ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 60 地域イノベーション学研究科
  2. 60D 学位論文
  3. 修士論文
  4. 2011年度

SpikePropネットワークに対し入出力関係を滑らかにするウェイト・ディケイ導入効果の検討

http://hdl.handle.net/10076/12402
http://hdl.handle.net/10076/12402
cdd2fc01-b244-4de6-b952-ee4b90c81555
名前 / ファイル ライセンス アクション
2011M404.pdf 2011M404.pdf (922.7 kB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2013-05-09
タイトル
タイトル SpikePropネットワークに対し入出力関係を滑らかにするウェイト・ディケイ導入効果の検討
言語 ja
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_46ec
資源タイプ thesis
著者 吉川, 雄也

× 吉川, 雄也

ja 吉川, 雄也

Search repository
抄録
内容記述タイプ Abstract
内容記述 Recently spiking neural networks (SNNs) attract many research attentions in the robot control field. SNNs represent information by spikes. They are good at temporally signal processing such as robot control. We focus on SpikeProp, which is a model of SNNs. It represents information by timing of spikes. Our final goal is to apply SpikeProp to robot control. SpikeProp is based on complex model, which is an integrate-firing model. It causes complex behaviors: outputs of SpikeProp is often sensitive to weights. It implies that the outputs are also sensitive to inputs. These sensitivities cause unexpected output in a noisy environment. So, our purpose is to reduce discontinuous output changes against a continuous input changes. To reduce discontinuous output changes, we introduce Weight Decay (WD), which improve input-output characteristic of conventional neural networks, which are constructed with non-spiking neuron such as sigmoidal neurons. WD exactly works to eliminating useless connections by reducing both the output error and a sum of squared weights. We assume that discontinuous output changes are caused by local maxima of activities. Since an activity is a sum of each response for all input stimuli, eliminating useless connections would reduce local maxima of activities. As a result, SpikeProp would resolve the discontinuity problem. We show the effectiveness of our method by some simple experiments: training the XOR-problem that is a famous benchmark problem. Without WD, SpikeProp show discontinuous output changes even near trained input patterns. By applying WD, discontinuous output changes are reduced around the trained input patterns. We show that the WD works well not only for conventional neural networks but also SpikeProp. In future, more improvements are required. In particular, it’s important to lessen weights which are related to local maxima of activity that degrade input-output characteristics. Improved method would reduce discontinuous output changes. Finally, we can apply SpikeProp to real problems such as robot control.
内容記述
内容記述タイプ Other
内容記述 三重大学大学院地域イノベーション学研究科博士前期課程地域イノベーション学専攻
内容記述
内容記述タイプ Other
内容記述 4, 35
書誌情報
発行日 2011-01-01
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 三重大学
修士論文指導教員
寄与者識別子Scheme WEKO
寄与者識別子 27057
姓名 高瀬, 治彦
言語 ja
資源タイプ(三重大)
値 Master's Thesis / 修士論文
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 16:56:23.237517
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3