ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 20 教育学部・教育学研究科
  2. 20C 紀要
  3. 三重大学教育学部研究紀要. 自然科学・人文科学・社会科学・教育科学
  4. 65 (2014)

A nonlinear regression model for distance-velocity curve of 100m sprint

http://hdl.handle.net/10076/13946
http://hdl.handle.net/10076/13946
525d9bac-3112-4dae-8c2f-8e9b6b62e3d9
名前 / ファイル ライセンス アクション
20C17039.pdf 20C17039.pdf (8.1 MB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2014-08-06
タイトル
タイトル A nonlinear regression model for distance-velocity curve of 100m sprint
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 萩原, 克幸

× 萩原, 克幸

en HAGIWARA, Katsuyuki

ja 萩原, 克幸

Search repository
杉田, 正明

× 杉田, 正明

en SUGITA, Masaaki

ja 杉田, 正明

Search repository
抄録
内容記述タイプ Abstract
内容記述 Position data during a 100m sprint are usually recorded by using the LABEG(LAser VElocity Guard) system. The recorded position data is transformed into a velocity course by a certain method and a distance-velocity property is often focused in analyzing a 100m sprint. The transformed velocity data is noisy in general if we apply a simple numerical differentiation. Therefore, we need a device for extracting a smooth distance-velocity property from the raw velocity data. In this paper, we proposed a nonlinear regression model for this purpose. The nonlinear function in our model is composed of a sum of two functions which represent a velocity increase in the early stage of a 100m sprint and a velocity decrease in the later stage respectively. The former function is an exponential function to represent a rapid speed increase at a sprint start and the latter function is a polynomial function to represent a gradual decrease due to fatigue in the later state of a sprint. We apply this model to analyze collected LABEG data of students in elementary and junior high school under an appropriated pre-processing for position data. The model parameters were estimated by the gradient descent method for the least squares estimation. As a result, we verified that this model can well represent distance-velocity properties of the collected data. By the analysis based on the estimated curves, we clarified that the maximum velocity is the most important factor for a 100m sprint time. This is consistent with the well known speculation. We also found that the start acceleration and velocity decrease at the later stage are also related to the 100m sprint time. Furthermore, we introduced a derivative of the estimated distance-velocity curve and found that it's values at around sprint start are well related to a sprint time. Fortunately, we could confirm that the similar insights were obtained by estimated parameter values. This is because we have assumed a structured model in which the parameters directly reflect characteristics of each phase of a 100m sprint.
書誌情報 三重大学教育学部研究紀要, 自然科学・人文科学・社会科学・教育科学

巻 65, p. 5-17, 発行日 2014-03-31
ISSN
収録物識別子タイプ PISSN
収録物識別子 1880-2419
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA12097333
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
その他のタイトル
言語 ja
値 100m走行時の速度データに対する非線形回帰モデルについて
出版者
出版者 三重大学教育学部
資源タイプ(三重大)
値 Departmental Bulletin Paper / 紀要論文
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 19:00:42.293355
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3