ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 30 大学院医学系研究科・医学部
  2. 30D 学位論文
  3. 博士論文 本文
  4. 2020年度

Artificial intelligence diagnostic system predicts multiple Lugol-voiding lesions in the esophagus and patients at high risk for esophageal squamous cell carcinoma

http://hdl.handle.net/10076/0002001036
http://hdl.handle.net/10076/0002001036
85c7779e-40f2-4c76-bd1f-b2ca1f90e251
名前 / ファイル ライセンス アクション
2020DM0302.pdf 2020DM0302.pdf (2.6 MB)
Item type 学位論文 / Thesis or Dissertation(1)
公開日 2024-11-06
タイトル
タイトル Artificial intelligence diagnostic system predicts multiple Lugol-voiding lesions in the esophagus and patients at high risk for esophageal squamous cell carcinoma
言語 en
言語
言語 eng
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_db06
資源タイプ doctoral thesis
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
著者 池之山, 洋平

× 池之山, 洋平

ja 池之山, 洋平

en Ikenoyama, Yohei

Search repository
抄録
内容記述タイプ Abstract
内容記述 Background: It is known that an esophagus with multiple Lugol-voiding lesions (LVLs) after iodine staining is high risk for esophageal cancer; however, it is preferable to identify high-risk cases without staining because iodine causes discomfort and prolongs examination times. This study assessed the capability of an artificial intelligence (AI) system to predict multiple LVLs from images that had not been stained with iodine as well as patients at high risk for esophageal cancer.
Methods: We constructed the AI system by preparing a training set of 6634 images from white-light and narrow-band imaging in 595 patients before they underwent endoscopic examination with iodine staining. Diagnostic performance was evaluated on an independent validation dataset (667 images from 72 patients) and compared with that of 10 experienced endoscopists.
Results: The sensitivity, specificity, and accuracy of the AI system to predict multiple LVLs were 84.4 %, 70.0 %, and 76.4 %, respectively, compared with 46.9 %, 77.5 %, and 63.9 %, respectively, for the endoscopists. The AI system had significantly higher sensitivity than 9/10 experienced endoscopists. We also identified six endoscopic findings that were significantly more frequent in patients with multiple LVLs; however, the AI system had greater sensitivity than these findings for the prediction of multiple LVLs. Moreover, patients with AI-predicted multiple LVLs had significantly more cancers in the esophagus and head and neck than patients without predicted multiple LVLs.
Conclusion: The AI system could predict multiple LVLs with high sensitivity from images without iodine staining. The system could enable endoscopists to apply iodine staining more judiciously.
言語 en
内容記述
内容記述タイプ Other
内容記述 本文/Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
内容記述
内容記述タイプ Other
内容記述 35p
書誌情報
発行日 2021-03-25
DOI
識別子タイプ DOI
関連識別子 10.1055/a-1334-4053
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 三重大学
出版者(ヨミ)
値 ミエダイガク
学位名
学位名 博士(医学)
学位授与機関
学位授与機関識別子Scheme kakenhi
学位授与機関識別子 14101
学位授与機関名 三重大学
学位授与年月日
学位授与年月日 2021-03-25
学位授与番号
学位授与番号 甲医学第2046号
ノート
資源タイプ(三重大)
値 Doctoral Dissertation / 博士論文
戻る
0
views
See details
Views

Versions

Ver.1 2024-11-06 04:58:46.879529
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3