ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 40 大学院工学研究科・工学部
  2. 40D 学位論文
  3. 博士論文 本文
  4. 2024年度

A Study on Road Surface Marking Quality Evaluation Using Machine Learning and Computer Vision

http://hdl.handle.net/10076/0002000907
http://hdl.handle.net/10076/0002000907
71a89b08-649f-4b5b-bd5e-3c214eeed02d
名前 / ファイル ライセンス アクション
2024DE0702.pdf 2024DE0702.pdf (33.8 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2024-10-09
タイトル
タイトル A Study on Road Surface Marking Quality Evaluation Using Machine Learning and Computer Vision
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 Boudissa, Mehieddine

× Boudissa, Mehieddine

en Boudissa, Mehieddine

Search repository
抄録
内容記述タイプ Abstract
内容記述 In the context of rapidly accelerating urban expansion and advancements in deep learning, the need for sustainable and efficient traffic management systems has emerged as a pivotal research area. This dissertation addresses the challenges associated with the deterioration of road surface markings, particularly in the Mie prefecture of Japan.
Central to this research is a comprehensive dataset of 13,000 high-resolution images (3000x1600) sourced from the local government facilities of Mie prefecture. These images span diverse roads and intersections in urban, rural, and even off-road contexts. Captured under varied lighting conditions, they present a slew of challenging samples, including images with glare effects, shadowy regions, deteriorated roads, and traffic signs. Through the development of a semiassisted annotation tool, an initial subset of 400 images was labeled, serving to train a U-Net model that achieved a Dice score of 78.90%. Recognizing the potential of the extensive dataset, a subsequent phase of assisted labeling was undertaken. This effort used the trained model’s inference on all images, facilitating a streamlined labeling process. Ultimately, this method yielded 12,000 labeled images, with about 1,000 images deemed unfit for accurate annotations. The research’s early stages successfully detected and segmented these landmarks, integrating both classical computer vision techniques and deep learning approaches. The introduction of the ”Efficient VGG-16” model, a tailored version of the renowned VGG-16, emerged as a significant contribution, adeptly evaluating road surface marking quality and achieving a Mean Squared Error (MSE) of 3.62.
Further deepening the research, a comprehensive survey of various segmentation models was conducted, with the U-Net model exhibiting notable superiority in terms of Dice score evaluation.
The current trajectory of this research is marked by several promising endeavors:
The exploration of uncertainty-aware regression to refine road surface marking quality evaluation. The application of Diffusion techniques to enhance road surface marking quality assessment. The integration of PhyCV edge detection for a holistic approach to road surface marking detection and evaluation. Conclusively, this dissertation underscores the transformative potential of advanced computer vision techniques in the realm of traffic management and road safety, heralding a new era of research and practical implementations in the domain.
言語 en
内容記述
内容記述タイプ Other
内容記述 本文/Division of Systems Engineering, Graduate School of Engineering, Mie University
内容記述
内容記述タイプ Other
内容記述 125p
書誌情報
発行日 2024-07-17
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 三重大学
出版者(ヨミ)
値 ミエダイガク
学位名
学位名 博士(工学)
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 14101
学位授与機関名 三重大学
学位授与年月日
学位授与年月日 2024-07-17
学位授与番号
学位授与番号 甲工学第2275号
資源タイプ(三重大)
値 Doctoral Dissertation / 博士論文
戻る
0
views
See details
Views

Versions

Ver.1 2024-10-09 01:16:28.324974
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3