeneous multi-core processor because it requires

diverse cores, caches, and a bus system on a chip. In the current situation,

processor companies often reutilize their past products to design their het-

erogeneous multi-core product. One of the reasons of the lack of microarchi-

tectural diversity on a chip is due to the design effort problem. To mitigate

the design effort, the author proposes FabHetero which is a framework for

automatically generating RTL design of heterogeneous multi-core processors

in Chapter 5.

Moreover, RTL design is often not the end-point of researches; producing

physical design is imperative process but heavy task especially for a small

research group. The author proposes a co-simulation framework to facilitate

processor development on standard ASIC flows in Chapter 6.
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3 Low-energy D-flip-flop

This chapter proposes two novel D-flip-flops used to design energy efficient

processor cores. Section 3.1 classifies D-flip-flops according to circuit schemat-

ics. Section 3.2 describes a conventional low-energy D-flip-flop and its prob-

lems. Section 3.3 details proposed D-flip-flops. Section 3.4 presents the

evaluation results of the proposed D-flip-flops.

3.1 D-flip-flop Classification

This work focuses on the semi-static and true-single-phase clocking schemes

because it can achieve high speed and low-power consumption on the con-

ventional digital circuit design. This section describes the classification of

D-flip-flops and provide schematics of the representative D-flip-flops.

Static D-flip-flop

The modified C2MOS D-flip-flop shown in Fig. 3.2 is based on a static master-

slave latches scheme, and this scheme is one of the most widely used circuits in

digital circuit design due to its good robustness of operation. Static master-

slave D-flip-flops have feedback circuits in both the master and slave latches.

Therefore, static master-slave D-flip-flops can maintain their stored value

even if the clock is stopped.

Dynamic D-flip-flop

The dynamic transmission gate D-flip-flop shown in Fig. 3.3 is based on the

dynamic structure. Typically, dynamic D-flip-flops can achieve higher speed

and lower-power consumption. However, in dynamic D-flip-flops such as that

shown in Fig. 3.3, the stored value will be destroyed if it is not refreshed for
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Figure 3.3: Schematic of dynamic transmission-gate D-flip-flop.

a long time. Therefore, designers must consider storage loss due to leakage

current.
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Figure 3.4: Schematic of semi-static flip-flop.

Semi-static D-flip-flop

In contrast, although semi-static D-flip-flops such as shown in Fig. 3.4 achieve

an intermediate performance between static master-slave D-flip-flop and dy-

namic D-flip-flop, semi-static D-flip-flops can maintain their stored value

when clock is ether high or low level. Consequently, the semi-static scheme

solves the constraint of dynamic D-flip-flops.

Pulsed D-flip-flop

As conventional fastest D-flip-flops, pulsed flip-flop such as the Hybrid-Latch

Flip-Flop (HLFF) [32] and Semi-Dynamic Flip-Flop (SDFF) [33] are pro-

posed. Those D-flip-flops consist of two stages: the front-end stage functions

as a pulse generator and the back-end stage captures input data (this action

is triggered by the generated pulse). Although they achieve a high perfor-

mance, their power consumption is typically not low. In order to reduce the

delay, area, and power of the above pulsed flip-flops, Kumar et al. propose

novel pulsed flip-flop [34]. To reduce the power consumption, the D-flip-flop

based on split-output TSPC latch and the Pulse-Triggered TSPC Flip-Flop
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are also proposed [35]. In most pulsed flip-flops, a separate pulse generator

and latches are used and the pulse generator must be shared by an ade-

quate number of latches. Since this optimization requires manual effort, it is

difficult to use automated digital circuit designs.

The author has targeted the conventional digital circuit designs; therefore,

dynamic D-flip-flops and pulsed flip-flops are not in the scope of this work.

True-single-phase clocking (TSPC) D-flip-flop

The TSPC scheme has been demonstrated to be an efficient methodology

to achieve high-speed and low-power VLSI design [36]. Fig. 3.5 shows a

schematic of the basic TSPC D-flip-flop. Since the TSPC scheme can reduce

the number of clock-driven transistors, it has the advantage of the power

consumption of a clock system. However, it is difficult to use the basic TSPC

D-flip-flop in standard cell based design because it is based on a dynamic

structure. In addition, because there is a pre-charged node in the circuit, the

power consumption of the clock system is large.
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3.2 High-performance Semi-static TSPC D-flip-flop

In order to solve the problems of the basic TSPC D-flip-flop, high-performance

semi-static TSPC (HSTSPC) D-flip-flop shown in Fig. 3.6 is proposed [5].

The master latch of the HSTSPC D-flip-flop is constructed with serial clocked

inverters, called static P-stages, which are based on a dynamic structure. As

the feature of the HSTSPC D-flip-flop, the nodes of the cross-coupled invert-

ers, which are gated clock by two NMOS pass-transistors, are driven by two

sides: one node is pulled up and the other is pulled down by two outputs

of the master latch. For this reason, it is possible to speed up the write op-

eration and reduce the power consumption caused by short-circuit current.

The HSTSPC D-flip-flop has 5, 15% lower delay and consumes 70, 50% less

power than the modified C2MOS D-flip-flop in 180 nm, 90 nm technology, re-

spectively. In addition, because the HSTSPC D-flip-flop employs semi-static

structure, it is easy to replace conventional static master-slave D-flip-flops in

the conventional digital circuit design.
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3.2.1 Problems of High-performance Semi-static TSPC D-flip-
flop

However, the HSTSPC D-flip-flop has two problems.

The number of NMOS and PMOS transistors in an HSTSPC D-flip-flop is

11 and 8, respectively, and this makes an unbalanced circuit. Consequently,

a large dead space appears in layout design using the conventional layout

model shown in Fig. 3.7(A). Fig. 3.7(B) shows the proposed layout model

from Ref. [5] to solve this problem. However, it is difficult to optimize the

layout area with a special layout model compared with a conventional layout

model.

The second problem is slow-operation speed of the front-end. When input

D in Fig. 3.6 is high level, path of D to X becomes the critical path and node

X is pulled up by the NMOS transistor. For this reason, node X does not

fully drive to high level, and this causes slowing down of the write operation.

3.3 Split-output Latch Based D-flip-flops

This section proposes D-flip-flops which improve HSTSPC D-flip-flop by solv-

ing the problems.

3.3.1 Double split-output semi-static TSPC D-flip-flop (DSST-
SPC D-flip-flop)

Fig. 3.8 shows a schematic of the speed-efficient design, called double split-

output semi-static TSPC (DSSTSPC) D-flip-flop. The features of the DSST-

SPC D-flip-flop compared with the HSTSPC D-lip-flop are given as follows.

1. A pair of split-output latches [36] is used in parallel to produce normal

and inverse outputs of the master latch. As a result, the critical path (D

to X) is reduced to 2-stage, compared with the 3-stage of the HSTSPC
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Figure 3.7: Layout model of the ordinary and HSTSPC D-flip-flop.

D-flip-flop. In addition, node X is pulled up using the PMOS transistor,

so that the node X can be fully driven to high level.

2. The numbers of NMOS and PMOS transistors are the same. Therefore,

the layout area can be more easily minimized than the HSTSPC D-flip-

flop.
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These advantageous features mean that the DSSTSPC D-flip-flop can achieve

less delay and smaller layout area than the HSTSPC D-flip-flop.

3.3.2 Single split-output semi-static TSPC D-flip-flop (SSSTSPC
D-flip-flop)

Fig. 3.9 shows a schematic diagram of the SSSTSPC D-flip-flop which is the

power and area-efficient design. In contrast to the HSTSPC D-flip-flop, the

DSSTSPC D-flip-flop generates pull up and pull down outputs into cross-

coupled inverters by using independent split-output latches. Therefore, by

removing a split-output latch, which generates an inverse output of the mas-

ter latch, the number of transistors can be reduced. However, by simply

removing the split-output latch, the delay is increased significantly. In or-
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Figure 3.9: Schematic of SSSTSPC D-flip-flop.

der to reduce the delay, a clocked PMOS pass-transistor is inserted into the

cross-coupled inverters, as shown in Fig. 3.9. Compared with the HSTSPC

D-flip-flop, the SSSTSPC D-flip-flop can reduce the number of transistors by

six that includes one clocked transistor consuming a large power.

Similar to the SSSTSPC D-flip-flop, it is possible to remove a part of the

HSTSPC D-flip-flop. However, this schematic cannot reduce the clocked

transistors, and there still remains unbalanced scheme in the number of

NMOS and PMOS transistors. Therefore, the SSSTSPC D-flip-flop can re-

duce power consumption further and the layout area can be easily minimized.

3.4 Evaluation Results

The author performed SPICE simulations to evaluate the proposed D-flip-

flops using net-lists extracted from physical design for Rohm 180 nm tech-

nology and Synopsys HSPICE. Therefore, the effectiveness of diffusion ca-

pacitance is considered. The performance of the proposed D-flip-flops are

compared with the modified C2MOS D-flip-flop, representative for the cur-

rent digital circuit design, and HSTSPC D-flip-flop. In this section, all sim-

ulations are performed at typical situation: 1.8 V and 27 ◦C. In order to
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obtain accurate results, the inputs of D-flip-flops are driven by input driver

and the outputs are required to drive a load of ten inverters. Because total

input capacitance of clock nodes in each D-flip-flop is different, the author

used ten modified C2MOS D-flip-flop, four HSTSPC D-flip-flop, four DSST-

SPC D-flip-flop and six SSSTSPC D-flip-flops per clock driver. On the other

hand, although input capacitance of the D-input of the DSSTSPC D-flip-flop

is larger than the other D-flip-flops, each D-flip-flop are driven by the same

input driver. Because the path that connects to D-input becomes a criti-

cal path of a sequential circuit, the node that connects to a D-input is not

typically shared with other logic cells. The author examined all 5,577 D-flip-

flops in a MIPS R3000 compatible processor, which has 9-stage pipeline, and

found that each node that connects to a D-input of a D-flip-flop drives only

one D-flip-flop. The evaluation results for the power consumption, delay and

layout area are described in the following sections.

In addition, the author also evaluated in a PTM [37] 90nm technology

to present the effectiveness on the finer process which is more impacted by

leakage power.

3.4.1 Energy Consumption

Generally, the toggle rate of input data for a D-flip-flop is low; therefore, the

power consumption is shown in Fig. 3.10 when the input toggle rate is 1 to

20% at 500 MHz for Rohm 180 nm. Although the data is not shown here, the

power consumption of each D-flip-flops is linearly increased when the toggle

rate is increased up to 100%. According to Fig. 3.10, the power consumption

of the DSSTSPC D-flip-flop is 70% lower than the modified C2MOS D-flip-

flop when the toggle rate is around 5% (the percentage is said to be near the

actual toggle rate [5]), and almost the same as that of the HSTSPC D-flip-
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Figure 3.10: Power across different input toggle rate (180 nm).

flop. The SSSTSPC D-flip-flop can reduce the power consumption by 25%

compared to the HSTSPC D-flip-flop when the toggle rate is around 5%.

3.4.2 Circuit Delay

Because the sum of the setup time (Tsu) and clock to Q delay (Tcq) affects the

clock frequency, the delay is evaluated using Tsu + Tcq. Firstly, the author

explains why Tsu + Tcq affects the clock frequency. DELAY denotes the

maximum delay of the combinational logic between the two D-flip-flops. If

T is the clock period, then the expression T > Tsu + Tcq + DELAY must

be met for correct operation. DELAY depends on the combinational logic;

therefore, the performance of a D-flip-flop is Tsu + Tcq. If this quantity is

lower, then the clock frequency will be higher and vice-versa.

Table 3.1 shows the evaluation results. The delay of the DSSTSPC D-

flip-flop is reduced by 11% and 5% compared with the modified C2MOS D-

flip-flop and HSTSPC D-flip-flop, respectively. The delay of the SSSTSPC

D-flip-flop is the same as that of the HSTSPC D-flip-flop. The transition of

node X in the DSSTSPC D-flip-flop (Fig. 3.8) is faster than that of HSTSPC
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Table 3.1: Comparison of delay (180 nm).
Tsu [ns] Tcq [ns] Tsu + Tcq [ns]

modified C2MOS D-flip-flop 0.21 0.58 0.79
HSTSPC D-flip-flop 0.29 0.45 0.74
DSSTSPC D-flip-flop 0.25 0.45 0.70
SSSTSPC D-flip-flop 0.25 0.49 0.74

Figure 3.11: Transition of the node X (180 nm).

D-flip-flop (Fig. 3.6), so that the DSSTSPC D-flip-flop can reduce the delay.

Fig. 3.11 shows the transitions for the node X of the HSTSPC D-flip-flop

and DSSTSPC D-flip-flop. According to Fig. 3.11, node X of the DSSTSPC

D-flip-flop drives to high level fully and faster than the HSTSPC D-flip-flop.

3.4.3 Layout Area

The author designed the layouts of the HSTSPC D-flip-flop, DSSTSPC D-

flip-flop and SSSTSPC D-flip-flop on the Rohm 180 nm technology. The

modified C2MOS D-flip-flop, HSTSPC D-flip-flop and DSSTSPC D-flip-flop

occupy an area of 51.6µm2. Note that the HSTSPC D-flip-flop layout uses

the special layout model shown in Fig. 3.7, and in conventional layout model,
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it occupies an area of 64.5µm2. The SSSTSPC D-flip-flop occupies an area

of 35.5µm2. The DSSTSPC D-flip-flop can reduce the layout area by 20%

than that of the HSTSPC D-flip-flop using the conventional layout model,

and is still the same as that with special layout model. Compared with the

HSTSPC D-flip-flop with special layout model, the SSSTSPC D-flip-flop has

31% smaller layout area.

3.4.4 Case Study on 90 nm Technology

This section presents the evaluation result in the PTM 90 nm technology to

demonstrate the effectiveness of the proposed D-flip-flops on the finer process.

In this section, simulations are performed at 1.2 V and 27 ◦C.

Fig. 3.12 shows the power consumption evaluated in the same way as

previous simulation (see section 3.4.1). The DSSTSPC D-flip-flop reduces

the power consumption by 50% than the modified C2MOS D-flip-flop and

almost the same as that of the HSTSPC D-flip-flop. The SSSTSPC D-flip-

flop consumes 30% lower power than the HSTSPC D-flip-flop when the toggle

rate is around 5%. The leakage power is approximately 8% of the power of

the DSSTSPC D-flip-flop, and it is obvious that proposed D-flip-flops can

achieve low-power on the 90 nm technology.

Table 3.2 shows the result of the delay evaluation. The DSSTSPC D-

flip-flop has 20% and 4% lower delay compared with the modified C2MOS

D-flip-flop and HSTSPC D-flip-flop respectively. Although the SSSTSPC D-

flip-flop is 8% slower than the HSTSPC D-flip-flop, it is still 10% faster than

the modified C2MOS D-flip-flop.

3.4.5 Voltage tolerance and verification of semi-static structure

In order to reduce power consumption, dynamic voltage and frequency scal-

ing (DVFS), which dynamically lowers the supply voltage and frequency, is
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Figure 3.12: Power across different input toggle rate (90 nm).

Table 3.2: Comparison of delay (90 nm).
Tsu [ps] Tcq [ps] Tsu + Tcq [ps]

modified C2MOS D-flip-flop 61 215 276
HSTSPC D-flip-flop 64 165 229
DSSTSPC D-flip-flop 50 169 219
SSSTSPC D-flip-flop 50 197 247

currently employed in many applications. Therefore, the performance when

lowering the supply voltage is very important. Fig. 3.13 shows relation be-

tween supply voltage and speed when the clock frequency is 1GHz. According

to the result, the DSSTSPC D-flip-flop can operate more quickly than the

modified C2MOS D-flip-flop in the lower supply voltage. When the supply

voltage is higher than 0.9 V, the SSSTSPC D-flip-flop is the same or better

performance than the modified C2MOS D-flip-flop. Because the DVFS tech-

nique requires control system (in most cases that is operating system) and

lowering the supply voltage needs to be careful, the DVFS technique can-

not be employed always. Consequently, the SSSTSPC D-flip-flop effectively
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Figure 3.13: Relation between supply voltage and speed (90nm).

works in the embedded systems which aim at low power but do not apply

the DVFS technique.

Proposed D-flip-flops can keep their stored data when clock is low level.

However, they lose the data when clock keeps high level for a long time.

Therefore, if the clock frequency is very slow, proposed D-flip-flops may not

rightly operate. However, the author finds that proposed D-flip-flops can

operate at 1MHz without increasing power caused by short-circuit current,

which is due to use the semi-static structure. This means that proposed

D-flip-flops are effective in the most digital circuits.

3.4.6 Summary of Evaluation Results

From those experiments, although the DSSTSPC D-flip-flop has 1 more tran-

sistor than that of the HSTSPC D-flip-flop, it has approximately 5% lower

delay without disadvantage on both the 180nm and 90nm technology. Fur-

thermore, although the speed of the SSSTSPC D-flip-flop is 8% slower than

that of the HSTSPC D-flip-flop on the 90 nm technology, it the power con-

sumpiton is reduced by more than 25% on both the 180 nm and 90 nm
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technology. In addition, the layout area of the SSSTSPC D-flip-flop is 31%

smaller than the other D-flip-flops.
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4 Variable Stages Pipeline Architecture

This chapter describes efficient usage method and enhancement of VSP pro-

cessor. Section 4.1 discusses a commonly used low-energy technique called

DVFS and its problem. Section 4.2 introduces variable-depth pipeline archi-

tectures including VSP. Section 4.3 presents pipeline depth control method

for variable-depth pipeline architectures. Section 4.4 details the implemen-

tation of VSP processor that the author fabricated and used to evaluation

in this thesis. Section 4.5 presents evaluation results of VSP and its control

method. Section 4.6 and 4.7 discuss glitch propagation problem occurred

on variable-depth architectures and a solution, called LDS-cell. Section 4.8

presents the effectiveness of LDS-cell. Section 4.9 summarizes this chapter.

4.1 Dynamic Voltage and Frequency Scaling

The latest advances in mobile computers, such as personal digital assistants

and smart phones, have led to a goal of higher computing performance

with lower energy consumption. Dynamic voltage and frequency scaling

(DVFS) [8, 9] which dynamically lowers the supply voltage and clock fre-

quency is currently used in many processors to reduce energy consumption.

Lowering the supply voltage effectively reduces energy consumption because

energy consumption depends on the square of supply voltage.

However, it is difficult to deliver fine-grained energy reduction using

DVFS technique because voltage scaling takes a long time and charging/discharging

a power supply line consumes a large energy consumption. Therefore, the

useful interval of DVFS is limited to coarse-grain. Reference [10] estimates

the useful interval of DVFS in terms of energy reduction and it takes at least

105 cycle order to reduce energy consumption. In general, it is said that

monitoring the workload of a processor and scaling supply voltage take tens
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Figure 4.14: Relation between workload and energy management interval.

or hundreds of microseconds. This is shown in Fig. 4.14 for the lines labeled

“DVFS management interval”. In region A, DVFS can effectively reduce

energy by lowering the voltage and frequency because the workload is light

through the DVFS management interval. In region B and C, however, the

workload transitions at shorter interval than the DVFS management interval.

If DVFS raises the voltage and frequency for the peak workload in region B,

the processor wastes energy at low workload region in region B. In contrast,

if DVFS sets lower voltage and frequency than that of the peak, response

time is degraded.

In addition, the author points that the effectiveness of DVFS is limited

because there is a lower bound on voltage of minimum operating voltage

of CMOS devices. Figure 4.15 shows this problem. A processor that only

DVFS is applied reduces energy consumption by lowering the voltage and

frequency as shown point A to B in Fig. 4.15. However, once the voltage

has reached the lowest voltage, lowering the frequency does not save further

energy consumption as shown point B to C because lowering the frequency

without lowering the voltage reduces only power. Therefore, developing low-

energy techniques that compensate for DVFS is essential.
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4.2 Variable-depth Pipeline Architectures

As one of architectural low-energy technique, variable-depth pipeline ar-

chitectures are proposed; Shimada, et.al. propose pipeline stage unifica-

tion (PSU) [42–45], Koppanalil, et.al. propose dynamic pipeline scaling

(DPS) [46] and we propose VSP [19, 39–41]. Figure 4.16 shows the basic

concept of these approaches. Generally, if the pipeline depth is increased,

such as in super-pipeline architecture, then the clock frequency, performance,

and energy consumption are also increased. In contrast, if the pipeline depth

is decreased, then the clock frequency, performance, and energy consump-

tion are also decreased. When the processor workload is light, the processor

lowers clock frequency and unifies plural stages to form a shallower pipeline.

Figure 4.17 shows the pipeline register used in PSU processor that can

vary the depth of the pipeline stages dynamically. Under high-speed mode,

the D-flip-flop+MUX shown in Fig. 4.17 acts as a general pipeline register

by selecting an upper path. Under low-energy mode, the D-flip-flop+MUX

unifies the pipeline stages by selecting a lower path to connect the input port

34



IF1 IF2 ID1 ID2 RR1RR2 EX1EX2 WB1WB2

IF ID RR EX WB

unified (low clock frequency)

ununified (high clock frequency)

Figure 4.16: Variable-depth pipeline architecture.
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Figure 4.17: Circuit diagram of pipeline registers to vary pipeline.

to the output port.

Unlike DVFS, these architectures can save energy consumption in an

interval of several ten or hundred clock cycles because the penalty of varying

the pipeline depth takes only a few clock cycles. Therefore, fine-grained

energy optimization is possible if variable-depth pipeline architectures change

the pipeline depth to a suitable pipeline depth using a fine-grain controller.

The advantage of fine-grained energy optimization is shown in Fig. 4.14 for

the doted lines labeled “VSP management interval”. In region B and C, more

aggressive energy reduction is performed by using VSP which has fine-grain

controller. Furthermore, even if the workload requires middle performance of
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the processor, VSP can reduce energy consumption like DVFS but the useful

interval is finer-grained. To reduce more energy consumption, VSP can be

used with DVFS at the same time. The point D in Fig 4.15 shows that VSP

can reduce energy consumption beyond the lower bound of DVFS. Ref. [46]

points this and briefly estimates the effectiveness.

4.3 Fine-grain Depth-change Controller

To reduce energy consumption with minimum performance degradation, it is

essential to correctly change the pipeline depth to a suitable pipeline depth.

Therefore, we propose a fine-grain pipeline depth controller shown in Fig. 4.18

that stores some processor states (correlating to the workload of the proces-

sor) in the latest several tens of cycles and predicts a suitable pipeline depth

using the stored information. In this approach, we can choose information

such as cache hit ratio, the number of cache access, instruction per cycle

(IPC), and so on, to predict a suitable pipeline depth.

The author uses the instruction per cycle (IPC) as the parameter shown

in Fig. 4.18 to predict suitable pipeline depth. IPC is a good parameter

for estimating processor workload and program’s instruction-level behavior.

Under high-speed mode, if the IPC is larger than threshold, the VSP pro-

cessor remains unchanged because the pipeline effectively works. On the

other hand, if the IPC is lowered, the VSP processor shifts to low-energy

mode. Under low-energy mode, if the IPC is larger than threshold, then

the VSP processor shifts from low-energy mode to high-speed mode, and

vice versa. However, a problem occurs when the processor shifts from low-

energy mode to high-speed mode. In general, a large number of branch

mis-predictions degrades the IPC but this IPC degradation does not occur

in low-energy mode. If the VSP processor runs under low-energy mode in
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Figure 4.18: Block diagram of fine grain controller.

branch mis-prediction intensive phase, the IPC approaches the highest IPC

because branch mis-prediction does not occur due to pipeline unification and

then the VSP processor shifts back to high-speed mode. As a result, the VSP

processor runs an improper pipeline depth and the performance degrades. To

solve the problem, the author also uses the number of branch instructions to

predict when the processor shifts to high-speed mode because a branch mis-

prediction intensive phase includes a large number of branch instructions.

Therefore, three thresholds are used: IPCHtoL for unifying pipeline stages,

IPCLtoH and #BR for forming deeper pipeline. These thresholds can be set

by software: writing a new value to co-processor register unused by the base

processor. An appropriate thresholds configuration according to workload is

described in Section 4.5.
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4.4 Implementation

This section describes the specific processor architecture used in this work.

4.4.1 Processor Architecture

A MIPS R3000 compatible processor, which is seven stages in-order proces-

sor, was used. The processor takes one cycle for branch instructions, two

cycles for most integer ALU instructions and four cycles for complex instruc-

tions (multiplication and division). Generally MIPS processors do not adopt

ALU of plural stages, however we employed such implementation to balance

cycle time in each pipeline stage. As for our pipeline balancing, we hypoth-

esize that cache system uses a high speed memory and/or is also pipelined

like modern processors hence a path through instruction and data cache is

not the critical path. We divided the ALU and MDU to two and four stages

respectively in order to adjust the cycle time to around 5.9 ns because the

longest stage except for the EX stage takes 5.9 ns. After the pipelining, the

cycle times of pipelined ALU and MDU are 5.1 ns and 6.4 ns, respectively.

The processor has 1 K-entry gshare branch predictor. Figure 4.19 shows the

pipeline stages of the VSP processor. We call deeper (7-stage) pipeline high-

speed mode and shallower (3-stage) pipeline low-energy mode. The features

of low-energy mode are the following:

• The branch predictor is stopped because branch mis-prediction does

not occur.

• No interlock occurs by data dependency between arithmetical opera-

tions.

• Clock lines for unused pipeline registers between unified stages are

gated.
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Figure 4.19: Block diagram of R3000 based VSP processor.

4.4.2 Low-overhead Depth Changing Technique

With proposed controller, the pipeline depth is always suitable for a running

program. However, if the pipeline depth frequently changes, execution time

will be increased. Forming a deeper pipeline does not have any problem. We

assume that all pipeline stages execute valid instructions under low-energy

mode and the processor makes deeper pipeline. In this case, to execute a

program correctly, the VSP processor only has to perform the following step.

The F, EX1 and M stages execute next instructions and the other stages just

purge the holding instructions.

In contrast, when unifying the stages, the processor requires a pipeline

flush because following instruction destroys preceding valid instructions. For

example, the F, D, and R stages in Fig. 4.20(A) are executing valid instruc-

tions and if they are immediately unified, the instructions in the D and R
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Figure 4.20: Change pipeline depth through migration mode.

stage are destroyed by the instruction in the F stage. As a result, the pro-

cessor goes into an unrecoverable state. If the processor flushes the pipeline

and restarts the instructions in order to solve the problem, seven clock cycles

are needed for an unification.

Therefore, we hide the penalty by overlapping a pipeline flush caused by

a branch mis-prediction. Furthermore, to finely control the high-speed and

low-energy modes, we divide the pipeline stages into two groups: the front-

end group contains instruction fetch, instruction decode and register read

stages, and the back-end group contains the latter stages. We assume that

the processor runs under high-speed mode as shown in Fig. 4.20(A), and valid

instructions exist in the shaded boxes (F, D, R, E1, M and W). A branch

mis-prediction occurs at the branch instruction in the E1 stage. We note
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that the instruction in the R stage is a branch delay slot which must not be

purged in a pipeline flush caused by a branch mis-prediction. When a branch

mis-prediction occurs and pipeline depth controller is asserting pipeline uni-

fication signal, instructions in the front-end stages are purged and the branch

delay slot enters the E1 stage as shown in Fig. 4.20(B). In the next cycle, the

processor shifts to migration mode as shown in Fig. 4.20(C) and a new in-

struction is fetched. Under migration mode, the front-end stages are unified

and driven at low clock frequency (in this case quarter of high-speed mode),

and the back-end stages are driven at high clock frequency. It takes four high

clock frequency cycles that the new fetched instruction reaches the E1 stage.

Therefore, instructions in the back-end stages can be retired except for rare

case.1. When all the back-end stages become empty, they shift to low-energy

mode as shown in Fig. 4.20(D).

In this way, the controller can hide the penalty of changing the pipeline

depth. Generally, a branch mis-prediction occurs with a probability of several

percent, and a branch instruction exists with a probability of 20%. Therefore,

there are sufficient opportunities to change the pipeline depth in tens or

hundreds of cycles.

This technique obtains more effectiveness in a superscalar and super-

pipeline processor which have a large pipeline flushing penalty. The effec-

tiveness of this technique is discussed in section 4.5.

4.4.3 Chip Fabrication

The author implemented the VSP processor described the previous section

in Verilog HDL. Table 4.3 shows the EDA tools used for designing VSP chip.

Rohm 180 nm technology and Kyoto University standard cell library [47]

1If the branch delay slot is complex instruction that takes multi cycles in the execution
stage
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Table 4.3: EDA environment for fabricating chip
Phase EDA tool
functional verification Synopsys VCS, vers. 2009.06
synthesis Synopsys Design Compiler, vers. 2010.03-SP5
place & route Synopsys Astro, vers. 2007.03-SP12
LDS-cell design Cadence IC, vers. 5141
design rule check Mentor Graphics Calibre, vers. 2010.4

Figure 4.21: Chip micrograph.

except for LDS-cell are used for chip fabrication. The processor was designed

to operate at 100MHz for high-speed mode and 25MHz for low-energy mode.

A cache system was not implemented in the chip to evaluate an accurate

energy consumed by the VSP processor. However, this implementation does

not degrade the accuracy of evaluation because in an in-order processor, the

energy consumption caused by a cache miss under high-speed and low-energy

modes are the same if the processor is applied clock gating when a cache miss

occurs.

Figure 4.21 shows a micrograph of the fabricated VSP chip. The VSP

processor chip contains 492,742 transistors.
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4.5 Evaluations

4.5.1 Evaluation Methodology

Four integer benchmarks (bit count, int sqrt, quick sort and string search)

from MiBench benchmark suit [48] were used for the evaluation. To clarify

short-period energy reduction, the author adjusted these benchmarks to fin-

ish approximately 100,000 clock cycles. Evaluations of the energy were mea-

sured by using the fabricated chip. The author confirmed that the fabricated

chip executes the benchmarks successfully. Although the author designed

the chip to operate at 100 MHz for high-speed mode and 25 MHz for low-

energy mode, the fabricated chip was evaluated at 35 MHz and 8.75 MHz

respectively because of limitation of test environment.

4.5.2 Energy Consumption

Figure 4.22 compares energy consumption and execution time on diverse com-

binations of thresholds. HS mode and LE mode of the horizontal axis show

results when the processor runs at fixed (high-speed/low-energy) mode and

the others (TH1 to TH4) represent different combinations of three thresh-

olds which are configured to achieve lower energy to the right. The vertical

axis is normalized to result of high-speed mode. In the LE mode, the VSP

processor reduces energy consumption by 34% to 48% compared with the HS

mode. The energy advantage is due to higher IPC and clock gating for un-

used pipeline registers and branch predictor. TH1 to TH4 interpolate energy

consumption and performance between high-speed and low-energy modes.

This means the VSP reduces energy consumption at a short-interval (less

than 100,000 cycles) according to configured thresholds even if the processor

is required to achieve middle performance. In other words, the VSP can

optimize trade off between the performance and energy in the region B and
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Figure 4.22: Energy consumption and execution time on diverse combination
of thresholds.

C shown in Fig. 4.14. Dynamic thresholds configuration to produce more

flexible optimization is left for future work, but section 4.5.5 presents case

study for threshold optimization.

Figure 4.23 shows the effectiveness of combining DVFS and VSP. The

author used 1.44 V (20% lower than standard voltage of the process) for

the lowered voltage which is calculated by the margin for 45 nm Intel Atom

processor [49]. The DVFS on rigid pipeline consumes approximately 62% en-

ergy of the rigid pipeline with standard voltage. This result is consistent with

that energy depends on the square of voltage. The vertical axis of Fig. 4.23 is

normalized to the result of DVFS on rigid pipeline to make the effectiveness

of combining two techniques clear. Although the VSP reduces larger energy

than the DVFS except for qsort, note that DVFS might be more energy effi-

cient than VSP on a leakage dominant process because DVFS also is effective

for leakage current. The DVFS on VSP reduces energy consumption by 38%

to 52% with respect to the DVFS on rigid pipeline. It is obvious that using

DVFS and VSP at the same time significantly reduces energy consumption

as shown in Fig 4.15.
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Figure 4.23: Measurement result of combining DVFS and VSP.

Finally, energy consumed by pipeline depth controller was measured. The

fabricated chip has an input to disable (apply clock gating for) the pipeline

depth controller. When the controller is disabled, the VSP runs as fixed

high-speed mode or fixed low-energy mode (the mode is specified externally).

The author compared controller-disabled VSP which runs as fixed high-speed

mode with controller-enabled VSP which is configured its thresholds to run

as fixed high-speed mode. As a result, it makes clear that the controller

consumes only 2.1% energy of the VSP. This means the hardware cost of the

controller is small enough.

4.5.3 Effectiveness of Low-overhead Depth Changing Technique

The author briefly estimated the effectiveness of low-overhead depth changing

technique described in section 4.4. Table 4.4 shows performance degradation

caused by pipeline unification in case of without the low-overhead technique.

The author assumed a pipeline flush takes 7 cycles and this penalty is required
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Table 4.4: Estimation for overhead caused by pipeline unification.
benchmark combination average interval performance

of thresholds between unifications degradation
bit count TH1 892 cycle 0.8%
int sqrt TH3 156 cycle 4.5%
qsort TH1 219 cycle 3.2%
string search TH4 142 cycle 4.9%

when the VSP shifts from high-speed mode to low-energy mode. The second

column of the table shows combinations of thresholds shown in Fig. 4.22

which have the worst performance degradation in the benchmark and the

third column denotes averaged interval between unifications (only shifting

from high-speed mode to low-energy mode). Therefore, additional 7 cycles

are required every averaged interval and this increases execution time by

0.8% to 4.9%.

In contrast, low-overhead technique hides the penalty. The author con-

firmed that migration mode always operates for 4 high-frequency cycles, i.e.

the new fetched instruction in FDR stage shown in Fig. 4.20 is not stalled.

Therefore, the VSP unifies the pipeline stages with no penalty.

4.5.4 Hardware Cost

Although the author did not fabricate the base processor chip that does not

apply a variable-depth pipeline architecture, the author performed physical

synthesis on the base processor to evaluate the additional hardware cost and

energy of the VSP processor. The base processor has 456,022 transistors and

VSP processor has 492,742 transistors. Therefore, modification for the VSP

needs additional 8% hardware (36,720 transistors). The breakdown of the

additional hardware is the following. Approximately 2800 multiplexers were
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added to implement VSP, therefore,

2, 800 multiplexers × 12 transistors = 33, 600 transistors

are added. In addition, the depth changing controller increases 4705 transis-

tors.

The author compared energy consumption of the VSP with that of the

base processor by using Synopsys Nanosim which is a fast-SPICE circuit

simulator. According to the simulation result, the VSP consumes 1.5% to 5%

larger energy than the base processor. These cost are reasonable compared

with obtained effectiveness.

4.5.5 Case Study for Sophisticated Energy Optimization

This section discusses how to decide appropriate thresholds to the VSP pro-

cessor. To reveal relation between combination of thresholds, execution time

and energy consumption, the author analyzed execution results on 88 10-

million SimPoints [50] of four SPEC 2000 integer benchmarks (gzip, mcf,

parser and bzip). Since used evaluation board can execute a program up

to one million cycles, the author used a MIPS R3000 simulator to perform

fast-forwarding and to create a checkpoint. The VSP chip restores processor

state from the checkpoint and starts execution for measuring. In this way,

the first 500,000 instructions of each SimPoint were executed in order to eval-

uate execution time and energy consumption. According to analysis, all 88

SimPoints are classified as two categories. Figure 4.24 and 4.25 show major

SimPoints and minor SimPoints, respectively. In Fig. 4.24 and 4.25, each

data indicates a SimPoint in a benchmark program (e.g., gzip 235 means the

SimPoint which starts gzip program after skipping 235 × 10million instruc-

tions). In these figures, TH0, TH1, TH2 and TH3 are configured as shown in

Table 4.5, here IPCHtoL is condition to shift to low-energy mode, IPCLtoH
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and #BR are condition to make high-speed mode. Because a higher value

of IPCHtoL means that the VSP processor is easier to unify pipeline stages

and a lower value of IPCLtoH indicates that it is hard to shift back to deeper

pipeline, the VSP tends to run under low-energy mode for a longer time as it

goes TH0 to TH3. The author experimentally decided these thresholds from

around the average IPC under high-speed mode and these thresholds differ

from thresholds used in Section 4.5.2.

74 SimPoints (84%) conform with the above theory. Figure 4.24 shows

16 representatives for the 74 major SimPoints. As shown in Fig. 4.24, the

energy consumption is gradually reduced as thresholds are changed as TH0

to TH3. For these applications, the VSP can adjust the energy consumption

according to processor workload or required response time.

On the other hand, all remaining 14 SimPoints show the tendency shown

in Fig. 4.25 which shows all minor trend of SimPoints. The VSP executes

these SimPoints under high-speed mode most of the execution time except

for fixed low-energy mode because the VSP achieves higher IPC in the minor

SimPoints than in the major SimPoints. In particular, as for gzip 2 and

bzip 5486 the VSP reaches almost the highest IPC even in high-speed mode.

For this reason, the VSP cannot gradually reduce the energy consumption for

these SimPoints by using the combinations of the thresholds. However, since

a longer pipeline is effective for the minor SimPoints, pipeline unification

obtains less effectiveness compared with the major SimPoints. In terms of

energy consumption, only 35% energy can be reduced at a maximum in the

minor SimPoints while the VSP can reduce at least 40% energy in the major

SimPoints. This means that the minor SimPoints have a small impact in

energy reduction; thus, the behavior in the minor SimPoints is not a big

matter for energy optimization.
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Table 4.5: Thresholds configuration.
IPCHtoL IPCLtoH #BR

TH0 15 18 6
TH1 15 21 6
TH2 18 21 6
TH3 18 24 6
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Figure 4.24: Major trend in 88 SimPoints.

For the major SimPoints, these thresholds are good to optimize the en-

ergy consumption. In contrast, for the minor SimPoints, although these

thresholds cannot gradually reduce the energy consumption, the VSP can-

not originally reduce a large energy consumption and have a small margin

for energy optimization. Therefore, deciding thresholds from around the av-

erage IPC is appropriate for energy optimization. Using thresholds such as

shown in Table 4.5, the VSP can optimize the energy consumption in major

programs.

4.6 Glitch Propagation Problem

Besides depth-changing optimization, variable-depth pipeline architectures

suffer from a common problem: glitch propagation increase. Variable depth
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Figure 4.25: Minor trend in 88 SimPoints.

pipeline architectures use the D-flip-flop+multiplexer scheme shown in 4.17.

Using the scheme, however, glitch propagation caused by stage unification

becomes a serious problem, where a glitch is an unnecessary transition in

performing a computation. While a functional transition, which is necessary

for performing a computation, occurs either once or not at all (the signal

remains unchanged) in each cycle, glitches can occur multiple times during

a clock cycle. This means glitches consume a large amount of energy. Gen-

erally, glitches are generated by irregular delays of logic gates and wires, and

the frequency of glitch propagation increases exponentially in proportion to

the scale of the combinational circuits. Because multiple pipeline stages are

unified and they have a large combinational circuit, the energy dissipation

caused by glitch propagation increases exponentially.

4.7 Latch D-flip-flop selector-cell (LDS-cell)

To prevent glitch propagation, VSP introduces a special cell, the LDS-cell,

as a pipeline register instead of D-flip-flop+multiplexer scheme. Figure 4.26

shows the circuit schematic of the LDS-cell, and Fig. 4.27 schematically illus-

trates its function. Under high-speed mode, the LDS-cell outputs a D-flip-
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Figure 4.26: Latch D-flip-flop selector-cell (LDS-cell).

flop signal, consequently the LDS-cell behaves as a general pipeline register.

In contrast, under low-energy mode, the LDS-cell outputs a master D-latch

signal to prevent glitches. The functioning of the LDS-cell under low-energy

mode is as follows.

• In the first half of the clock period, the master latch maintains data to

prevent the glitches from propagating to the next stage.

• In the second half of the clock period, the master latch passes the input

data to start the operations of the second half stages.

Therefore, the LDS-cell functions as a D-latch. Since the LDS-cell uses a

master latch included in the D-flip-flop, the number of transistors in an LDS-

cell is the same as a pair of a D-flip-flop and MUX.

4.7.1 Low-energy LDS-cell

The LDS-cell reduces the energy consumption to prevent glitch propagation,

but the extra clock distribution for LDS-cells increases the energy consump-

tion under LE mode. Compared to the PSU, the VSP can reduce the en-

ergy consumption when the effectiveness of the LDS-cell is larger than the

overhead of the LDS-cell. However, the conventional LDS-cell has a large
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Figure 4.27: Function of LDS-cell.

overhead and the VSP cannot reduce the energy consumption more than the

PSU under some conditions. Therefore, to reduce the overhead, the author

propose two low-energy techniques for the LDS-cell that are introduced in

the fabricated VSP chip.

Gated clock to LDS-cell

In a conventional VSP, a clock is supplied in the LDS-cell in each cycle,

regardless of necessity, to simplify the processor design. Therefore, a gated

clock is introduced into the LDS-cell. Typically, a gated clock is implemented

to keep the clock at a low level. However, the author introduced a gated clock

that keeps the clock at a high level. Because the LDS-cell prevents glitch

propagation when the clock is at a high level, the clock is kept to such a

level during clock-gated cycles, so the LDS-cell also prevents glitches when a

gated clock is applied as shown in Fig. 4.28.

LDS-cell based on high-performance semi-static TSPC D-flip-flop

The conventional LDS-cell uses a static master-slave D-flip-flop, which is

commonly used in standard cell based design. The static master-slave D-flip-

flop contains a D-latch, so the LDS-cell can be implemented with the same
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Figure 4.28: Timing diagram of gated clock for LDS-cell.

number of transistors as D-flip-flop+MUX. However, the static master-slave

D-flip-flop has the drawback of large energy consumption.

Dynamic D-flip-flops, such as the Hybrid Latch Flip-Flop (HLFF) used by

AMD K6 [51], DEC Alpha 21264’s D-flip-flop [52] and Semi-Dynamic Flip-

Flop (SDFF) [53] used by Sun UltraSPARC-3 are proposed, and they have

the advantage in performance. However, the author does not use them as

the base D-flip-flop for the LDS-cell because these D-flip-flops do not contain

a D-latch; a D-flip-flop, D-latch and MUX are required to implement the

LDS-cell. If an LDS-cell is designed based on these dynamic D-flip-flops, the

hardware cost will increase.

In contrast, the high-performance semi-static true-single-phase clocking

(TSPC) D-flip-flop (HSTSPC D-flip-flop) proposed in reference [54] contains

a D-latch and achieves higher performance and lower energy consumption

than the conventional D-flip-flops such as the static master-slave D-flip-flop,

TSPC D-flip-flop and semi-static D-flip-flop.

The features of the HSTSPC D-flip-flop are as follows.
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• A TSPC structure is adopted, which has the advantage of less clock

energy consumption.

• The semi-static circuit can constantly keep data when the clock is at

a low level, so it can solve the problem of using a dynamic circuit that

cannot keep data with a gated clock.

Therefore, the HSTSPC D-flip-flop was introduced as a pipeline register

including the LDS-cell. Figure 4.29 shows the circuit diagram of the LDS-

cell based on HSTSPC D-flip-flop. From Fig. 4.29, we can understand that

the LDS-cell can be implemented with the same number of transistors as the

D-flip-flop+MUX.

The power of the LDS-cell based on HSTSPC D-flip-flop was evaluated us-

ing Rohm 0.18 µm CMOS technology and Synopsys HSPICE for a simulation.

Figure 4.30 shows the results of the evaluation. In the figure, conventional

static D-flip-flop indicates a static master-slave D-flip-flop, conventional LDS-

cell indicates an LDS-cell based on the static master-slave D-flip-flop, and the

HSTSPC LDS-cell indicates an LDS-cell based on the HSTSPC D-flip-flop.

The vertical axis is power and the horizontal axis is the toggle rate of input

data. Figure 4.30 shows that the HSTSPC LDS-cell can achieve lower energy

than the conventional LDS-cell. Generally, pipeline registers have low toggle

rates and the HSTSPC LDS-cell reduces energy consumption especially at a

such toggle rate.

Problem and proposed solution

If both low-energy techniques are used simultaneously, then short-circuit cur-

rent occurs in the LDS-cell and the energy consumption is significantly in-

creased. The details of this problem and proposed solution are described as

follows.
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Figure 4.29: Circuit diagram of HSTSPC LDS-cell.

HSTSPC D-flip-flop has a master latch using dynamic circuit, which is

constructed by connecting two clocked inverters, called a static p-stage. Node

LQ in Fig. 4.29 is the output of the master latch and LDS-cell under LE mode.

In this circuit, node LQ becomes a floating node when both the clock and

input D are at a high level. Therefore, if the clock stays high when input

D is high, a voltage drop occurs in node LQ because node LQ discharges

with time. If the voltage of node LQ drops close to the threshold voltage,

a short-circuit current occurs at inverter A in Fig. 4.29, thereby the energy

consumption is significantly increased. Analysis of this voltage drop using
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Synopsys HSPICE shows that it took 400 µ seconds to begin, due to the

flowing short-circuit current, which means there is no problem during typical

operation. However, if both low-energy techniques are used simultaneously

and the clock remains to at a high level for a long time, then the voltage

drop becomes a serious problem.

Therefore, to solve this problem, the author proposes to add a PMOS

keeper transistor as shown in Fig. 4.31. The PMOS keeper charges the node

LQ, whether the clock is at a high or low level, so that no voltage drop occurs.

In addition, this solution has only a small overhead in terms of the energy

consumption, layout area and delay. The energy consumption increases by

approximately 5% when compared with the HSTSPC LDS-cell. However,

this increase is less than 0.1% of the overall energy consumption of the pro-

cessor. In addition, the layout area is not increased because the number of
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PMOS transistors is less than that of NMOS transistors in HSTSPC D-flip-

flop and there is dead space in the layout. Moreover, evaluation of the delay

caused by addition of a PMOS keeper transistor shows that the delay does

not increase.

For this reason, the author proposes a novel LDS-cell with a keeper

(Fig. 4.31) as the solution to the voltage drop problem.
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4.8 Evaluation Result

This section presents the effectiveness of proposed LDS-cell. Firstly, the

author shows a simulation result using transistor-level simulation, then shows

an actual measurement result using fabricated chip to demonstrate that LDS-

cell saves larger energy on a chip than simulation.

4.8.1 Result of SPICE simulation

To evaluate the VSP processor, the author designed two processors; one uses

the PSU technique and the other uses the VSP technique. The VSP uses

low-energy techniques, as described in the previous section, and all pipeline

registers of the PSU are used HSTSPC D-flip-flop similar to VSP.

The energy consumption was estimated using the Synopsys Nanosim tool.

Both processors were designed to operate at 100 MHz for HS mode and 25

MHz (a quarter of 100 MHz) for LE mode. Figure 4.32 shows the energy

consumption under LE modes normalized to the PSU result. The VSP also

achieves approximately 5 to 7% less energy consumption than the PSU un-

der LE mode. To break down the energy overhead and the energy reduction

by using the LDS-cell, the author analyzes the energy of the LDS-cell, clock

network and combinational circuit by using a fast SPICE tool. According to

the evaluation results, due to the extra clock network and LDS-cells, the VSP

has 3% energy overhead compared with the PSU. However, the VSP can re-

duce energy consumption by 8 to 10% compared with the PSU, so overall the

VSP can reduce energy consumption by 5 to 7% more than the PSU. Under

LE mode, the clock network consumes 15% of the energy of the processor

compared with 30% under HS mode. This means the energy consumption of

the combinational logic including glitches becomes more dominant. For this

reason, preventing glitch propagation would be effective for energy reduction.
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Figure 4.32: Result of SPICE simulation.

The wiring capacitance and wiring resistance were not accounted for in

this simulation, due to the computational complexity. For this reason, this

simulation can evaluate only glitches caused by gate delay. If the VSP is

evaluated including wiring capacitance and wiring resistance, then the au-

thor surmises that VSP can prevent the propagation of glitches caused by

wire delay, and that VSP should achieve higher efficiency than the present

simulation results. Therefore, the author fabricated and measured both VSP

and PSU chips.

4.8.2 Evaluation of fabricated chips

Figure 4.33 shows comparison of the energy consumption between the VSP

and PSU under LE mode with each value normalized according to the PSU

results. According to the results, the energy consumption of VSP is approxi-

mately 13% less than that of the PSU. Compared with the simulation results

shown in Fig. 4.32, the effectiveness based on actual measurement with the

fabricated VSP chip is larger. As mentioned above, the wiring capacitance

and wiring resistance were not considered due to computational complexity,

and only the glitches caused by gate delay were evaluated using the SPICE

simulation. However, the measurement results show that VSP can also pre-

vent glitches caused by wire delay. Therefore, the LDS-cell can reduce energy
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Figure 4.33: Measurement result of fabricated chip.

consumption further than that shown by the simulation results. The results

for the fabricated chips show that VSP is superior to PSU, and that the

effectiveness of the LDS-cell is higher than shown in simulation results from

our former reports.

4.9 Summary of VSP processor

Developing energy-efficient processor core is a key for single-ISA heteroge-

neous multi-core processor design. The measurement results conduct that

VSP architecture streamlines finer-grain diversity in a program phase using

fine-grain depth-changing controller and reduces further energy with LDS-

cell under folded pipeline structure. VSP is definitely suitable as a core

architecture used in heterogeneous multi-core processors.
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5 FabHetero

This chapter gives the detail of FabHetero project. Section 5.1 provides

the motivation for automating heterogeneous multi-core design. Section 5.2

introduces an automated core design tool, called FabScalar, developed by

research collaborator. Section 5.3 overviews FabHetero project. Sections 5.4

and 5.5 describe sub-projects in the FabHetero project. Section 5.6 summa-

rizes FabHetero project.

5.1 Facilitating the Design of Heterogeneous Multi-
core Processors

The studies of single-ISA heterogeneous multi-core processors attract much

attention in various fields from mobile to high-performance computing be-

cause it streamlines the execution of diverse programs and program phases

exploiting diversity of applications by providing diverse core types on a chip.

Each core on a chip may differ in fetch/issue width, pipeline depths, size of

tables to expose instruction-level parallelism (ILP), function unit mix, and

structures of caches. Previous works in the heterogeneous multi-core architec-

ture intend to obtain significant performance and power advantages. How-

ever, a practical issue currently impedes proliferating emerging single-ISA

heterogeneous multi-core processors, namely, design and verification effort

multiplied by the number of different design types of components in a chip.

This factor limits the design space of microarchitectural diversity which can

be practically implemented. The issue motivates us to automate single-ISA

heterogeneous multi-core design in a meaningful design space to accelerate

research and development productivities.
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5.2 FabScalar

N. K. Choudhary et al. propose FabScalar to quickly design many cores that

differ in the major superscalar design: superscalar width, pipeline depth,

and sizes of structures for extracting ILP. FabScalar is the first solution for

the design effort issue. FabScalar can immediately design diverse superscalar

core types from a canonical pipeline stage library.

The canonical superscalar processor defined by FabScalar is shown in

Fig. 5.34. FabScalar consists of nine canonical pipeline stages: Fetch, De-

code, Rename, Dispatch, Issue, Reg. Read, Execute, Writeback, and Retire.

FabScalar contains many synthesizable RTL designs for canonical pipeline

stage, that differ in superscalar width, pipeline depth and size of tables. The

front stages of FabScalar (Fetch to Dispatch) can be changed their width

from 1-way to 8way. The Issue stage is sub-pipelined up to 3 stages and the

Reg. read stage is sub-pipelined up to 4 stages respectively. In addition,

size of stage-specific structures for extracting ILP such as issue queue, load

and store queues, physical register file and reorder buffer are parameterized

in the RTL. The current FabScalar tool-set quickly designs diverse super-

scalar core types within the above design space by editing parameter file. N.

K. Choudhary et al. did validation experiments using 12 cores generated by

FabScalar: functional and performance (instruction per cycle) validation and

timing validation (cycle time) [11].

5.3 FabHetero Project Overview

FabHetero is the entire project of automatic heterogeneous multi-core proces-

sor generation. Although FabScalar contributes to mitigate the design and

verification effort as regarding cores on chip, each core on a single-ISA het-

erogeneous multi-core requires a suitable cache system and each differently-
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Figure 5.34: Canonical superscalar processor.

designed cache should be connected with a flexible shared bus system. As

for the cache systems, designers must consider the organization including ca-

pacity, line size, associativity, hierarchy, and coherency protocol to optimize

the design. In addition, the shared bus system should have a high flexibility

because it connects diverse cache systems with a shared memory (the last

level cache or main memory). These factors still block designing single-ISA

heterogeneous multi-core processors in a short term even if core design is

automated.

The author proposes a framework called FabHetero which automatically

generate diverse heterogeneous multi-core processors using FabScalar, Fab-

Cache, and FabBus. Figure 5.35 shows an example of the heterogeneous

multi-core processor generated by FabHetero framework. There are four

differently-designed cores (Core 0, Core 1, Core 2 and Core 3), and each core

has different cache structure. The shared bus connects the diverse cache sys-

tems with the shared memory (the last level cache or main memory). As for

the cache systems, Core 1 has only L1 instruction and L1 data caches, Core 2

has dedicated L2 caches in addition to L1 caches, and Core 3 has unified L2

cache instead of dedicated L2 caches (each cache design may differ in cache

capacity, line size, and associativity). Both L1 and L2 cache hierarchies can

be omitted if a core does not require cache system as Core 0. Such non cache

design is valuable for in particular the field of embedded system in which a
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Figure 5.35: An Example of Heterogeneous Multi-core processor in Fab-
Hetero framework.

part of or all cache hierarchies are often removed. To generate various pro-

cessor cores, cache systems and flexible shared bus system, FabHetero uses

FabScalar, FabCache, and FabBus, respectively.

FabHetero confines the microarchitectural diversity into a superset code

in SystemVerilog, this means that all parameterized microarchitectural di-

versity shares the same source file in RTL implementation. An opposite

approach is using a generation script to generate RTL code, in this method,

a generation script parses parameters and generates the target RTL code ded-

icated to the given parameters. Using generation script has the advantage

of code optimization for each parameter compared with the superset strat-

egy. However, using generation script has a critical problem when we (both

developers and users) want to add a new microarchitectural approach. Since

this work intends to use FabHetero for developing a new microarchitecture

for heterogeneous multi-core processors, providing extensibility is essential
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for our goal. Therefore, this work adopted superset strategy to implement

FabHetero framework. By using superset strategy, adding a new microarchi-

tecture becomes easier because we can directly implement it into RTL code

while using generation script requires back-annotation to make the generation

script after implementing it once. However, the superset strategy has inher-

ent two concerns: the unintended hardware remains in the design and the

code may diminish readability if the superset code naively includes various

design choice. In FabCache implementation, for example, we implemented

direct mapping as 1-way set associative to keep RTL code simple. As a result,

extra circuits used to implement LRU remain in the design regardless of di-

rect mapping. However, according to logical synthesis, the increase in area of

a cache is only 0.76%, and we judged that the overhead is reasonable in order

to maintain the readability. We have been implementing FabHetero avoiding

the concerns. More detail of superset strategy is described in FabCache’s

paper.

A part of FabHetero project is now on fabrication stage, and the detail

will appear in the future work.

5.4 FabCache

In this section, the author describes the microarchitectural diversity of Fab-

Cache.

5.4.1 FabCache Specification

Table 5.6 summarizes the available microarchitectural diversity in the cur-

rent FabCache. The first column identifies the cache hierarchy. The second

column shows ranges of line size, set size, and associativity. Set size can take

on arbitrary value in all hierarchies. Line size has some limitations because
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Table 5.6: Available designs in FabCache
Memory hierarchy Dimensions( L = line size, Specific microarchitectures

S = set size,
W = associativity)

L1 instruction cache L = (fetch width to 2
n

)×4(byte) two banks interleaved vs. non-interleaved
S = 1 to 2

n

1 to 8 fetch width
W = 1, 2

n

-way, full interface with L2 cache
Line size transmission vs. burst transmission

enable vs. disable

L1 data cache L = (1 to 2
n

)×4(byte) Miss handling
S = 1 to 2

n

blocking vs. non-blocking
W = 1, 2

n

-way, full writing approach
write-through vs. write-back

Interface with L2 cache
line size transmission vs.burst transmission

enable vs. disable
L2 cache L = wider than higher hierarchy dedicated instruction and data vs. unified

S = 1 to 2
n

cache coherency
W = 1, 2

n

-way, full MOESI vs. MOSI vs. MEI vs.
dedicated for each processor core.
interface with shared memory

processor num to/from one vs.
processor num to/from multi-ported

(or multi-banked) memory
cache replacement policy

LRU vs. Pseudo-LRU
enable vs. disable

of guaranty for completing cache operation from a higher hierarchy by one

cache access. All cache hierarchies vary the associativity from direct mapping

to 2n-way set associative including full associative.

The third column in table 5.6 considers specific microarchitectural diver-

sity for each hierarchy. Specific designs that are implemented in the current

FabCache are highlighted in boldface in the third column. We also enumerate

notable examples to emphasize the potential for FabCache in the future.

L1 instruction specific microarchitectures

Because FabScalar requires any instruction bundle (even instructions not

aligned on cache line boundaries) every cycle, the instruction fetch require-

ment straddles two cache lines. As a result, getting all necessary instructions

takes two cycles by twice access to SRAM in case of using single-ported

SRAM because of the alignment limitation. This results in loss of instruc-

tion fetch efficiency and, consequently, the whole performance degrades. To
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solve this problem, we implemented the L1 instruction cache as an interleaved

memory. Interleaved memory is a technique to divide a memory into some

banks to facilitate the simultaneous access to the memory banks. Therefore,

we interleaved L1 instruction into two banks to adopt the instruction fetch

requested from FabScalar. In addition, FabCache generates the interleaved

caches for every fetch width (one to eight) of FabScalar.

L1 data specific microarchitectures

Currently, the miss handling strategy of L1 data cache is blocking whereas the

processor core dispatches speculative load instructions to the L1 data cache.

Non-blocking cache may improve the peak performance than the blocking

cache, however, in terms of the energy consumption, preventing speculative

loads from being dispatched to lower cache saves unnecessary energy con-

sumption. Therefore, we consider it would be of interest to parameterize

the diversity for targeted instruction level behavior. In the future, we will

implement non-blocking and write-back mechanisms to cover a larger design

space.

L2 cache specific microarchitectures

L2 cache can select two types: dedicated instruction/data or unified structure

to design flexible cache systems. Caches in a multi-core processor should

ensure cache coherency, and there are many cache coherency protocols such

as MEI and MOSI. In addition, the suitable cache coherency protocol may

be different for characteristic in a program. Firstly, we implemented MOESI

protocol because the others can be implemented using MOESI structure.

Choosing various coherency protocols helps us to explore the best coherency

protocol.
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Common microarchitectures

Interface with a higher level cache (or main memory) can choose up to line

size from 1 word. Line size transmission sends data by line size unit at once.

We can use the line size transmission for an on-chip communication which

requires a wide bandwidth. Burst transmission sends data according to user

defined bus width in each cycle until the all data in a line are transmitted.

Although line size transmission requires a lot of I/O pins, the number of

I/O pins is often not enough for the line size transmission. For this reason,

we provide these transmissions as a parameter for chip fabrication to enable

designers to choose the suitable type (and width) of transmission.

As cache replacement policy of N-way set associative cache, we adopt

least recently used (LRU). We will implement other replacement algorithms

to use a proper replacement algorithm for characteristic in a program. By

enabling/disabling each cache, the cache hierarchy can be changed. When

we enable a cache hierarchy, FabCache generates the cache according to pa-

rameter file. When we disable the cache, the cache directly accesses an ideal

main memory using DPI-C and behaves as a perfectly hit cache for simula-

tion. The disable mode is also favorable to estimate the best performance

for each hierarchy.

5.5 FabBus

This section presents the microarchitectural diversity of FabBus.

5.5.1 FabBus Specification

Table 5.7 shows the configurable parameters in FabBus. The upper limit of

number of master/slave unit depends on AMBA specification. In case that

number of master unit is only one, any units for cache coherency control are
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Table 5.7: FabBus Specification
Number of Units

Master Unit 1∼16
Slave Unit 1∼16
Snoop Bus 0∼16

Cache Coherency Control

Broadcast
Way to Assert Signals One-to-One

Wired AND/OR
———————————— ———————–
MOESI confirmed
MESI confirmed
Berkeley, etc. unconfirmed

Bus Width

Data Width 256 [bit]
Address Width 64 [bit]

Configurable Function

Fixed Priority
Arbitration Algorithm [or]

Round Robin

not generated. Arbitration algorithm can be chosen from fixed priority and

round robin. Proposed bus framework enables to design various shared buses

which work on multi-core processor.

5.6 Summary of FabHetero project

The author framed FabHetero framework to automatically generate diverse

heterogeneous multi-core processors. Currently, FabHetero automatically

generates diverse processors including a superscalar core, its cache system

up to level-two, and bus system. Our laboratory has started to use Fab-

Hetero as a development environment in our other researches, and we will

release FabHetero for developers and researchers in the near future to boost
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research for heterogeneous multi-core processor.
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6 Co-simulation Framework

This Chapter presents a practical processor development framework used in

FabHetero. Section 6.1 provides overview of this work. Sections 6.2 and 6.3

introduce the current environments to research processor architecture. Sec-

tion 6.4 overviews proposed co-simulation framework using functional and

timing simulators. Section 6.6 details external system call emulator. Sec-

tion 6.7 presents checkpoint mechanism in detail.

6.1 Requirements for Rapid Processor Prototyping

As multi-core architecture has become commonly used to improve proces-

sor performance, designing a state-of-the-art multi-core chip in a short time

has become essential for processor research. A development environment

that contains useful mechanisms and can be used throughout the entire pro-

cessor research provides efficient infrastructure to researchers. The steps of

fabricating a novel processor chip are classified into five phases, 1) design

space exploration using a simulator, 2) register transfer level (RTL), 3) gate

level, 4) transistor level, and 5) fabricated chip. There are two challenges

to streamline the processor development through the entire standard ASIC

design flows.

System Call Emulation in RTL through fabricated chip

When researchers prototype a processor from RTL, to gate and transistor

level, to ASIC, it is often desirable to focus on user level code because they

are interested in the core part of the processor and not all of the system

level support. They may be in this situation because they designed the RTL

from scratch or because they are using open source toolsets (e.g., FabScalar)

which provide a level of sophistication in the microarchitecture but do not
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currently feature system level support. As a matter of convenience, and

a matter of research productivity, it is good to dispense with the issue of

explicitly supporting system calls in the processor design. While emulation

is often used in simulators written in a high-level language, it is unwieldy to

carry that over to RTL/gate/transistor simulations and not at all possible to

emulate in the same way for a fabricated chip.

Turnaround Time Reduction for Evaluation and Verification

Except for the fabricated chip phase, all other simulation-based phases in

particular gate/transistor level cannot simulate the entire workloads in a rea-

sonable timeframe. Therefore, a checkpoint mechanism is needed to resume

a simulation from an arbitrary region of interest (ROI). Moreover, check-

points are useful when hardware bugs are detected in the fabricated chip. A

checkpoint allows for bypassing the bug (if it is infrequent) to get to another

ROI. Therefore, it is also useful for validation in the fabricated chip phase.

6.2 Processor Simulators

Many processor simulators [55, 56] and system simulators [57–59] written

in a high-level language are used for processor research. Researchers take

advantage of such simulators in the early stage of research in accordance with

their intended use. Since main focus is from RTL to fabrication, in which

researchers evaluate the precise hardware cost, energy efficiency, and circuit

delay for their proposed approach, three focused mechanisms are described:

1) system call emulation to simplify processor architecture, 2) checkpoint

mechanisms to reduce simulation time, and 3) cache warming mechanism to

achieve a highly accurate evaluation. These mechanisms, however, are used

only in each simulator. The goal is to use these mechanisms in all phases of
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standard ASIC design flows.

6.3 Synthesizable Processors

Some open synthesizable processors can be used from RTL implementation

to chip fabrication [11,59–61]. Since FabScalar and OpenSPARC have a co-

simulation environment, the author describes these two processors in more

detail.

FabScalar automatically generates synthesizable RTL designs of differ-

ently designed superscalar cores. FabScalar contains an instruction set sim-

ulator, called functional simulator, to verify RTL by concurrently running

the same instructions in RTL design and the functional simulator, and cross-

checking the architectural state instruction-by-instruction. The functional

simulator is also used for emulating a system call, so RTL design can handle

a system call as a one-cycle-instruction. Also FabScalar provides fast-skip

and checkpoint mechanisms to avoid long simulation time and re-simulating

up to a checkpoint. However, FabScalar currently has drawbacks in system

call emulation (described in Section 6.6) and the checkpoint mechanism (de-

scribed in Section 6.7). The aim was to improve the two mechanisms based

on FabScalar.

OpenSPARC is the open-source version of UltraSPARC T1 and T2 pro-

cessors. Currently, RTL design, simulation tools, and verification package

are all available. OpenSPARC provides a complete RTL design to boot a full

OS and useful tools for simulation and verification including checkpoint and

cache warming. However, there is the level of abstraction gap as the next

step from a processor simulator, and this gap makes it difficult to advance the

research phase beyond simulator-based exploration. By contrast, proposed

off-chip system call emulation mechanism enables a designer to evaluate a
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prototype processor omitting touchy hardware for an OS with general bench-

mark programs. In addition, cache warming of OpenSPARC is implemented

by programming language interface (PLI) in verilog, this limits the use to

only in RTL simulation. Proposed cache warming mechanism is unique in

that it is consistently used from RTL to fabricated chip.

6.4 Co-simulation Framework

This subsection gives an overview of co-simulation framework. The frame-

work consists of a functional simulator written in a high-level language and

processor design. Note that processor design refers to all designs of RTL, gate,

transistor level, and fabricated chip. Fig. 6.36 shows how the functional simu-

lator is used in the co-simulation framework. The functional simulator assists

in the verification and evaluation of processor design. The cross-checking ar-

chitectural state guarantees instruction set level behavior of processor design,

and fast-skip and checkpoint mechanisms reduce turnaround time. In addi-

tion, the functional simulator emulates system calls by calling the host OS

according to a request from processor design.

6.5 Challenges

Three challenges in the co-simulation framework are described below.

System call emulation: System call emulation is significantly beneficial in

that a designer can run a general program without booting an OS on the

target processor. Proposed system call emulation mechanism can be used for

every research phase. The co-simulation framework exploits general load and

store instructions to communicate with the emulator; therefore, no special

mechanism is necessary in the processor design.
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Figure 6.36: Co-simulation framework.

Checkpoint mechanism: The checkpoint mechanism is used not only to

reduce turnaround time but also to evaluate only an ROI. Checkpoint cre-

ation for a multiprocessor should consider the non-deterministic problem.

The author proposes a checkpoint mechanism that solves this problem.

Cache warming: Proposed checkpoint mechanism contains cache warm-

ing mechanism as a part of optional checkpoints. Restoring a checkpoint is

exposed to a large performance gap with a peak performance because the

simulation is resumed with a cold started cache. In addition, in the gate

and transistor level phases, it takes a long time to achieve the peak. Pro-

posed cache warming mechanism warms up the cache in the shortest time

and improves evaluation accuracy.

The framework is introduced into two processor design projects: an em-

bedded processor [22] and FabScalar.
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6.6 External System Call Emulator

6.6.1 System call emulation

In general benchmark programs such as SPEC, a processor must handle sys-

tem calls (services from an OS kernel) to handle the file system, network,

memory, process, thread, and security. For this reason, to evaluate a pro-

cessor design with general benchmarks, the processor either boots an OS or

uses an alternative stand-alone C library. There are two requirements. One

is that researchers directly execute benchmarks on a full implemented pro-

cessor to evaluate and verify in a short time. Since booting an OS takes a

large amount of time, especially in gate and transistor level, it is difficult to

evaluate or verify a processor design on a full system. Moreover, although

using an LSI tester has an advantage of directly evaluating or testing a fab-

ricated chip with input vectors, such LSI testers limit the execution cycle up

to insufficient cycles for running a target application. The other requirement

is that to evaluate a microarchitectural approach, researchers often require

only primal instructions such as arithmetic, logical, branch, and memory

access instructions, and tends to omit subsidiary hardware for an OS such

as memory management unit and internal processor registers. Implement-

ing such hardware requires researchers to have a deep understanding of such

hardware.

Because of these two requirements, executing general programs without

an OS is valuable. Newlib is a C library intended for use on embedded

systems [62]. A processor can execute programs without an OS with the ad-

dition of a few low-level routines. However, another binary file using Newlib

is needed. In addition, Newlib requires emulation of peripheral systems and

does not support multiple processes and cores.

Emulating a system call as an instruction solves the above problems.
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When a system call occurs, the functional simulator detects the call and

emulates it by calling the host OS. Later, the processor design continues

execution after reflecting the result of the system call.

To emulate a system call, the processor design somehow notifies the emu-

lator of the occurrence of the system call. Furthermore, the processor design

must take over the system call result. In the RTL phase, this is not difficult

because a test module can look into the submodule, which asserts a rela-

tive signal, and overwrite the architectural state. FabScalar currently uses

this method; however, it is used only in the RTL phase and prevents regions

including system calls from being evaluated on FPGA [63]. Therefore, the

co-simulation framework is necessary for emulating system calls beyond the

RTL phase.

6.6.2 Implementation of off-chip system call emulator

The concept of system call emulation mechanism is juggling a system call as

consecutive stores and loads. Proposed emulation mechanism is explained

using Figs. 6.37 and 6.38. Fig. 6.37 shows memory mapping and how to

trigger/reflect a system call emulation. A memory space (e.g., from address

7fd00000) is allocated to interact with the off-chip emulator. First, when a

system call occurs, the processor jumps to the system call trap routine like

a real product. The routine shown in Fig. 6.38 is used instead of a true rou-

tine if an user wants to emulate system calls. Second, the processor design

involves storing the architectural state, i.e., register file, to the prescribed

space because the emulator requires the register file values to emulate the

required system call. Next, the emulator emulates the system call when a

store is executed into the probing address (7fd00000). Finally, the emulator

writes the values updated by the system call into the same memory space to
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Figure 6.37: Off-chip system call emulation mechanism.

which the processor stored the register values, then the processor loads the

modified values using load instructions. Note that if the processor includes a

cache, the stores and loads should be non-cacheable memory access instruc-

tions. This emulation mechanism does not require any dedicated hardware in

the processor design; therefore, the processor maintains a pure design. Since

the processor interacts with the emulator using load and store instructions in

the co-simulation framework, the emulation mechanism can be consistently

used from RTL to fabrication. This enables the processor design to execute

a general program without booting an OS.

The off-chip system call emulation mechanism is of course used for evalu-

ating and verifying a complete processor. Also, a prototype processor design

which does not support system calls can be evaluated with general bench-

marks. This aspect improves research productivity to evaluate a microarchi-

tectural approach.
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bfc003d0 <__trap_syscall>:

/* Save architectural state */

sw $1, 0x104(k0)

：
sw $31, 0x17c(k0)

/* Trigger for system call */

sw 0x01, 0x0000(k0)

/* Restore the result */

lw $1, 0x104(k0)

：
lw $31, 0x17c(k0)

Figure 6.38: System call trigger routine

6.7 Checkpoint Mechanism Solving Non-deterministic
Problem

6.7.1 Essential State Restoration

A checkpoint mechanism saves the state of a simulation in an ROI and

later continues the simulation from the ROI. A checkpoint mechanism goes

through two phases: checkpoint creation phase with only the functional simu-

lator, and resume phase with the processor design. We can repeat the resume

phase during verification and evaluation of a processor to reduce turnaround

time.

In proposed co-simulation framework, we can resume a program using a

similar routine as the system call emulation for use in every design phase to

restore the architectural state. The reset routine shown in Fig. 6.39 is used.

After the processor is reset, the program counter is initialized to bfc00000,

which is the general start address of the reset routine. In the routine, the

processor loads register file values and the program counter written into the

prescribed memory space. The program counter indicates the starting point

of a checkpoint.

However, if the co-simulator naively resumes a benchmark program from
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bfc00000 <__reset_handler>:

lui k0, 0x7fd0

lw $1, 0x104(k0)

：
lw $31, 0x17c(k0)

/* load program counter */

lw k1, 0x278(k0)

jr k1

Figure 6.39: Reset routine

a checkpoint, a system call (file- and network-related) cannot be correctly

executed. In the following explanation, a sequence of file system operations

is used as an example to simplify the problem. The co-simulator leaves file

input/output (I/O) to the OS running on a host computer. Fig. 6.40 shows

the issue of resuming simulation from a checkpoint. When a file is opened,

the off-chip system call emulation mechanism calls the OS to handle the

file opening (Fig. 6.40.A). Once the file is opened, the co-simulator treats

I/O operation to the file in the same way (Fig. 6.40.B). Once the simulation

reaches at the start point of an ROI, the co-simulator creates the checkpoint,

then the file is closed because the co-simulator quits (Fig. 6.40.C). For this

reason, when the co-simulator resumes the simulation from the checkpoint

(Fig. 6.40.D) and a file I/O occurs (Fig. 6.40.E), the co-simulator cannot

handle the file I/O because the file is not open.

To solve this problem, FabScalar dumps the state not only at a check-

point but also at file I/Os in an ROI as shown in Fig. 6.41. In the checkpoint

creation phase, FabScalar executes a program beyond a checkpoint to dump

the state after file I/Os in the ROI (Fig. 6.41.A). To resume a program,

FabScalar restores the state at the checkpoint (Fig. 6.41.B). When a file

I/O occurs during the resumed simulation, the dumped state after the file

I/O is restored (Fig. 6.41.C); therefore, FabScalar reproduces the state after
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Figure 6.40: Problem with checkpoint mechanism.

the file I/O. With this method, FabScalar provides a checkpoint mechanism.

However, FabScalar can execute only file I/Os that were pre-executed in the

checkpoint creation phase. In addition, this mechanism cannot be applied to

a multiprocessor environment because we cannot create the preceding check-

point. Because the execution order is non-deterministic in a multiprocessor,

the order of system calls is also non-deterministic.

There are a few solutions to the problems. M5 uses the solution of dump-

ing all necessary information into a checkpoint file, e.g., the offset of the

file descriptor manipulated in the simulation. By contrast, we adopt an-

other solution because M5’s solution requires the dumping all inflight oper-

ations such as file system and network. In our solution, the simulator exe-

cutes only related system calls to resume a program with inflight operations.
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Fig. 6.42 shows the solution. The co-simulator dumps the difference in state

between each file I/O up to a checkpoint in the checkpoint creation phase

(Fig. 6.42.A). It skips the instructions between each file I/O using the dump

file and executes only file I/Os (Fig. 6.42.B). After it reaches the checkpoint,

it continues execution including file operations (Fig. 6.42.C). As a result, the

co-simulator skips to a checkpoint at high speed without any restriction.

Although the solution has the advantage of handling all inflight operations

in the same way, restoration speed depends on the number of system calls

up to a checkpoint. To demonstrate that the solution is practical, the author

evaluated the restoring of speed using SPEC2000 INT benchmarks. The
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Figure 6.42: Proposed checkpoint mechanism.

author created a checkpoint in SimPoint [64] and resumed the checkpoint for

each benchmark program. Table 6.8 lists the evaluation results. The upper

half compares the time to forward each benchmark to the SimPoint. The

author evaluated all benchmarks on Intel Core i7-2600 CPU @ 3.40 GHz with

4 GB memory. The author used a five-stage single pipeline processor design

as the RTL design. The lower half of the table summarizes the number of

skipped instructions, the file size of the checkpoint, and the number of system

calls up to the SimPoint. The results show that restoring a checkpoint took

a few seconds in the worst case and the file size of the checkpoint was not so

large.
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Table 6.8: Demonstration of checkpoint mechanism.

gzip mcf bzip parser twolf

RTL designa (hour) 2026 784 1718 1632 1550

fast-skip (min.) 244 103 206 210 212

checkpoint (sec.) 0.50 0.68 0.77 3.84 0.53

skipped insts (100 million) 1189 553 977 1146 1066

checkpoint file size (MB) 832 326 384 1780 119

system calls 65 116 101 1027 133

aEstimated by million instructions per second (MIPS) value

6.7.2 Optional State Restoration

A cache system has a large impact on processor performance. When we re-

sume a benchmark program from a checkpoint, a cold started cache incurs

a performance gap with peak performance, as shown in Fig. 6.43. There-

fore, the evaluation accuracy is degraded because of the performance gap.

Furthermore, it takes a long simulation time to warm up a cache system to

analyze the peak performance/energy. OpenSPARC has a cache warming

mechanism using PLI in verilog HDL. This implementation limits the use to

only in the RTL phase. By contrast, proposed cache warming mechanism can

be used in all design phases. It is particularly effective in shortening the test

vector for an LSI tester. In addition, the cache warming mechanism defines

a certain time when the cache system is warmed up, this feature enables a

designer to evaluate only a specified period after the processor achieves the

peak in simulation, as shown in Fig. 6.44.

Fig. 6.44 shows the cache warming mechanism. The co-simulator also

has a cache simulator written in C language. When the co-simulator creates

a checkpoint, the cache system dumps the cache warming routine (binary
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file, actually), as shown in Fig. 6.44. Lines that are accessed with the same

index are dumped in order of the least recently used (LRU) value to restore

the cache contents including the cache replacement algorithm. A lower LRU

value has a higher priority for replacement, i.e., an entry whose LRU value

is 0 will be replaced. The dumped routine is linked when the co-simulator

starts restoration, and it is called in the reset routine before restoring the

architectural state. This mechanism restores the cache contents by using a

software level approach in the shortest time.

The author briefly estimated the impact of the cache warming mechanism

on an L1 data cache (total size: 16 KB and line size: 16 bytes). Even in the

worst case (cache warming on blocking cache), the cache warming mechanism

reduced 90% of the simulation time to stabilize performance compared with

a simulation using cold started cache. Proposed cache warming mechanism

reduces one more order of magnitude when we use a non-blocking cache for

cache warming.

Currently, optional checkpoints are only for data cache warming. Expand-

ing optional checkpoints such as instruction cache and branch predictors is

left for future work.

6.8 Summary of Co-simulation Framework

e proposed a co-simulation framework that provides system call emulation,

checkpoint, and cache warming mechanisms through the RTL, gate level,

transistor level, and fabricated chip phases. All the mechanisms were effective

in two processor design projects.
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7 Conclusion

7.1 Summary

This thesis addressed four big challenges to fabricate low-energy hetero-

geneous multi-core processors, development of low-energy D-flip-flops, en-

hancement of variable stages pipeline (VSP) architecture, framing FabHetero

project, and establishing practical processor development environment, all

works head to yield emerging single-ISA heterogeneous multi-core proces-

sors.

Since D-flip-flops dominate a large portion of delay, area, and energy in

a processor, improving D-flip-flops yields a big benefit to enhance processor

performance. The author proposed two differently-targeted D-flip-flops for

a heterogeneous multi-core processor: one is for higher-performance core

and the other is for lower-energy core. Both D-flip-flops achieve a higher-

energy efficiency compared with the conventional D-flip-flops. The D-flip-flop

emphasizing performance contributes to construct higher-performance cores,

and the energy-efficient D-flip-flop facilitates producing lower-energy cores

on a heterogeneous multi-core processor.

Even on heterogeneous multi-core with ideal scheduler, optimization of

energy in a fine-grained term (hundreds or thousands of clock cycles) is un-

wieldy due to the overhead caused by application migration. In contrast,

VSP architecture with proposed fine-grained depth-changing controller well

streamlines fine-grain heterogeneity in a program phase. In addition, LDS-

cell, a key component of VSP, further reduces the energy consumption under

folded pipeline structure by preventing glitch from propagating. Fabricating

VSP processor chip demonstrates that VSP architecture can be implemented

by reasonable hardware cost, and LDS-cell has larger energy saving than sim-
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ulation result.

A key problem of developing or researching heterogeneous multi-core pro-

cessor is its large design effort; processor architects must design diverse cores,

caches and bus system and try out a good combination. FabHetero helps to

mitigate the design effort problem to design diverse cache systems and flexible

shared bus system which compose a heterogeneous multi-core processor. The

author employs an user-friendly implementation, superset, that will help pro-

liferate emerging single-ISA heterogeneous multi-core processors. FabHetero

provides the synthesizable register transfer level (RTL) designs of heteroge-

neous multi-core processors within in a design space (combinations of diverse

cores, caches and bus system). This thesis provided the design space cur-

rently implemented. Diverse caches and shared bus system with superscalar

cores generated by FabScalar are easily accessible to processor architects.

In an academic situation, fabrication, verification and evaluation of a

processor chip are heavy tasks especially for a small research group. The

author proposed a practical processor development environment which uses

both functional simulator written in a high level language (C++) and timing

simulator written in RTL (SystemVerilog). Researchers can enjoy the con-

venience previously provided only by software simulators on standard ASIC

design flows. This feature improves research productivity, and chip fabrica-

tion is feasible by less effort for small research group.

Totally, the former two are for improvement of the energy efficiency of

heterogeneous multi-core processor, and the latter two provide a develop-

ment environment for proliferation of single-ISA heterogeneous multi-core

processors. All works contribute to fabrication of low-energy heterogeneous

multi-core processors for overcoming the current energy issue, leading more

energy efficient computer systems.
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7.2 Future works

As for research of VSP architecture, two advanced works will be required: (1)

evaluating the effectiveness on diverse and complex microarchitectures, and

(2) energy optimization as a core embedded in a heterogeneous multi-core

processor. In this work, the author demonstrates the effectiveness of VSP

architecture on a scalar pipelined processor, i.e., 7-stage pipeline on a MIPS

R3000 compatible instruction set. Currently, superscalar architecture has

become widely used even in mobile computers which are strictly constrained

by energy consumption. For this reason, demonstrating the effectiveness of

VSP on superscalar architecture is essential for VSP research. The work will

require to try out different combinations of based superscalar implementation

(fetch width, issue width, pipeline depth, and etc.) and VSP implementation

(how many stages are unified, and unification control method). FabHetero

will facilitate the work since it generates diverse superscalar processors. The

other work will investigate how to control fluctuation of processor workload

on a heterogeneous multi-core processor composed of VSP cores. Some in-

teresting inquiries are as follows. Whether all cores adopt VSP technique or

only some of them adopt that? Can we use conventional scheduling methods

to obtain sufficient energy reduction or should we innovate a new sched-

uler which corresponds to the behavior of VSP? Providing answers for these

questions will help producing more energy-efficient heterogeneous multi-core

processors.

For design automation of heterogeneous multi-core processor, this work

frames FabHetero framework and implements key parts, cache system and

shared bus, in RTL language (SystemVerilog). Since designing a physical

design from RTL is not easy task especially for complex superscalar architec-

ture (e.g., how to implement highly multi-ported memory), providing certain
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steps for chip fabrication is of value. Therefore, a processor generated by

FabHetero will be fabricated, and it will demonstrate that chip fabrication

of diverse heterogeneous multi-core processors is feasible by reasonable ef-

fort. In addition, increasing microarchitectural diversity in FabHetero is

also important to provide more choices for processor architects. FabHetero,

including co-simulation framework, will be released for researchers and devel-

opers in the near future to fuel more innovation of heterogeneous multi-core

processor. The development environment makes diverse single-ISA heteroge-

neous multi-core processors more accessible to researchers and developers and

improves research productivity of processor architecture on standard ASIC

flows. After constructing the development environment for single-ISA hetero-

geneous multi-core processor, the research will advance to application field:

considering how to design low-energy heterogeneous multi-core processor for

target system. In the current framework, researchers should manually ex-

plore design space in FabHetero. Even though FabHetero facilitates getting

processor design of diverse heterogeneous multi-core processors, the explo-

ration may impose much effort on researchers, without practical guidance.

As a future work, it is a worthwhile challenge that FabHetero automatically

generates a processor design corresponding to desired performance. Cur-

rently, the parameter file of FabHetero requires designers to directly specify

microarchitecture (e.g., fetch-width, issue-width, cache capacity, and etc.),

consequently the designers must explore the design space in FabHetero with

parameter tuning to find the most suitable parameters. Therefore, providing

processor design having desired performance will be of value for processor

designers.
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