ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 60 地域イノベーション学研究科
  2. 60C 紀要
  3. Proceedings of the International Workshop on Regional Innovation Studies
  4. 2(2010)

Reinforcement Learning with dual tables for a partial and a whole space

http://hdl.handle.net/10076/11665
http://hdl.handle.net/10076/11665
45a43927-06d4-495a-9c35-7eadffec435b
名前 / ファイル ライセンス アクション
60C15239.pdf 60C15239.pdf (398.8 kB)
Item type 紀要論文 / Departmental Bulletin Paper(1)
公開日 2011-11-08
タイトル
タイトル Reinforcement Learning with dual tables for a partial and a whole space
言語 en
言語
言語 eng
キーワード
主題Scheme Other
主題 Reinforcement learning
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
著者 Shibata, Nobuo

× Shibata, Nobuo

en Shibata, Nobuo

Search repository
Matsui, Hirokazu

× Matsui, Hirokazu

en Matsui, Hirokazu

Search repository
抄録
内容記述タイプ Abstract
内容記述 The reduction on the trial frequency is
important for reinforcement learning under an actual
environment.
We propose the Q-learning method that selects proper
actions of robot in unknown environment by using the Self-
Instruction based on the experience in known environment.
Concretely, it has two Q-tables, one is smaller, based on a
partial space of the environment, the other is larger, based on
the whole space of the environment. At each learning step, Qvalues
of these Q-tables are updated at the same time, but an
action is selected by using Q-table that has smaller entropy of
Q-values at the situation. We think that the smaller Q-table is
used for the knowledge storing as self-instructing. The larger is
used for the experiment storing.
We experimented the proposed method with using an actual
mobile robot. In the experimental environment, exist a mobile
robot, two goals and one of a red, a green, a yellow and a blue
object. The robot has a task to carry a colored object into the
corresponding goal. In this experiment, the Q-table for the
whole has a state for the view of the object and the goals with
the colors, the Q-table for the partial has the state without
color information. We verified that the proposed method is
more effective than the ordinaries in an actual environment.
書誌情報 Proceedings of the Second International Workshop on Regional Innovation Studies : (IWRIS2010)

号 2, p. 71-74, 発行日 2011-10-01
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 Graduate School of Regional Innovation Studies, Mie University
資源タイプ(三重大)
値 Departmental Bulletin Paper / 紀要論文
戻る
0
views
See details
Views

Versions

Ver.1 2023-06-19 18:11:48.426160
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3